Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters










Publication year range
1.
Ann Neurol ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877824

ABSTRACT

OBJECTIVE: The aim of this study was to explore the pathogenesis of CLCN6-related disease and to assess whether its Cl-/H+-exchange activity is crucial for the biological role of ClC-6. METHODS: We performed whole-exome sequencing on a girl with development delay, intractable epilepsy, behavioral abnormities, retinal dysfunction, progressive brain atrophy, suggestive of neuronal ceroid lipofuscinoses (NCLs). We generated and analyzed the first knock-in mouse model of a patient variant (p.E200A) and compared it with a Clcn6-/- mouse model. Additional functional tests were performed with heterologous expression of mutant ClC-6. RESULTS: We identified a de novo heterozygous p.E200A variant in the proband. Expression of disease-causing ClC-6E200A or ClC-6Y553C mutants blocked autophagic flux and activated transcription factors EB (TFEB) and E3 (TFE3), leading to autophagic vesicle and cholesterol accumulation. Such alterations were absent with a transport-deficient ClC-6E267A mutant. Clcn6E200A/+ mice developed severe neurodegeneration with typical features of NCLs. Mutant ClC-6E200A, but not loss of ClC-6 in Clcn6-/- mice, increased lysosomal biogenesis by suppressing mTORC1-TFEB signaling, blocked autophagic flux through impairing lysosomal function, and increased apoptosis. Carbohydrate and lipid deposits accumulated in Clcn6E200A/+ brain, while only lipid storage was found in Clcn6-/- brain. Lysosome dysfunction, autophagy defects, and gliosis were early pathogenic events preceding neuron loss. INTERPRETATION: CLCN6 is a novel genetic cause of NCLs, highlighting the importance of considering CLCN6 mutations in the diagnostic workup for molecularly undefined forms of NCLs. Uncoupling of Cl- transport from H+ countertransport in the E200A mutant has a dominant effect on the autophagic/lysosomal pathway. ANN NEUROL 2024.

2.
J Biol Chem ; 300(7): 107437, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838776

ABSTRACT

Together with its ß-subunit OSTM1, ClC-7 performs 2Cl-/H+ exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease. Different variants entail different sets of symptoms. Loss of ClC-7 causes osteopetrosis and mostly neuronal lysosomal storage. A recently reported de novo CLCN7 mutation (p.Tyr715Cys) causes widespread severe lysosome pathology (hypopigmentation, organomegaly, and delayed myelination and development, "HOD syndrome"), but no osteopetrosis. We now describe two additional HOD individuals with the previously described p.Tyr715Cys and a novel p.Lys285Thr mutation, respectively. Both mutations decreased ClC-7 inhibition by PI(3,5)P2 and affected residues lining its binding pocket, and shifted voltage-dependent gating to less positive potentials, an effect partially conferred to WT subunits in WT/mutant heteromers. This shift predicts augmented pH gradient-driven Cl- uptake into vesicles. Overexpressing either mutant induced large lysosome-related vacuoles. This effect depended on Cl-/H+-exchange, as shown using mutants carrying uncoupling mutations. Fibroblasts from the p.Y715C patient also displayed giant vacuoles. This was not observed with p.K285T fibroblasts probably due to residual PI(3,5)P2 sensitivity. The gain of function caused by the shifted voltage-dependence of either mutant likely is the main pathogenic factor. Loss of PI(3,5)P2 inhibition will further increase current amplitudes, but may not be a general feature of HOD. Overactivity of ClC-7 induces pathologically enlarged vacuoles in many tissues, which is distinct from lysosomal storage observed with the loss of ClC-7 function. Osteopetrosis results from a loss of ClC-7, but osteoclasts remain resilient to increased ClC-7 activity.

