Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38894075

ABSTRACT

With the steady increase in allergy prevalence worldwide, there is a strong need for novel diagnostic tools for precise, fast, and less invasive testing methods. Herein, a miniatured fluorescence-based biosensing system is developed for the rapid and quantitative detection of allergen-specific immunoglobulin-E. An antibody-based fluorescence assay in a microfluidic-patterned slide, combined with a custom-made portable fluorescence reader for image acquisition and user-friendly software for the data analysis, enables obtaining results for multiple allergens in just ~1 h with only 80 µL of blood serum. The multiplexed detection of common birch, timothy grass, cat epithelia, house dust mite, and dog epithelia shows quantitative IgE-mediated allergic responses to specific allergens in control serum samples with known total IgE concentration. The responses are verified with different control tests and measurements with a commercial fluorescence reader. These results open the door to point-of-care allergy screening for early diagnosis and broader access and for large-scale research in allergies.


Subject(s)
Allergens , Biosensing Techniques , Immunoglobulin E , Point-of-Care Systems , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Allergens/immunology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Animals , Humans , Hypersensitivity/diagnosis , Hypersensitivity/immunology , Fluorescence , Dogs , Cats
2.
Front Pediatr ; 11: 1130179, 2023.
Article in English | MEDLINE | ID: mdl-37144153

ABSTRACT

Background: Human milk (HM) is the ideal source of nutrients for infants. Its composition is highly variable according to the infant's needs. When not enough own mother's milk (OMM) is available, the administration of pasteurized donor human milk (DHM) is considered a suitable alternative for preterm infants. This study protocol describes the NUTRISHIELD clinical study. The main objective of this study is to compare the % weight gain/month in preterm and term infants exclusively receiving either OMM or DHM. Other secondary aims comprise the evaluation of the influence of diet, lifestyle habits, psychological stress, and pasteurization on the milk composition, and how it modulates infant's growth, health, and development. Methods and design: NUTRISHIELD is a prospective mother-infant birth cohort in the Spanish-Mediterranean area including three groups: preterm infants <32 weeks of gestation (i) exclusively receiving (i.e., >80% of total intake) OMM, and (ii) exclusively receiving DHM, and (iii) term infants exclusively receiving OMM, as well as their mothers. Biological samples and nutritional, clinical, and anthropometric characteristics are collected at six time points covering the period from birth and until six months of infant's age. The genotype, metabolome, and microbiota as well as the HM composition are characterized. Portable sensor prototypes for the analysis of HM and urine are benchmarked. Additionally, maternal psychosocial status is measured at the beginning of the study and at month six. Mother-infant postpartum bonding and parental stress are also examined. At six months, infant neurodevelopment scales are applied. Mother's concerns and attitudes to breastfeeding are registered through a specific questionnaire. Discussion: NUTRISHIELD provides an in-depth longitudinal study of the mother-infant-microbiota triad combining multiple biological matrices, newly developed analytical methods, and ad-hoc designed sensor prototypes with a wide range of clinical outcome measures. Data obtained from this study will be used to train a machine-learning algorithm for providing dietary advice to lactating mothers and will be implemented in a user-friendly platform based on a combination of user-provided information and biomarker analysis. A better understanding of the factors affecting milk's composition, together with the health implications for infants plays an important role in developing improved strategies of nutraceutical management in infant care. Clinical trial registration: https://register.clinicaltrials.gov, identifier: NCT05646940.

3.
Anal Bioanal Chem ; 415(18): 4511-4520, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37000212

ABSTRACT

MicroRNAs (miRNAs) are clinical biomarkers for various human diseases, including cancer. They have been found in liquid biopsy samples, including various bodily fluids. They often play an important role in the early diagnosis and prognosis of cancer, and the development of simple and effective analytical methods would be of pivotal importance for the entire community. The determination of these targets may be affected by the different physicochemical parameters of the specimen of interest. In this work, an electrochemical detection platform for miRNA based on a screen-printed gold electrode was developed. In the present study, miRNA-21 was selected as a model sequence, due to its role in prostate, breast, colon, pancreatic, and liver cancers. A DNA sequence modified with methylene blue (MB) was covalently bound to the electrochemical strip and used to detect the selected target miRNA-21. After optimization of selected parameters in standard solutions, including the study of the effect of pH, the presence of interferent species, and NaCl salt concentration in the background, the application of square-wave voltammetry (SWV) technique allowed the detection of miRNA-21 down to a limit in the order of 2 nM. The developed device was then applied to several urine samples. In this case too, the device showed high selectivity in the presence of the complex matrix, satisfactory repeatability, and a limit of detection in the order of magnitude of nM, similarly as what observed in standard solutions.


