Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.481
Filter
1.
Virology ; 600: 110233, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39255726

ABSTRACT

Viruses are dependent on the host factors for their replication and survival. Therefore, identification of host factors that druggable for antiviral development is crucial. The actin cytoskeleton plays an important role in the virus infection. The dynamics change of actin and its function are regulated by multiple actin-associated proteins (AAPs). However, the role and mechanism of various AAPs in the life cycle of virus are still enigmatic. In this study, we analyzed the roles of actin and AAPs in the replication of pseudorabies virus (PRV). Using a library of compounds targeting AAPs, our data found that multiple AAPs, such as Rho-GTPases, Rock, Myosin and Formin were involved in PRV infection. Besides, our result demonstrated that the actin-binding protein Drebrin was also participated in PRV infection. Further studies are necessary to elucidate the molecular mechanism of AAPs in the virus life cycle, in the hope of mining host factors for antiviral developments.

2.
Ecotoxicol Environ Saf ; 283: 116980, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39226632

ABSTRACT

OBJECTIVE: Acetaminophen (APAP), an antipyretic and analgesic commonly used during pregnancy, has been recognized as a novel environmental contaminant. Preliminary evidence suggests that prenatal acetaminophen exposure (PAcE) could adversely affect offspring's gonadal and neurologic development, but there is no systematic investigation on the characteristics of APAP's fetal developmental toxicity. METHODS: Pregnant mice were treated with 100 or 400 mg/kg∙d APAP in the second-trimester, or 400 mg/kg∙d APAP in the second- or third-trimester, or different courses (single or multiple) of APAP, based on clinical regimen. The effects of PAcE on pregnancy outcomes, maternal/fetal blood phenotypes, and multi-organ morphological and functional development of fetal mice were analyzed. RESULTS: PAcE increased the incidence of adverse pregnancy outcomes and altered blood phenotypes including aminotransferases, lipids, and sex hormones in dams and fetuses. The expression of key functional genes in fetal organs indicated that PAcE inhibited hippocampal synaptic development, sex hormone synthesis, and osteogenic and chondrogenic development, but enhanced hepatic lipid synthesis and uptake, renal inflammatory hyperplasia, and adrenal steroid hormone synthesis. PAcE also induced marked pathological alterations in the fetal hippocampus, bone, kidney, and cartilage. The sensitivity rankings of fetal organs to PAcE might be hippocampus/bone > kidney > cartilage > liver > gonad > adrenal gland. Notably, PAcE-induced multi-organ developmental toxicity was more considerable under high-dose, second-trimester, and multi-course exposure and in male fetuses. CONCLUSION: This study confirmed PAcE-induced alterations in multi-organ development and function in fetal mice and elucidated its characteristics, which deepens the comprehensive understanding of APAP's developmental toxicity.


Subject(s)
Acetaminophen , Animals , Acetaminophen/toxicity , Female , Pregnancy , Mice , Male , Fetal Development/drug effects , Analgesics, Non-Narcotic/toxicity , Maternal Exposure , Prenatal Exposure Delayed Effects/chemically induced , Fetus/drug effects , Pregnancy Outcome
3.
Microsyst Nanoeng ; 10(1): 124, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237536

ABSTRACT

The demand for high-performance electromechanical resonators is ever-growing across diverse applications, ranging from sensing and time-keeping to advanced communication devices. Among the electromechanical materials being explored, thin-film lithium niobate stands out due to its strong piezoelectric properties and low acoustic loss. However, in nearly all existing lithium niobate electromechanical devices, the configuration is such that the electrodes are in direct contact with the mechanical resonator. This configuration introduces an undesirable mass-loading effect, producing spurious modes and additional damping. Here, we present an electromechanical platform that mitigates this challenge by leveraging a flip-chip bonding technique to separate the electrodes from the mechanical resonator. By offloading the electrodes from the resonator, our approach yields a substantial increase in the quality factor of these resonators, paving the way for enhanced performance and reliability for their device applications.

4.
Chem Commun (Camb) ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39246019

ABSTRACT

A molten-salt-induced structural heterogeneity strategy was developed to construct molecular heterostructured carbon nitride with intimately connected heptazine and triazine units, which effectively accelerate charge transport and suppress carrier recombination. Consequently, the prepared CN-2 exhibits significantly enhanced photocatalytic H2O2 production, about 143 times that of traditional carbon nitride.