3.
J Biol Chem ; 300(7): 107436, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838775

ABSTRACT

Hearing crucially depends on cochlear ion homeostasis as evident from deafness elicited by mutations in various genes encoding cation or anion channels and transporters. Ablation of ClC­K/barttin chloride channels causes deafness by interfering with the positive electrical potential of the endolymph, but roles of other anion channels in the inner ear have not been studied. Here we report the intracochlear distribution of all five LRRC8 subunits of VRAC, a volume-regulated anion channel that transports chloride, metabolites, and drugs such as the ototoxic anti-cancer drug cisplatin, and explore its physiological role by ablating its subunits. Sensory hair cells express all LRRC8 isoforms, whereas only LRRC8A, D and E were found in the potassium-secreting epithelium of the stria vascularis. Cochlear disruption of the essential LRRC8A subunit, or combined ablation of LRRC8D and E, resulted in cochlear degeneration and congenital deafness of Lrrc8a-/- mice. It was associated with a progressive degeneration of the organ of Corti and its innervating spiral ganglion. Like disruption of ClC-K/barttin, loss of VRAC severely reduced the endocochlear potential. However, the mechanism underlying this reduction seems different. Disruption of VRAC, but not ClC-K/barttin, led to an almost complete loss of Kir4.1 (KCNJ10), a strial K+ channel crucial for the generation of the endocochlear potential. The strong downregulation of Kir4.1 might be secondary to a loss of VRAC-mediated transport of metabolites regulating inner ear redox potential such as glutathione. Our study extends the knowledge of the role of cochlear ion transport in hearing and ototoxicity.

4.
Hypertension ; 81(3): 561-571, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354270

ABSTRACT

BACKGROUND: Small arteries exhibit resting tone, a partially contracted state that maintains arterial blood pressure. In arterial smooth muscle cells, potassium channels control contraction and relaxation. Perivascular adipose tissue (PVAT) has been shown to exert anticontractile effects on the blood vessels. However, the mechanisms by which PVAT signals small arteries, and their relevance remain largely unknown. We aimed to uncover key molecular components in adipose-vascular coupling. METHODS: A wide spectrum of genetic mouse models targeting Kcnq3, Kcnq4, and Kcnq5 genes (Kcnq3-/-, Kcnq4-/-, Kcnq5-/-, Kcnq5dn/dn, Kcnq4-/-/Kcnq5dn/dn, and Kcnq4-/-/Kcnq5-/-), telemetry blood pressure measurements, targeted lipidomics, RNA-Seq profiling, wire-myography, patch-clamp, and sharp-electrode membrane potential measurements was used. RESULTS: We show that PVAT causes smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels to hyperpolarize the membrane potential. This effect relaxes small arteries and regulates blood pressure. Oxygenation of polyunsaturated fats generates oxylipins, a superclass of lipid mediators. We identified numerous oxylipins released by PVAT, which potentiate vasodilatory action in small arteries by opening smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels. CONCLUSIONS: Our results reveal a key molecular function of the KV7.5 family of voltage-gated potassium (K+) channels in the adipose-vascular coupling, translating PVAT signals, particularly oxylipins, to the central physiological function of vasoregulation. This novel pathway opens new therapeutic perspectives.


Subject(s)
Oxylipins , Vasodilation , Animals , Mice , Adipose Tissue , KCNQ Potassium Channels/genetics , KCNQ Potassium Channels/metabolism , Oxylipins/metabolism , Potassium/metabolism
5.
Biomolecules ; 13(12)2023 12 15.
Article in English | MEDLINE | ID: mdl-38136669

ABSTRACT

ClC-7 is a ubiquitously expressed voltage-gated Cl-/H+ exchanger that critically contributes to lysosomal ion homeostasis. Together with its ß-subunit Ostm1, ClC-7 localizes to lysosomes and to the ruffled border of osteoclasts, where it supports the acidification of the resorption lacuna. Loss of ClC-7 or Ostm1 leads to osteopetrosis accompanied by accumulation of storage material in lysosomes and neurodegeneration. Interestingly, not all osteopetrosis-causing CLCN7 mutations from patients are associated with a loss of ion transport. Some rather result in an acceleration of voltage-dependent ClC-7 activation. Recently, a gain-of-function variant, ClC-7Y715C, that yields larger ion currents upon heterologous expression, was identified in two patients with neurodegeneration, organomegaly and albinism. However, neither the patients nor a mouse model that carried the equivalent mutation developed osteopetrosis, although expression of ClC-7Y715C induced the formation of enlarged intracellular vacuoles. Here, we investigated how, in transfected cells with mutant ClC-7, the substitution of this tyrosine impinged on the morphology and function of lysosomes. Combinations of the tyrosine mutation with mutations that either uncouple Cl- from H+ counter-transport or strongly diminish overall ion currents were used to show that increased ClC-7 Cl-/H+ exchange activity is required for the formation of enlarged vacuoles by membrane fusion. Degradation of endocytosed material was reduced in these compartments and resulted in an accumulation of lysosomal storage material. In cells expressing the ClC-7 gain-of-function mutant, autophagic clearance was largely impaired, resulting in a build-up of autophagic material.