Subject(s)
Biosensing Techniques , MicroRNAs , Humans , Electrochemical Techniques/methods , Biomarkers , Gold , Electrodes , Limit of Detection
4.
Anal Chim Acta ; 1221: 340118, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35934401

ABSTRACT

Considering the complexities and speed of modern food chains, there is an increasing demand for point-of-need detection of food contaminants, particularly highly regulated chemicals and carcinogens such as aflatoxin B1. We report a user-friendly smartphone-based magneto-immunosensor on carbon black modified electrodes for point-of-need detection of aflatoxin B1 in cereals. For buffered analyte solutions and a corn extract sample, the assay demonstrated a low limit of detection of 13 and 24 pg/mL, respectively. The assay was also highly reproducible, exhibiting mean relative standard deviations of 3.7% and 4.0% for the buffered analyte and corn extract samples. The applicability of the assay was validated on the basis of EU guidelines and the detection capability was lower than or equal to 2 µg/kg, which is the EU maximum residue limit for aflatoxin B1 in cereals. False-positive and false-negative rates were less than 5%. Additionally, an open-source android application, AflaESense, was designed to provide a simple interface that displays the result in a traffic-light-type format, thus minimizing user training and time for data analysis. AflaESense was used for smartphone-based screening of spiked corn samples containing aflatoxin B1 (0.1, 2, and 10 ng/mL), and naturally contaminated corn containing 0.15 ng aflatoxin B1/mL. The measured values were in close agreement with spiked concentrations (r2 = 0.99), with recovery values ranging between 80 and 120%. Finally, contaminated samples correctly triggered a red alert while the non-contaminated samples led to the display of a green color of AflaESense. To the best of our knowledge, this is the first smartphone-based electrochemical system effective for screening samples for contamination with aflatoxin B1.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Aflatoxin B1/analysis , Edible Grain/chemistry , Electrodes , Food Contamination/analysis , Immunoassay , Plant Extracts/analysis , Smartphone , Soot
6.
Bone Res ; 9(1): 46, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34707086

ABSTRACT

Tissue engineering is rapidly progressing toward clinical application. In the musculoskeletal field, there has been an increasing necessity for bone and cartilage replacement. Despite the promising translational potential of tissue engineering approaches, careful attention should be given to the quality of developed constructs to increase the real applicability to patients. After a general introduction to musculoskeletal tissue engineering, this narrative review aims to offer an overview of methods, starting from classical techniques, such as gene expression analysis and histology, to less common methods, such as Raman spectroscopy, microcomputed tomography, and biosensors, that can be employed to assess the quality of constructs in terms of viability, morphology, or matrix deposition. A particular emphasis is given to standards and good practices (GXP), which can be applicable in different sectors. Moreover, a classification of the methods into destructive, noninvasive, or conservative based on the possible further development of a preimplant quality monitoring system is proposed. Biosensors in musculoskeletal tissue engineering have not yet been used but have been proposed as a novel technology that can be exploited with numerous advantages, including minimal invasiveness, making them suitable for the development of preimplant quality control systems.

7.
Foods ; 10(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204284

ABSTRACT

Standard methods for chemical food safety testing in official laboratories rely largely on liquid or gas chromatography coupled with mass spectrometry. Although these methods are considered the gold standard for quantitative confirmatory analysis, they require sampling, transferring the samples to a central laboratory to be tested by highly trained personnel, and the use of expensive equipment. Therefore, there is an increasing demand for portable and handheld devices to provide rapid, efficient, and on-site screening of food contaminants. Recent technological advancements in the field include smartphone-based, microfluidic chip-based, and paper-based devices integrated with electrochemical and optical biosensing platforms. Furthermore, the potential application of portable mass spectrometers in food testing might bring the confirmatory analysis from the laboratory to the field in the future. Although such systems open new promising possibilities for portable food testing, few of these devices are commercially available. To understand why barriers remain, portable food analyzers reported in the literature over the last ten years were reviewed. To this end, the analytical performance of these devices and the extent they match the World Health Organization benchmark for diagnostic tests, i.e., the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end-users (ASSURED) criteria, was evaluated critically. A five-star scoring system was used to assess their potential to be implemented as food safety testing systems. The main findings highlight the need for concentrated efforts towards combining the best features of different technologies, to bridge technological gaps and meet commercialization requirements.