5.
Aging Dis ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39226169

ABSTRACT

Age-related hearing loss (ARHL) is a disease that impacts human quality of life and contributes to the progression of other neuronal problems. Various stressors induce an increase in free radicals, destroy mitochondria to further contribute to cellular malfunction, and compromise cell viability, ultimately leading to functional decline. Cisd2, a master gene for Marfan syndrome, plays an essential role in maintaining mitochondrial integrity and functions. As shown by our data, specific deletion of Cisd2 in the cochlea exacerbated the hearing impairment of ARHL in C57BL/6 mice. Increased defects in mitochondrial function, potassium homeostasis and synapse activity were observed in the Cisd2-deleted mouse models. These mechanistic phenotypes combined with oxidative stress contribute to cell death in the whole cochlea. Human patients with obviously deteriorated ARHL had low Cisd2 expression; therefore, Cisd2 may be a potential target for designing therapeutic methods to attenuate the disease progression of ARHL.

6.
Carbohydr Polym ; 345: 122581, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227110

ABSTRACT

High methyl-esterified citrus pectin (HMCP) is often used as a thickness in food products and is considered a poor emulsifier, especially in neutral pH solutions. Our previous findings show that the emulsifying capacity of HMCP could be significantly enhanced by calcium cations. Besides, the pH of the solution decreased in the presence of calcium cations. However, the impact of solution pH on HMCP emulsifying capacity in the presence of calcium cations is unclear. In this study, the pH of the HMCP solution was adjusted from 3.00 to 8.00 before adding calcium cations. The solution properties and emulsifying properties were analyzed in light of the existence of calcium cations. The results showed that the pH of the HMCP solutions decreased after bringing calcium cations into them. Calcium cations could change the solution rheological properties, particle size distributions and morphologies, and the particle microenvironmental hydrophobic areas in HMCP solutions while increasing the pH of HMCP solutions, contributing to improving the emulsifying capacity of HMCP. HMCP had the best emulsifying ability when the pH of the HMCP solutions was kept at a neutral level. This research gives us new ideas to adjust the emulsifying property of HMCP.


Subject(s)
Calcium , Emulsifying Agents , Pectins , Pectins/chemistry , Hydrogen-Ion Concentration , Calcium/chemistry , Emulsifying Agents/chemistry , Rheology , Emulsions/chemistry , Particle Size , Cations/chemistry , Hydrophobic and Hydrophilic Interactions , Esterification , Citrus/chemistry
7.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(9): 1084-1089, 2024 Sep 10.
Article in Chinese | MEDLINE | ID: mdl-39217487

ABSTRACT

OBJECTIVE: To explore the genetic etiology of a Chinese pedigree affected with Branchio-oculo-facial syndrome (BOFS) and summarize the prenatal phenotype of BOFS patients. METHODS: A pedigree with BOFS which had presented at the Genetics and Prenatal Diagnosis Center of the First Affiliated Hospital of Zhengzhou University in December 2021 was selected as the study subject. Clinical data of the pedigree was collected. The fetus was subjected to routine prenatal ultrasound scan. Trio-whole exome sequencing (trio-WES) was carried out for the fetus and its parents, and candidate variant was verified by Sanger sequencing. Relevant literature was searched from the database to summarize the prenatal phenotype of BOFS patients. RESULTS: Ultrasound exam suggested the fetus had cleft lip and palate. Its father had presented with high palatal arch, prematurely grayed hair, occult cleft lip, congenital preauricular fistula, red-green color blindness and unilateral renal agenesis. Its grandfather also had high palatal arch, prematurely gray hair, protruding ears, congenital preauricular fistula and hearing disorders. Trio-WES revealed that the fetus and its father had both harbored a heterozygous c.890-1G>A variant of the TFAP2A gene. The same variant was not found in its mother. Sanger sequencing confirmed that its grandfather had also harbored the same variant. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was rated as likely pathogenic (PVS1+PM2_Supporting). Combined with 36 similar cases retrieved from the literature, the prenatal phenotypes of BOFS patients had included growth restriction (25/37), renal abnormalities (10/37), cleft lip and palate (5/37) and oligohydramnios (5/37). CONCLUSION: The c.890-1G>A variant of the TFAP2A gene probably underlay the pathogenesis of BOFS in this pedigree. Discovery of the novel variant has enriched the mutational spectrum of the TFAP2A gene. The common prenatal phenotypes of BOFS have included growth restriction, renal abnormalities, cleft lip and palate and oligohydramnios. Delineation of the intrauterine phenotype of BOFS may facilitate its prenatal diagnosis, clinical diagnosis, treatment and genetic counseling.