Subject(s)
Osteopetrosis , Mice , Animals , Humans , Osteopetrosis/genetics , Osteopetrosis/metabolism , Gain of Function Mutation , Mutation , Lysosomes/metabolism , Tyrosine/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism
6.
Sci Adv ; 9(41): eadg4479, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37831762

ABSTRACT

ClC-6 is a late endosomal voltage-gated chloride-proton exchanger that is predominantly expressed in the nervous system. Mutated forms of ClC-6 are associated with severe neurological disease. However, the mechanistic role of ClC-6 in normal and pathological states remains largely unknown. Here, we present cryo-EM structures of ClC-6 that guided subsequent functional studies. Previously unrecognized ATP binding to cytosolic ClC-6 domains enhanced ion transport activity. Guided by a disease-causing mutation (p.Y553C), we identified an interaction network formed by Y553/F317/T520 as potential hotspot for disease-causing mutations. This was validated by the identification of a patient with a de novo pathogenic variant p.T520A. Extending these findings, we found contacts between intramembrane helices and connecting loops that modulate the voltage dependence of ClC-6 gating and constitute additional candidate regions for disease-associated gain-of-function mutations. Besides providing insights into the structure, function, and regulation of ClC-6, our work correctly predicts hotspots for CLCN6 mutations in neurodegenerative disorders.


Subject(s)
Chloride Channels , Neurodegenerative Diseases , Humans , Chloride Channels/chemistry , Chloride Channels/genetics , Ion Transport , Mutation , Neurodegenerative Diseases/genetics , Structure-Activity Relationship
7.
Cell Rep ; 42(8): 112926, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37543949

ABSTRACT

Volume-regulated anion channels (VRACs) are hexamers of LRRC8 proteins that are crucial for cell volume regulation. N termini (NTs) of the obligatory LRRC8A subunit modulate VRACs activation and ion selectivity, but the underlying mechanisms remain poorly understood. Here, we report a 2.8-Å cryo-electron microscopy structure of human LRRC8A that displays well-resolved NTs. Amino-terminal halves of NTs fold back into the pore and constrict the permeation path, thereby determining ion selectivity together with an extracellular selectivity filter with which it works in series. They also interact with pore-surrounding helices and support their compact arrangement. The C-terminal halves of NTs interact with intracellular loops that are crucial for channel activation. Molecular dynamics simulations indicate that low ionic strength increases NT mobility and expands the radial distance between pore-surrounding helices. Our work suggests an unusual pore architecture with two selectivity filters in series and a mechanism for VRAC activation by cell swelling.


Subject(s)
Membrane Proteins , Humans , Cryoelectron Microscopy , Membrane Proteins/metabolism , Anions/metabolism , Cell Size , Osmolar Concentration
8.
J Cell Biol ; 222(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-37010469

ABSTRACT

Degradative organelles contain enzymes that function optimally at the acidic pH generated by the V-ATPase. The resulting transmembrane H+ gradient also energizes the secondary transport of several solutes, including Cl-. We report that Cl- influx, driven by the 2Cl-/H+ exchanger ClC-7, is necessary for the resolution of phagolysosomes formed by macrophages. Cl- transported via ClC-7 had been proposed to provide the counterions required for electrogenic H+ pumping. However, we found that deletion of ClC-7 had a negligible effect on phagosomal acidification. Instead, luminal Cl- was found to be required for activation of a wide range of phagosomal hydrolases including proteases, nucleases, and glycosidases. These findings argue that the primary role of ClC-7 is the accumulation of (phago)lysosomal Cl- and that the V-ATPases not only optimize the activity of degradative hydrolases by lowering the pH but, importantly, also play an indirect role in their activation by providing the driving force for accumulation of luminal Cl- that stimulates hydrolase activity allosterically.


