Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Biol Interact ; 371: 110307, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36535315

ABSTRACT

Natural proteinaceous pore-forming agents can bind and permeabilize cell membranes, leading to ion dyshomeostasis and cell death. In the search for antidotes that can protect cells from peptide toxins, we discovered that the polyphenol epigallocatechin gallate (EGCG) interacts directly with melittin from honeybee venom, resulting in the elimination of its binding to the cell membrane and toxicity by markedly lowering the extent of its solvent-exposed hydrophobicity and promoting its oligomerization into larger species. These physicochemical parameters have also been shown to play a key role in the binding to cells of misfolded protein oligomers in a host of neurodegenerative diseases, where oligomer-membrane binding and associated toxicity have been shown to correlate negatively with oligomer size and positively with solvent-exposed hydrophobicity. For melittin, which is not an amyloid-forming protein and has a very distinct mechanism of toxicity compared to misfolded oligomers, we find that the size-hydrophobicity-toxicity relationship also rationalizes the pharmacological attenuation of melittin toxicity by EGCG. These results highlight the importance of the physicochemical properties of pore forming agents in mediating their interactions with cell membranes and suggest a possible therapeutic approach based on compounds with a similar mechanism of action as EGCG.


Subject(s)
Catechin , Melitten , Catechin/pharmacology , Catechin/chemistry , Hydrophobic and Hydrophilic Interactions , Melitten/pharmacology , Solvents , Bee Venoms , Animals
2.
ACS Chem Neurosci ; 13(8): 1219-1231, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35404569

ABSTRACT

The molecular composition of the plasma membrane plays a key role in mediating the susceptibility of cells to perturbations induced by toxic molecules. The pharmacological regulation of the properties of the cell membrane has therefore the potential to enhance cellular resilience to a wide variety of chemical and biological compounds. In this study, we investigate the ability of claramine, a blood-brain barrier permeable small molecule in the aminosterol class, to neutralize the toxicity of acute biological threat agents, including melittin from honeybee venom and α-hemolysin from Staphylococcus aureus. Our results show that claramine neutralizes the toxicity of these pore-forming agents by preventing their interactions with cell membranes without perturbing their structures in a detectable manner. We thus demonstrate that the exogenous administration of an aminosterol can tune the properties of lipid membranes and protect cells from diverse biotoxins, including not just misfolded protein oligomers as previously shown but also biological protein-based toxins. Our results indicate that the investigation of regulators of the physicochemical properties of cell membranes offers novel opportunities to develop countermeasures against an extensive set of cytotoxic effects associated with cell membrane disruption.


Subject(s)
Brain , Biological Transport , Cell Membrane
SELECTION OF CITATIONS
SEARCH DETAIL