Subject(s)
Branchio-Oto-Renal Syndrome , Transcription Factor AP-2 , Adult , Female , Humans , Male , Pregnancy , Branchio-Oto-Renal Syndrome/genetics , China , East Asian People/genetics , Exome Sequencing , Genetic Testing , Mutation , Pedigree , Phenotype , Prenatal Diagnosis , Transcription Factor AP-2/genetics
8.
Int J Biometeorol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105775

ABSTRACT

Long time series of vegetation monitoring can be carried out by remote sensing data, the level of urban greening is objectively described, and the spatial characteristics of plant pollen are indirectly understood. Pollen is the main allergen in patients with seasonal allergic rhinitis. Meteorological factors affect the release and diffusion of pollen. Therefore, studying of the complex relationship between meteorological factors and allergic rhinitis is essential for effective prevention and treatment of the disease. In this study, we leverage remote sensing data for a comprehensive decade-long analysis of urban greening in Tianjin, which exhibits an annual increase in vegetative cover of 0.51 per annum, focusing on its impact on allergic rhinitis through changes in pollen distribution. Utilizing high-resolution imagery, we quantify changes in urban Fractional Vegetation Coverage (FVC) and its correlation with pollen types and allergic rhinitis cases. Our analysis reveals a significant correlation between FVC trends and pollen concentrations, with a surprising value of 0.71, highlighting the influence of urban greenery on allergenic pollen levels. We establish a robust connection between the seasonal patterns of pollen outbreaks and allergic rhinitis consultations, with a noticeable increase in consultations during high pollen seasons. our findings indicate a higher allergenic potential of herbaceous compared to woody vegetation. This nuanced understanding underscores the importance of pollen sensitivity, alongside concentration, in driving allergic rhinitis incidents. Utilizing a Generalized Linear Model, significant features influencing the number of visits for allergic rhinitis (P < 0.05) were identified. Both GLM and LSTM models were employed to forecast the visitation volumes for rhinitis during the spring and summer-autumn of 2022. Upon validation, it was found that the R² values between the simulated and actual values for both GLM and LSTM models surpassed the 95% confidence threshold. Moreover, the R² values for the summer-autumn seasons (GLM: 0.56, LSTM: 0.72) were higher than those for spring (GLM: 0.22, LSTM: 0.47). Comparing the errors between the simulated and actual values of GLM and LSTM models, LSTM exhibited higher simulation precision in both spring and summer-autumn seasons, demonstrating superior simulation performance. Overall, our study pioneers the integration of remote sensing with meteorological and health data for allergic rhinitis forecasting. This integrative approach provides valuable insights for public health planning, particularly in urban settings, and lays the groundwork for advanced, location-specific allergenic pollen forecasting and mitigation strategies.

9.
J Transl Med ; 22(1): 743, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107765

ABSTRACT

BACKGROUND: Severe heart failure (HF) has a higher mortality during vulnerable period while targeted predictive tools, especially based on drug exposures, to accurately assess its prognoses remain largely unexplored. Therefore, this study aimed to utilize drug information as the main predictor to develop and validate survival models for severe HF patients during this period. METHODS: We extracted severe HF patients from the MIMIC-IV database (as training and internal validation cohorts) as well as from the MIMIC-III database and local hospital (as external validation cohorts). Three algorithms, including Cox proportional hazards model (CoxPH), random survival forest (RSF), and deep learning survival prediction (DeepSurv), were applied to incorporate the parameters (partial hospitalization information and exposure durations of drugs) for constructing survival prediction models. The model performance was assessed mainly using area under the receiver operator characteristic curve (AUC), brier score (BS), and decision curve analysis (DCA). The model interpretability was determined by the permutation importance and Shapley additive explanations values. RESULTS: A total of 11,590 patients were included in this study. Among the 3 models, the CoxPH model ultimately included 10 variables, while RSF and DeepSurv models incorporated 24 variables, respectively. All of the 3 models achieved respectable performance metrics while the DeepSurv model exhibited the highest AUC values and relatively lower BS among these models. The DCA also verified that the DeepSurv model had the best clinical practicality. CONCLUSIONS: The survival prediction tools established in this study can be applied to severe HF patients during vulnerable period by mainly inputting drug treatment duration, thus contributing to optimal clinical decisions prospectively.