Subject(s)
Chloride Channels , Chlorides , Lysosomes , Phagosomes , Chloride Channels/metabolism , Chlorides/metabolism , Hydrogen-Ion Concentration , Hydrolases/metabolism , Lysosomes/metabolism , Phagosomes/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
9.
J Clin Invest ; 133(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36719378

ABSTRACT

Sulfate plays a pivotal role in numerous physiological processes in the human body, including bone and cartilage health. A role of the anion transporter SLC26A1 (Sat1) for sulfate reabsorption in the kidney is supported by the observation of hyposulfatemia and hypersulfaturia in Slc26a1-knockout mice. The impact of SLC26A1 on sulfate homeostasis in humans remains to be defined. By combining clinical genetics, functional expression assays, and population exome analysis, we identify SLC26A1 as a sulfate transporter in humans and experimentally validate several loss-of-function alleles. Whole-exome sequencing from a patient presenting with painful perichondritis, hyposulfatemia, and renal sulfate wasting revealed a homozygous mutation in SLC26A1, which has not been previously described to the best of our knowledge. Whole-exome data analysis of more than 5,000 individuals confirmed that rare, putatively damaging SCL26A1 variants were significantly associated with lower plasma sulfate at the population level. Functional expression assays confirmed a substantial reduction in sulfate transport for the SLC26A1 mutation of our patient, which we consider to be novel, as well as for the additional variants detected in the population study. In conclusion, combined evidence from 3 complementary approaches supports SLC26A1 activity as a major determinant of sulfate homeostasis in humans. In view of recent evidence linking sulfate homeostasis with back pain and intervertebral disc disorder, our study identifies SLC26A1 as a potential target for modulation of musculoskeletal health.


Subject(s)
Anion Transport Proteins , Sulfates , Animals , Mice , Humans , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Ion Transport , Sulfates/metabolism , Homeostasis , Mice, Knockout , Antiporters/genetics
10.
J Clin Invest ; 133(7)2023 04 03.
Article in English | MEDLINE | ID: mdl-36719741

ABSTRACT

Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward-rectifying) and oligodendroglial Kir4.1 (inward-rectifying) potassium channels have important roles in regulating neuronal excitability at and around the nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE), with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs, and rescued neuronal pathology in oligodendrocyte-Kir4.1-deficient (OL-Kir4.1-deficient) mice. In summary, our findings indicate that neuron-OL compensatory interactions promoted resilience through Kv7 and Kir4.1 channels and identify pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Humans , Ranvier's Nodes/metabolism , Potassium/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism
11.
J Am Soc Nephrol ; 33(8): 1528-1545, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35777784

ABSTRACT

BACKGROUND: Volume-regulated anion channels (VRACs) are heterohexamers of LRRC8A with LRRC8B, -C, -D, or -E in various combinations. Depending on the subunit composition, these swelling-activated channels conduct chloride, amino acids, organic osmolytes, and drugs. Despite VRACs' role in cell volume regulation, and large osmolarity changes in the kidney, neither the localization nor the function of VRACs in the kidney is known. METHODS: Mice expressing epitope-tagged LRRC8 subunits were used to determine the renal localization of all VRAC subunits. Mice carrying constitutive deletions of Lrrc8b-e, or with inducible or cell-specific ablation of Lrrc8a, were analyzed to assess renal functions of VRACs. Analysis included histology, urine and serum parameters in different diuresis states, and metabolomics. RESULTS: The kidney expresses all five VRAC subunits with strikingly distinct localization. Whereas LRRC8C is exclusively found in vascular endothelium, all other subunits are found in the nephron. LRRC8E is specific for intercalated cells, whereas LRRC8A, LRRC8B, and LRRC8D are prominent in basolateral membranes of proximal tubules. Conditional deletion of LRRC8A in proximal but not distal tubules and constitutive deletion of LRRC8D cause proximal tubular injury, increased diuresis, and mild Fanconi-like symptoms. CONCLUSIONS: VRAC/LRRC8 channels are crucial for the function and integrity of proximal tubules, but not for more distal nephron segments despite their larger need for volume regulation. LRRC8A/D channels may be required for the basolateral exit of many organic compounds, including cellular metabolites, in proximal tubules. Proximal tubular injury likely results from combined accumulation of several transported molecules in the absence of VRAC channels.


