Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Microb Pathog ; 191: 106675, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705216

Bovine mastitis, caused by Streptococcus agalactiae (Group B Streptococcus; GBS), poses significant economic challenges to the global dairy industry. Mouse models serves as valuable tools for assessing GBS-induced infections as an alternative to large animals. This study aimed to investigate the LD50 dose, organ bacterial load, and quantification of peritoneal leukocyte populations for GBS serotypes Ia and II isolates from China and Pakistan. Additionally, we measured indicators such as lactoferrin, albumin, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-2) and anti-inflammatory cytokines (IL-10 and TGF-ß) in serum and tissue samples were evaluated using ELISA and qPCR, respectively. BALB/c mice (4 mice per group) received individual intraperitoneal injections of 100 µl containing specific bacterial inoculum concentrations (ranging from 105 to 109 CFU per mouse) of Chinese and Pakistani GBS isolates (serotypes Ia and II). Control groups received 100 µL of sterile PBS. Results revealed that the LD50 bacterial dose causing 50 % mortality in mice was 107 CFU. The highest bacterial load in all experimental groups was quantified in the peritoneum, followed by blood, mammary gland, liver, spleen, lungs, and brain. The most significant bacterial dissemination was observed in mice inoculated with Pakistani serotype Ia at 24 h, with a subsequent notable decline in bacterial counts at day 3. Notably, infection with Pakistani serotype Ia showed a trend of increased total leukocyte counts, significantly higher than Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II. A substantial influx of neutrophils and lymphocytes was observed in response to all tested serotypes, with Pakistani serotype Ia inducing a significantly higher influx compared to other groups (Pakistani serotype II, Chinese serotype Ia, and Chinese serotype II). Furthermore, TNF-α, IL-1ß, IL-2, and IL-6 expressions were significantly increased in mice one day after infection with the Pakistani serotype Ia. Compared to mice infected with the Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II, those infected with the Pakistani serotype Ia isolate exhibited the highest production of IL-10 and TGF-ß, along with significantly increased concentrations of lactoferrin, albumin, and MPO. These findings suggest that the persistence and severity of infection caused by the Pakistani serotype Ia may be linked to its ability to spread to deeper tissues. This study enhances our understanding of the clinical characteristics of bovine mastitis caused by S. agalactiae in China and Pakistan.


Cytokines , Disease Models, Animal , Mice, Inbred BALB C , Serogroup , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/pathogenicity , Streptococcus agalactiae/classification , Streptococcus agalactiae/immunology , Streptococcus agalactiae/genetics , Mice , Streptococcal Infections/microbiology , Streptococcal Infections/immunology , China , Cytokines/metabolism , Cytokines/blood , Female , Pakistan , Bacterial Load , Cattle , Lethal Dose 50 , Mastitis, Bovine/microbiology
2.
Front Vet Sci ; 11: 1383291, 2024.
Article En | MEDLINE | ID: mdl-38784653

Babesiosis, a zoonotic blood protozoal disease, threatens humans and animals and is difficult to treat due to growing antimicrobial resistance. The study aimed to investigate the therapeutic efficacy of artesunate (AS), a well-known derivative of artemisinin, against Babesia microti (B. microti) using a murine infection model. Male BALB/c mice (6 weeks old; 15 per group) were chosen and randomly divided into 1) the control group, 2) the B. microti group, and 3) the B. microti + artesunate treatment groups. AS treatment at 2 mg/kg, 4 mg/kg, and 8 mg/kg of body weight significantly (p < 0.05) reduced the B. microti load in blood smears in a dose-dependent manner. Additionally, AS treatment mitigated the decrease in body weight and restored the normal state of the liver and spleen viscera index compared to the B. microti-infected group after 28 days. Hematological analysis revealed significant increases in RBC, WBC, and PLT counts post-AS treatment compared to the B. microti-infected group. Furthermore, AS administration resulted in significant reductions in total protein, bilirubin, ALT, AST, and ALP levels, along with reduced liver and spleen inflammation and lesions as observed through histopathological analysis. AS also elicited dose-dependent changes in mRNA and protein expression levels of apoptotic, proinflammatory, and anti-inflammatory cytokines in the liver compared to the control and B. microti-infected groups. Immunolabeling revealed decreased expression of apoptotic and inflammation-related proteins in AS-treated hepatic cytoplasm compared to the B. microti-infected group. AS also in dose-dependent manner decreased apoptotic protein and increased Bcl-2. Overall, these findings underscore the potential of AS as an anti-parasitic candidate in combating B. microti pathogenesis in an in vivo infection model, suggesting its promise for clinical trials as a treatment for babesiosis.