Subject(s)
Heart Failure , Proportional Hazards Models , Humans , Heart Failure/mortality , Heart Failure/drug therapy , Female , Male , Aged , Reproducibility of Results , Prognosis , Survival Analysis , Middle Aged , ROC Curve , Algorithms , Area Under Curve , Databases, Factual , Deep Learning , Severity of Illness Index
11.
Sci Rep ; 14(1): 17792, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090212

ABSTRACT

Hypertension is a disease associated with epigenetic aging. However, the pathogenic mechanism underlying this relationship remains unclear. We aimed to characterize the shared genetic architecture of hypertension and epigenetic aging, and identify novel risk loci. Leveraging genome-wide association studies (GWAS) summary statistics of hypertension (129,909 cases and 354,689 controls) and four epigenetic clocks (N = 34,710), we investigated genetic architectures and genetic overlap using bivariate casual mixture model and conditional/conjunctional false discovery rate methods. Functional gene-sets pathway analyses were performed by functional mapping and gene annotation (FUMA) protocol. Hypertension was polygenic with 2.8 K trait-influencing genetic variants. We observed cross-trait genetic enrichment and genetic overlap between hypertension and all four measures of epigenetic aging. Further, we identified 32 distinct genomic loci jointly associated with hypertension and epigenetic aging. Notably, rs1849209 was shared between hypertension and three epigenetic clocks (HannumAge, IEAA, and PhenoAge). The shared loci exhibited a combination of concordant and discordant allelic effects. Functional gene-set analyses revealed significant enrichment in biological pathways related to sensory perception of smell and nervous system processes. We observed genetic overlaps with mixed effect directions between hypertension and all four epigenetic aging measures, and identified 32 shared distinct loci with mixed effect directions, 25 of which were novel for hypertension. Shared genes enriched in biological pathways related to olfaction.


Subject(s)
Aging , Epigenesis, Genetic , Genetic Predisposition to Disease , Genome-Wide Association Study , Hypertension , Humans , Hypertension/genetics , Aging/genetics , Polymorphism, Single Nucleotide , Multifactorial Inheritance/genetics , Genetic Loci , Quantitative Trait Loci
12.
ACS Appl Mater Interfaces ; 16(32): 41855-41868, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39093305

ABSTRACT

Inflammation caused by a bacterial infection and the subsequent dysregulation of the host immune-inflammatory response are detrimental to periodontal regeneration. Herein, we present an infection-sensitive scaffold prepared by layer-by-layer assembly of Feraheme-like superparamagnetic iron oxide nanoparticles (SPIONs) on the surface of a three-dimensional-printed polylactic-co-glycolic acid (PLGA) scaffold. The SPION/PLGA scaffold is magnetic, hydrophilic, and bacterial-adhesion resistant. As indicated by gene expression profiling and confirmed by quantitative real-time reverse transcription polymerase chain reaction and flow cytometry analysis, the SPION/PLGA scaffold facilitates macrophage polarization toward the regenerative M2 phenotype by upregulating IL-10, which is the molecular target of repair promotion, and inhibits macrophage polarization toward the proinflammatory M1 phenotype by downregulating NLRP3, which is the molecular target of anti-inflammation. As a result, macrophages modulated by the SPS promote osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) in vitro. In a rat periodontal defect model, the SPION/PLGA scaffold increased IL-10 secretion and decreased NLRP3 and IL-1ß secretion with Porphyromonas gingivalis infection, achieving superior periodontal regeneration than the PLGA scaffold alone. Therefore, this antibacterial SPION/PLGA scaffold has anti-inflammatory and bacterial antiadhesion properties to fight infection and promote periodontal regeneration by immunomodulation. These findings provide an important strategy for developing engineered scaffolds to treat periodontal defects.