8.
Biosens Bioelectron ; 192: 113491, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34271399

ABSTRACT

The Lateral Flow Immuno Assay (LFIA) is a well-established technique that provides immediate results without high-cost laboratory equipment and technical skills from the users. However, conventional colorimetric LFIA strips suffer from high limits of detection, mainly due to the analysis of a limited sample volume, short reaction time between the target analyte and the conjugation molecules, and a weak optical signal. Thus, LFIAs are mainly employed as a medical diagnostic tool for qualitative and semi/quantitative detection, respectively. We applied a novel cellulose nanofiber (CNF) aerogel material incorporated into LFIA strips to increase the sample flow time, which in turn extends the binding interactions between the analyte of interest and the detection antibody, thus improving the limit of detection (LOD). Compared to a conventional LFIA strip, the longer sample flow time in the aerogel modified LFIA strips improved the LOD for the detection of mouse IgG in a buffer solution by a 1000-fold. The accomplished LOD (0.01 ng/mL) even outperformed specifications of a commercial ELISA kit by a factor of 10, and the CNF aerogel assisted LFIA was successfully applied to detect IgG in human serum with a LOD of 0.72 ng/mL. Next to the improved LOD, the aerogel assisted LFIA could quantify IgG samples in buffer and human serum in the concentration ranges of 0.17 ng/mL - 100 ng/mL (in buffer) and 4.6 ng/mL - 100 ng/mL (in human serum). The presented solution thus poses a unique potential to transform lateral flow assays into highly sensitive, fully quantitative point-of-care diagnostics.


Subject(s)
Biosensing Techniques , Animals , Colorimetry , Enzyme-Linked Immunosorbent Assay , Immunoassay , Limit of Detection , Mice
9.
Talanta ; 228: 122215, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33773701

ABSTRACT

A novel electrochemical immunosensor for the detection of the important marine biotoxins domoic acid (DA) and okadaic acid (OA) was developed. The sensors used carbon black modified screen-printed electrodes (CB-SPE) obtained using a high-throughput method. The electrochemical performance and stability of CB modified SPEs and bare carbon SPEs (c-SPEs) were compared using cyclic voltammetry and electrochemical impedance spectroscopy. CB-SPEs showed improved long-term (at least six months) stability and electro-catalytic properties compared with c-SPEs. The CB-SPEs were bio-functionalized with DA or OA protein-conjugates and used to develop two indirect competitive immunosensors using differential pulse voltammetry (DPV). The DPV signals obtained for the OA and DA immunosensors fitted well to four-parameter dose-response curves (R2 > 0.98) and showed excellent LODs (LOD = 1.7 ng mL-1 for DA in buffer; LOD = 1.9 ng mL-1 for DA in mussel extract; LOD = 0.15 ng mL-1 for OA in buffer; LOD = 0.18 ng mL-1 for OA in mussel extract). No significant interference of the naturally co-occurring marine toxins saxitoxin, tetrodotoxin and OA was detected for the DA immunosensor. Similarly, for the OA immunosensor saxitoxin, tetrodotoxin and DA did not cross-react and very limited interference was observed for the dinophysis toxins DTX-1, DTX-2 and DTX-3 (OA congeners). Moreover, both immunosensors remained stable after at least 25 days of storage at 4 °C. This work demonstrates the potential of affordable, mass-produced nanomaterial-modified SPEs for marine toxin detection in shellfish.


Subject(s)
Biosensing Techniques , Animals , Electrochemical Techniques , Electrodes , Immunoassay , Kainic Acid/analogs & derivatives , Marine Toxins , Okadaic Acid/analysis , Soot
10.
Biosensors (Basel) ; 10(9)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933204

ABSTRACT

Glucose sensors are potentially useful tools for monitoring the glucose concentration in cell culture medium. Here, we present a new, low-cost, and reproducible sensor based on a cellulose-based material, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized-cellulose nanocrystals (CNCs). This novel biocompatible and inert nanomaterial is employed as a polymeric matrix to immobilize and stabilize glucose oxidase in the fabrication of a reproducible, operationally stable, highly selective, cost-effective, screen-printed glucose sensor. The sensors have a linear range of 0.1-2 mM (R2 = 0.999) and a sensitivity of 5.7 ± 0.3 µA cm-2∙mM-1. The limit of detection is 0.004 mM, and the limit of quantification is 0.015 mM. The sensor maintains 92.3 % of the initial current response after 30 consecutive measurements in a 1 mM standard glucose solution, and has a shelf life of 1 month while maintaining high selectivity. We demonstrate the practical application of the sensor by monitoring the glucose consumption of a fibroblast cell culture over the course of several days.