3.
Biol Trace Elem Res ; 202(4): 1699-1710, 2024 Apr.
Article En | MEDLINE | ID: mdl-37454307

Dietary selenium intake within the normal physiological range is critical for various supporting biological functions. However, the effect of nano-selenium on biological mechanism of goblet cells associated with autophagy is largely unknown.The purpose of this study was to investigate the effect of nano-selenium on the mucosal immune-defense mechanism of goblet cells (GCs) in the small intestine of laying hens.The autophagy was determined by using specific markers. Nano-selenium-treated group of immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) results indicated the strong positive immune signaling of microtubule-associated light chain (LC3) within the mucosal surface of the small intestine. However, weak expression of LC3 was observed in the 3-methyladenine autophagy inhibitor (3-MA) group. IHC and IF staining results showed the opposite tendency for LC3 of sequestosome 1 (P62/SQSTM1). P62/SQSTM1 showed strong positive immune signaling within the mucosal surface of the small intestine of the 3-MAgroup, and weak immune signaling of P62/SQSTM1 in the nano-selenium-treated group. Moreover, pinpointing autophagy was involved in the mucosal production and enrichment of mucosal immunity of the GCs. The morphology and ultrastructure evidence showed that the mucus secretion of GCs was significantly increased after nano-selenium treatment confirmed by light and transmission electron microscopy. Besides that, immunostaining of IHC, IF and WB showed that autophagy enhanced the secretion of Mucin2 (Muc2) protein in nano-selenium-treated group. This work illustrates that the nano-selenium particle might enhance the mucosal immune-defense mechanism via the protective role of GCs for intestinal homeostasis through autophagy.


Goblet Cells , Selenium , Animals , Female , Goblet Cells/metabolism , Sequestosome-1 Protein/metabolism , Selenium/pharmacology , Selenium/metabolism , Chickens/metabolism , Autophagy , Intestine, Small/metabolism
4.
J Exp Zool A Ecol Integr Physiol ; 341(1): 99-106, 2024 01.
Article En | MEDLINE | ID: mdl-37905465

Mitochondrial-rich cells (MRCs) are one of the most significant canceled type of epithelial cells. Morphologically these cells are totally different from other epithelial cells. These cells primarily implicated in sea-water and fresh-water adaptation, and acid-base regulation. However, in this review paper, we explored some of the most intriguing biological and immune-related functional developmental networks of MRCs. The main pinpoint, MRCs perform a dynamic osmoregulatory and immunological functional role in the gut and male reproductive system. The Na+/K+_ATPase (NKA) and Na+/K+/2Cl cotransporter (NKCC) are key acidifying proteins of MRCs for the ion-transporting function for intestinal homeostasis and maintenance of acidifying the luminal microenvironment in the male reproductive system. Further more importantly, MRCs play a novel immunological role through the exocrine secretion of nano-scale exosomes and multivesicular bodies (MVBs) pathway, which is very essential for sperm maturation, motility, acrosome reaction, and male sex hormones, and these an essential events to produce male gametes with optimal fertilizing ability. This effort is expected to promote the novel immunological role of MRCs, which might be essential for nano-scale exosome secretion.


Semen , Water-Electrolyte Balance , Male , Animals , Semen/metabolism , Osmoregulation , Mitochondria/metabolism , Water/metabolism
5.
Front Vet Sci ; 10: 1273944, 2023.
Article En | MEDLINE | ID: mdl-37822955