Subject(s)
Anti-Bacterial Agents , Macrophages , Polylactic Acid-Polyglycolic Acid Copolymer , Porphyromonas gingivalis , Tissue Scaffolds , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Rats , Porphyromonas gingivalis/drug effects , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley , Magnetic Iron Oxide Nanoparticles/chemistry , Male , Regeneration/drug effects , Phenotype , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Mice
13.
J Nanobiotechnology ; 22(1): 477, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135044

ABSTRACT

The secondary injury is more serious after traumatic brain injury (TBI) compared with primary injury. Release of excessive reactive oxygen species (ROS) and Ca2+ influx at the damaged site trigger the secondary injury. Herein, a neutrophil-like cell membrane-functionalized nanoparticle was developed to prevent ROS-associated secondary injury. NCM@MP was composed of three parts: (1) Differentiated neutrophil-like cell membrane (NCM) was synthesized, with inflammation-responsive ability to achieve effective targeting and to increase the retention time of Mn3O4 and nimodipine (MP) in deep injury brain tissue via C-X-C chemokine receptor type 4, integrin beta 1 and macrophage antigen-1. (2) Nimodipine was used to inhibit Ca2+ influx, eliminating the ROS at source. (3) Mn3O4 further eradicated the existing ROS. In addition, NCM@MP also exhibited desirable properties for T1 enhanced imaging and low toxicity which may serve as promising multifunctional nanoplatforms for precise therapies. In our study, NCM@MP obviously alleviated oxidative stress response, reduced neuroinflammation, protected blood-brain barrier integrity, relieved brain edema, promoted the regeneration of neurons, and improved the cognition of TBI mice. This study provides a promising TBI management to relieve the secondary spread of damage.


Subject(s)
Brain Injuries, Traumatic , Calcium , Nanoparticles , Neutrophils , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Mice , Nanoparticles/chemistry , Calcium/metabolism , Neutrophils/metabolism , Neutrophils/drug effects , Male , Cell Membrane/metabolism , Cell Membrane/drug effects , Oxidative Stress/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice, Inbred C57BL
14.
J Am Chem Soc ; 146(32): 22335-22347, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39092859

ABSTRACT

Searching for high energy-density electrode materials for sodium ion batteries has revealed Na-deficient intercalation compounds with lattice oxygen redox as promising high-capacity cathodes. However, anionic redox reactions commonly encountered poor electrochemical reversibility and unfavorable structural transformations during dynamic (de)sodiation processes. To address this issue, we employed lithium orbital hybridization chemistry to create Na-O-Li configuration in a prototype P2-layered Na43/60Li1/20Mg7/60Cu1/6Mn2/3O2 (P2-NaLMCM') cathode material. That Li+ ions, having low electronegativity, reside in the transition metal slabs serves to stimulate unhybridized O 2p orbitals to facilitate the stable capacity contribution of oxygen redox at high state of charge. The prismatic-type structure evolving to an intergrowth structure of the Z phase at high charging state could be simultaneously alleviated by reducing the electrostatic repulsion of O-O layers. As a consequence, P2-NaLMCM' delivers a high specific capacity of 183.8 mAh g-1 at 0.05 C and good cycling stability with a capacity retention of 80.2% over 200 cycles within the voltage range of 2.0-4.5 V. Our findings provide new insights into both tailoring oxygen redox chemistry and stabilizing dynamic structural evolution for high-energy battery cathode materials.