Subject(s)
Biosensing Techniques , Cell Culture Techniques , Glucose Oxidase/analysis , Glucose/analysis , Cellulose , Electrodes , Nanoparticles
11.
Mikrochim Acta ; 187(3): 164, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32052200

ABSTRACT

Gold nanostars (GNST), gold nanospheres (GNP) and carbon black (CB) are chosen as alternative nanomaterials to modify carbon screen-printed electrodes (c-SPEs). The resulting three kinds of modified c-SPEs (GNP-SPE, CB-SPE and GNSP-SPE) were electrochemically and microscopically characterized and compared with standardized c-SPEs after pretreatment with phosphate buffer by pre-anodization (pre-SPE). The results show outstanding electrochemical performance of the carbon black-modified SPEs which show low transient current, low capacitance and good porosity. A competitive chronoamperometric immunoassay for the shellfish toxin domoic acid (DA) is described. The performances of the CB-SPE, GNP-SPE and pre-SPE were compared. Hapten-functionalized magnetic beads were used to avoid individual c-SPE functionalization with antibody while enhancing the signal by creating optimum surface proximity for electron transfer reactions. This comparison shows that the CB-SPE biosensor operated best at a potential near - 50 mV (vs. Ag/AgCl) and enables DA to be determined with a detection limit that is tenfold lower compared to pre-SPE (4 vs. 0.4 ng mL-1). These results show very good agreement with HPLC data when analysing contaminated scallops, and the LOD is 0.7 mg DA kg-1 of shellfish. Graphical abstractSchematic representation of the magnetic bead-based immunoassay for the quantification of domoic acid (DA) in shellfish with nanomaterial-modified screen-printed electrodes. CB, carbon black; GNP, gold nanospheres; GNST, gold nanostars; MB, magnetic beads; DA-mAb, anti-DA monoclonal mouse antibody; HRP-pAb, horseradish conjugated polyclonal goat anti-mouse antibody; DA-BSA, bovine serum albumin conjugated DA; HQ, hydroquinone; BQ, benzoquinone.


Subject(s)
Biosensing Techniques/methods , Carbon/chemistry , Electrochemical Techniques/methods , Gold/chemistry , Kainic Acid/analogs & derivatives , Nanostructures/chemistry , Kainic Acid/chemistry
12.
Lab Chip ; 8(7): 1210-5, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18584100

ABSTRACT

Renewed interest in the measurement of cellular K(+) effluxes has been prompted by the observation that potassium plays an active and important role in numerous key cellular events, in particular cell necrosis and apoptosis. Although necrosis and apoptosis follow different pathways, both induce intracellular potassium effluxes. Here, we report the use of potassium-selective microelectrodes located in a microfluidic platform for cell culture to monitor and quantify such effluxes in real time. Using this platform, we observed and measured the early signs of cell lysis induced by a modification of the extracellular osmolarity. Furthermore, we were able to quantify the number of dying cells by evaluating the extracellular potassium concentration. A comparison between the potentiometric measurement with a fluorescent live-dead assay performed under similar conditions revealed the delay between potassium effluxes and cell necrosis. These results suggest that such platforms may be exploited for applications, such as cytotoxicological screening assays or tumor cell proliferation assays, by using extracellular K(+) as cell death marker.


Subject(s)
Cells/metabolism , Microfluidic Analytical Techniques/methods , Potassium/metabolism , Potentiometry/methods , Cell Line , Cell Membrane/metabolism , Cell Size , Cell Survival , Humans , Kidney/cytology , Microelectrodes , Microscopy, Fluorescence , Osmolar Concentration , Sensitivity and Specificity , Time Factors
13.
Anal Chem ; 78(21): 7453-60, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17073412

ABSTRACT

In this study, we present the development and the characterization of a generic platform for cell culture able to monitor extracellular ionic activities (K+, NH4+) for real-time monitoring of cell-based responses, such as necrosis, apoptosis, or differentiation. The platform for cell culture is equipped with an array of 16 silicon nitride micropipet-based ion-selective microelectrodes with a diameter of either 2 or 6 microm. This array is located at the bottom of a 200-microm-wide and 350-microm-deep microwell where the cells are cultured. The characterization of the ion-selective microelectrode arrays in different standard and physiological solutions is presented. Near-Nernstian slopes were obtained for potassium- (58.6 +/- 0.8 mV/pK, n = 15) and ammonium-selective microelectrodes (59.4 +/- 3.9 mV/pNH4, n = 13). The calibration curves were highly reproducible and showed an average drift of 4.4 +/- 2.3 mV/h (n = 10). Long-term behavior and response after immersion in physiological solutions are also presented. The lifetime of the sensors was found to be extremely long with a high recovery rate.


Subject(s)
Ion-Selective Electrodes , Microelectrodes , Microscopy, Electron, Scanning , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...