Hexavalent chromium Cr (VI) is one of the most hazardous heavy metals in the environment and is toxic to living organisms causing tissue damage, disruption of the intestinal microbiota and cancer. However, there is little information on the relationship between the Cr (VI) and broiler chickens. The current study was performed to investigate the effect of Cr (VI) on growth performance, serum biochemical analysis, histopathological observations, and metabolomics analysis in broilers. Results show that Cr (VI) exposure significantly decreased the body weight (p < 0.01) and caused liver damages in broilers. With the extension of Cr (VI) action time, the liver appeared obvious pathological changes, including hepatic cord disorder, incomplete hepatocyte additionally, decreased serum biochemical indices of calcium (Ca), phosphorus (P), total protein (TP), phosphatase (ALP), and globin (GLB) significantly (p < 0.01). Moreover, metabolomics analysis indicated that 29 differential metabolites were identified, such as phytosphingosine, L-Serine, 12, 13-DHOME, Alpha-dimorphecolic acid, L-Methionine, L-Phenylalanine, 3-Dehydroshikimate, L-Tyrosine, and N-Acetyl-L-phenylalanine were significantly decreased under the action of Cr (VI) (p < 0.05). These 29 differential metabolites are mainly involved in 35 metabolic pathways, such as aminoacyl-tRNA biosynthesis, phenylalanine metabolism, sphingolipid, and linoleic metabolism. The study revealed that exposure to Cr (VI) resulted in a decrease in growth performance and metabolism, with the hazards and toxicity in broiler chicken. The findings provided new insight and a comprehensive understanding of the relationship between Cr (VI) and broiler chickens.

6.
Front Vet Sci ; 10: 1223450, 2023.
Article En | MEDLINE | ID: mdl-37601763

Diet-associated characteristics such as dietary protein levels can modulate the composition and diversity of the gut microbiota, leading to effects on the productive performance and overall health of animals. The objective of this study was to see how changes in dietary protein levels affect milk yield, body weight gain, blood biochemical parameters, and gut microbiota in lactating ewes. In a completely randomized design, eighteen ewes were randomly assigned to three groups (n = 6 ewes/group), and each group was assigned to one of three dietary treatments with different protein contents. The ewes' groups were fed on 8.38% (S-I), 10.42% (S-m), and 13.93% (S-h) dietary protein levels on a dry basis. The body weight gain and milk yield were greater (p < 0.05) in ewes fed the S-h dietary treatment than in those fed the S-m and S-1 diets, respectively. However, milk protein contents were similar (p > 0.05) across the treatments. The blood glucose, total protein, cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, lactate, creatinine, and C-reactive protein contents of lactating ewes were not influenced (p > 0.05) by different dietary protein levels. The alanine transaminase, aminotransferase, and lactate dehydrogenase activities were also not changed (p > 0.05) across the groups. However, blood urea nitrogen and albumin contents of lactating ewes were changed (p < 0.05) with increasing levels of dietary protein, and these metabolite concentrations were higher (p < 0.05) for S-h than the rest of the treatments. In the different treatment groups, Firmicutes and Bacteroidetes were found to be the most dominant phyla. However, the abundance of Lachnospiraceae species decreased as dietary protein levels increased. Within the Bacteroidetes phylum, Rikenellaceae were more abundant, followed by Prevotellaceae, in ewes fed the S-m diet compared to those fed the other diets. Based on the results, feeding at an optimal protein level improved milk yield and body weight gain through modifying the digestive tract's beneficial bacterial communities. The results of blood metabolites suggested that feeding higher-protein diets has no negative impact on health.

7.
Cell Mol Neurobiol ; 37(4): 717-728, 2017 May.
Article En | MEDLINE | ID: mdl-27430567

Transmissible spongiform encephalopathies (TSEs) are caused by the accumulation of the abnormal prion protein scrapie (PrPSc). Prion protein aggregation, misfolding, and cytotoxicity in the brain are the major causes of neuronal dysfunction and ultimate neurodegeneration in all TSEs. Parkin, an E3 ubiquitin ligase, has been studied extensively in all major protein misfolding aggregating diseases, especially Parkinson's disease and Alzheimer's disease, but the role of parkin in TSEs remains unknown. Here we investigated the role of parkin in a prion disease cell model in which neuroblastoma2a (N2a) cells were treated with prion peptide PrP106-126. We observed a gradual decrease in the soluble parkin level upon treatment with PrP106-126 in a time-dependent manner. Furthermore, endogenous parkin colocalized with FITC-tagged prion fragment106-126. Overexpression of parkin in N2a cells via transfection repressed apoptosis by enhancing autophagy. Parkin-overexpressing cells also showed reductions in apoptotic BAX translocation to the mitochondria and cytochrome c release to the cytosol, which ultimately inhibited activation of proapoptotic caspases. Taken together, our findings reveal a parkin-mediated cytoprotective mechanism against PrP106-126 toxicity, which is a novel potential therapeutic target for treating prion diseases.