15.
J Neurointerv Surg ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122255

ABSTRACT

BACKGROUND: This study investigates the efficacy and safety of bridging intravenous thrombolysis (IVT) before endovascular therapy (EVT) compared with EVT alone in patients with large infarction core. METHODS: We conducted a comprehensive search of PubMed, EMBASE, and the Cochrane Library from January 2015 to June 2024. Included studies involved patients with acute ischemic stroke with an Alberta Stroke Program Early CT Score of ≤5 or an ischemic core volume of ≥50 mL. Studies were required to provide either 90-day modified Rankin Scale (mRS) score, reperfusion, symptomatic intracranial hemorrhage (sICH), or 90-day mortality. RESULTS: Nine observational studies with 2641 patients were analyzed. The IVT+EVT group had a higher rate of 90-day functional independence (mRS 0-2; OR 1.56, 95% CI 1.31 to 1.87; adjusted OR (aOR) 1.43, 95% CI 1.21 to 1.68) and 90-day functional outcome (mRS 0-3; OR 1.34, 95% CI 1.11 to 1.62; aOR 1.18, 95% CI 1.02 to 1.37) compared with EVT alone. There was no significant difference in successful reperfusion (OR 1.01, 95% CI 0.62 to 1.64; aOR 1.07, 95% CI 0.74 to 1.54) and 90-day mortality (OR 0.86, 95% CI 0.73 to 1.02; aOR 0.89, 95% CI 0.77 to 1.04) between the two groups. Moreover, patients who received IVT+EVT had a higher rate of sICH (OR 1.30, 95% CI 1.03 to 1.64; aOR 2.21, 95% CI 1.22 to 4.01). CONCLUSIONS: In patients with large infarction core, bridging IVT before EVT is associated with favorable functional outcomes compared with EVT, even though bridging therapy entails a higher risk of sICH. Further trials are needed to confirm these findings.

16.
Alzheimers Dement ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129223

ABSTRACT

INTRODUCTION: The heritability of Alzheimer's disease (AD) is estimated to be 58%-79%. However, known genes can only partially explain the heritability. METHODS: Here, we conducted gene-based exome-wide association study (ExWAS) of rare variants and single-variant ExWAS of common variants, utilizing data of 54,569 clinically diagnosed/proxy AD and related dementia (ADRD) and 295,421 controls from the UK Biobank. RESULTS: Gene-based ExWAS identified 11 genes predicting a higher ADRD risk, including five novel ones, namely FRMD8, DDX1, DNMT3L, MORC1, and TGM2, along with six previously reported ones, SORL1, GRN, PSEN1, ABCA7, GBA, and ADAM10. Single-variant ExWAS identified two ADRD-associated novel genes, SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-ß process pathways, microglia, and brain regions like hippocampus. The druggability evidence suggests that DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets. DISCUSSION: Our study contributes to the current body of evidence on the genetic etiology of ADRD. HIGHLIGHTS: Gene-based analyses of rare variants identified five novel genes for Alzheimer's disease and related dementia (ADRD), including FRMD8, DDX1, DNMT3L, MORC1, and TGM2. Single-variant analyses of common variants identified two novel genes for ADRD, including SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-ß process pathways, microglia, and brain regions like hippocampus. DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets.

17.
Dalton Trans ; 53(32): 13409-13415, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39087922

ABSTRACT

Two Ni-added poly(polyoxometalate)s built of Keggin-type {Ni6PW9} and Anderson-type NiW6O24 units via WO4/Sb2O bridges and Ni-O-W linkages, Na4H8[Ni(enMe)2][(Sb2O)2(NiW6O24)-{Ni12O2(OH)4(enMe)4(H2O)3(WO4)2(B-α-PW9O34)2}2]·39H2O (1) and H9[Ni(en)2(H2O)][Ni0.5(en)2(H2O)][Ni-(enMe)2(H2O)][(Sb2O)2(NiW6O24){Ni12O2(OH)4(en)2(enMe)2(H2O)3(WO4)2}-{Ni12O2(OH)4(en)4(H2O)3(WO4)2}(B-α-PW9O34)4]·45H2O (2), have been hydrothermally synthesized and characterized, in which the {Ni12(WO4)2(PW9)2} subunit was obtained by the synergistic directing effect of 2 lacunary PW9O34 (PW9) fragments and further linked by a central Anderson-type (Sb2O)2(NiW6O24) bridge. Both compounds represent the first example of Ni-added polyoxometalates (POMs) simultaneously based on Keggin-type and Anderson-type POM components. Photocatalytic studies revealed that 2 can work as an efficient heterogeneous catalyst towards a light-driven H2 evolution reaction, achieving a hydrogen evolution rate of as high as 19 214 µmol g-1 h-1 (TON = 1500), which is superior to most of the reported POM-based heterogeneous catalysts.