Apoptosis/drug effects , Autophagy , Mitochondria/drug effects , Neuroblastoma/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Autophagy/drug effects , Autophagy/physiology , Caspases/drug effects , Caspases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cytochromes c/metabolism , Mice , Mitochondria/metabolism , Neuroblastoma/drug therapy , Peptide Fragments/pharmacology , Prions/metabolism , Recombinant Proteins/pharmacology , Ubiquitin-Protein Ligases/genetics
8.
Prion ; 10(4): 290-304, 2016 07 03.
Article En | MEDLINE | ID: mdl-27388702

The association between caprine PrP gene polymorphisms and its susceptibility to scrapie has been investigated in current years. As the ORF of the PrP gene is extremely erratic in different breeds of goats, we studied the PrP gene polymorphisms in 80 goats which belong to 11 Pakistani indigenous goat breeds from all provinces of Pakistan. A total of 6 distinct polymorphic sites (one novel) with amino acid substitutions were identified in the PrP gene which includes 126 (A -> G), 304 (G -> T), 379 (A -> G), 414 (C -> T), 428 (A -> G) and 718 (C -> T). The locus c.428 was found highly polymorphic in all breeds as compare to other loci. On the basis of these PrP variants NJ phylogenetic tree was constructed through MEGA6.1 which showed that all goat breeds along with domestic sheep and Mauflon sheep appeared as in one clade and sharing its most recent common ancestors (MRCA) with deer species while Protein analysis has shown that these polymorphisms can lead to varied primary, secondary and tertiary structure of protein. Based on these polymorphic variants, genetic distance, multidimensional scaling plot and principal component analyses revealed the clear picture regarding greater number of substitutions in cattle PrP regions as compared to the small ruminant species. In particular these findings may pinpoint the fundamental control over the scrapie in Capra hircus on genetic basis.


Goats/genetics , Polymorphism, Genetic , Prion Proteins/genetics , Animals , Goats/classification , Goats/metabolism , Pakistan , Phylogeny , Prion Proteins/blood , Sequence Analysis, DNA , Sheep/genetics
9.
J Neurochem ; 133(5): 722-9, 2015 Jun.
Article En | MEDLINE | ID: mdl-25810062

The formation of neurotoxic prion protein (PrP) oligomers is thought to be a key step in the development of prion diseases. Recently, it was determined that the sonication and shaking of recombinant PrP can convert PrP monomers into ß-state oligomers. Herein, we demonstrate that ß-state oligomeric PrP can be generated through protein misfolding cyclic amplification from recombinant full-length hamster, human, rabbit, and mutated rabbit PrP, and that these oligomers can be used for subsequent research into the mechanisms of PrP-induced neurotoxicity. We have characterized protein misfolding cyclic amplification-induced monomer-to-oligomer conversion of PrP from three species using western blotting, circular dichroism, size-exclusion chromatography, and resistance to proteinase K (PK) digestion. We have further shown that all of the resulting ß-oligomers are toxic to primary mouse cortical neurons independent of the presence of PrP(C) in the neurons, whereas the corresponding monomeric PrP were not toxic. In addition, we found that this toxicity is the result of oligomer-induced apoptosis via regulation of Bcl-2, Bax, and caspase-3 in both wild-type and PrP(-/-) cortical neurons. It is our hope that these results may contribute to our understanding of prion transformation within the brain. We found that ß-state oligomeric PrPs can be generated through protein misfolding cyclic amplification (PMCA) from recombinant full-length hamster, human, rabbit, and mutated rabbit PrP. ß-oligomers are toxic to primary mouse cortical neurons independent of the presence of PrP(C) in the neurons, while the corresponding monomeric PrPs were not toxic. This toxicity is the result of oligomers-induced apoptosis via regulation of Bcl-2, Bax, and caspase-3. These results may contribute to our understanding of prion transformation within the brain.


Apoptosis/drug effects , Neurons/drug effects , Prions/metabolism , Prions/pharmacology , Proteostasis Deficiencies/genetics , Recombinant Proteins/pharmacology , Animals , Caspase 3/metabolism , Cricetinae , Endopeptidase K/chemistry , Gene Amplification , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Proto-Oncogene Proteins c-bcl-2/genetics , Rabbits , Recombinant Proteins/metabolism , bcl-2-Associated X Protein/biosynthesis , bcl-2-Associated X Protein/genetics
...