18.
J Hazard Mater ; 478: 135495, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39181006

ABSTRACT

As a commonly used food additive, excessive nitrite intake seriously affects people's health in daily life. As the stomach is the main organ involved in nitrite intake, achieving fast and in situ detection of nitrite in the stomach is of great significance for avoiding the hazards caused by nitrite. However, owing to the poor stability or low sensitivity of existing fluorescent probes under acidic conditions, their application for nitrite detection within the stomach remains challenging. To solve this problem, we developed novel probes specifically designed to maintain stability and demonstrate high sensitivity to nitrite under acidic conditions. Utilizing the optimized probe (DHUROS-11), nitrite levels in environmental and real samples were successfully quantified. Notably, tracing of nitrite within the stomach of mice in real time was realized by using DHUROS-11 as the probe.


Subject(s)
Fluorescent Dyes , Nitrites , Fluorescent Dyes/chemistry , Animals , Nitrites/analysis , Nitrites/chemistry , Hydrogen-Ion Concentration , Mice , Gastric Mucosa/metabolism
19.
Nat Commun ; 15(1): 7431, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198424

ABSTRACT

DNA methylation (DNAm) has been implicated in acute coronary syndrome (ACS), but the causality remains unclear in cross-sectional studies. Here, we conduct a prospective epigenome-wide association study of incident ACS in two Chinese cohorts (discovery: 751 nested case-control pairs; replication: 476 nested case-control pairs). We identified and validated 26 differentially methylated positions (DMPs, false discovery rate [FDR] <0.05), including three mapped to known cardiovascular disease genes (PRKCZ, PRDM16, EHBP1L1) and four with causal evidence from Mendelian randomization (PRKCZ, TRIM27, EMC2, EHBP1L1). Two hypomethylated DMPs were negatively correlated with the expression in blood of their mapped genes (PIGG and EHBP1L1), which were further found to overexpress in leukocytes and/or atheroma plaques. Finally, our DMPs could substantially improve the prediction of ACS over traditional risk factors and polygenic scores. These findings demonstrate the importance of DNAm in the pathogenesis of ACS and highlight DNAm as potential predictive biomarkers and treatment targets.


Subject(s)
Acute Coronary Syndrome , DNA Methylation , Epigenesis, Genetic , Genome-Wide Association Study , Humans , Acute Coronary Syndrome/genetics , Acute Coronary Syndrome/blood , Male , Female , Middle Aged , Case-Control Studies , Prospective Studies , Aged , DNA-Binding Proteins/genetics , Transcription Factors/genetics , China/epidemiology , Mendelian Randomization Analysis , Risk Factors , Biomarkers/blood
20.
Biology (Basel) ; 13(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39194561

ABSTRACT

Sea urchins play an important role in marine ecosystems. Owing to limitations in previous research methods, there has been insufficient understanding of the food sources and ecological functional value of purple sea urchins, leading to considerable controversy regarding their functional positioning. We focused on Daya Bay as the research area, utilizing stable isotope technology and high-throughput sequencing of 16S rDNA and 18S rDNA to analyze sea urchins and their potential food sources in stone and algae areas. The results showed that the δ13C range of purple sea urchins in the stone area is -11.42~-8.17‱, and the δ15N range is 9.15~10.31‱. However, in the algal area, the δ13C range is -13.97~-12.44‱, and the δ15N range is 8.75~10.14‱. There was a significant difference in δ13C between the two areas (p < 0.05), but there was no significant difference in δ15N (p > 0.05). The main food source for purple sea urchins in both areas is sediment. The sequencing results of 18S rDNA revealed that, in the algal area, the highest proportion in the sea urchin gut was Molluska (57.37%). In the stone area, the highest proportion was Arthropoda (76.71%). The sequencing results of 16S rDNA revealed that, in the algal area, Bacteroidetes was the dominant group in the sea urchin gut (28.87%), whereas, in the stone area, Proteobacteria was the dominant group (37.83%). Diversity detection revealed a significant difference in the number of gut microbes and eukaryotes between the stone and algal areas (p < 0.05). The results revealed that the main food source of purple sea urchins in both areas is sediment, but the organic nutritional value is greater in the algal area, and the richness of microbiota and eukaryotes in the gut of purple sea urchins in the stone area is greater. These results indicated that purple sea urchins are likely omnivores and that the area where they occur impacts their growth and development. The results of this study provide a theoretical basis for the restoration of wild purple sea urchin resources and the selection of areas for restocking and release.

SELECTION OF CITATIONS
SEARCH DETAIL