Subject(s)
Chlorides , Membrane Proteins , Mice , Animals , Membrane Proteins/metabolism , Biological Transport , Chlorides/metabolism , Cell Membrane/metabolism , Nephrons/metabolism
12.
Nat Cell Biol ; 24(6): 885-895, 2022 06.
Article in English | MEDLINE | ID: mdl-35590106

ABSTRACT

Intracellular organelles change their size during trafficking and maturation. This requires the transport of ions and water across their membranes. Macropinocytosis, a ubiquitous form of endocytosis of particular importance for immune and cancer cells, generates large vacuoles that can be followed optically. Shrinkage of macrophage macropinosomes depends on TPC-mediated Na+ efflux and Cl- exit through unknown channels. Relieving osmotic pressure facilitates vesicle budding, positioning osmotic shrinkage upstream of vesicular sorting and trafficking. Here we identify the missing macrophage Cl- channel as the proton-activated Cl- channel ASOR/TMEM206. ASOR activation requires Na+-mediated depolarization and luminal acidification by redundant transporters including H+-ATPases and CLC 2Cl-/H+ exchangers. As corroborated by mathematical modelling, feedback loops requiring the steep voltage and pH dependencies of ASOR and CLCs render vacuole resolution resilient towards transporter copy numbers. TMEM206 disruption increased albumin-dependent survival of cancer cells. Our work suggests a function for the voltage and pH dependence of ASOR and CLCs, provides a comprehensive model for ion-transport-dependent vacuole maturation and reveals biological roles of ASOR.


Subject(s)
Chloride Channels , Protons , Anions/metabolism , Chloride Channels/metabolism , Hydrogen-Ion Concentration , Ion Transport
13.
Sci Adv ; 8(5): eabm3942, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35108041

ABSTRACT

The proton-activated chloride channel ASOR (TMEM206/PAC) permeates anions across cellular membranes in response to acidification, thereby enhancing acid-induced cell death and regulating endocytosis. The molecular mechanisms of pH-dependent control are not understood, in part because structural information for an activated conformation of ASOR is lacking. Here, we reconstitute function from purified protein and present a 3.1-Å-resolution cryo-electron microscopy structure of human ASOR at acidic pH in an activated conformation. The work contextualizes a previous acidic pH structure as a desensitized conformation. Combined with electrophysiological studies and high-resolution structures of resting and desensitized states, the work reveals mechanisms of proton sensing and ion pore gating. Clusters of extracellular acidic residues function as pH sensors and coalesce when protonated. Ensuing conformational changes induce metamorphosis of transmembrane helices to fashion an ion conduction pathway unique to the activated conformation. The studies identify a new paradigm of channel gating in this ubiquitous ion channel.

14.
Nat Commun ; 12(1): 4801, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376649

ABSTRACT

Hippocampal pyramidal cells encode an animal's location by single action potentials and complex spike bursts. These elementary signals are believed to play distinct roles in memory consolidation. The timing of single spikes and bursts is determined by intrinsic excitability and theta oscillations (5-10 Hz). Yet contributions of these dynamics to place fields remain elusive due to the lack of methods for specific modification of burst discharge. In mice lacking Kcnq3-containing M-type K+ channels, we find that pyramidal cell bursts are less coordinated by the theta rhythm than in controls during spatial navigation, but not alert immobility. Less modulated bursts are followed by an intact post-burst pause of single spike firing, resulting in a temporal discoordination of network oscillatory and intrinsic excitability. Place fields of single spikes in one- and two-dimensional environments are smaller in the mutant. Optogenetic manipulations of upstream signals reveal that neither medial septal GABA-ergic nor cholinergic inputs alone, but rather their joint activity, is required for entrainment of bursts. Our results suggest that altered representations by bursts and single spikes may contribute to deficits underlying cognitive disabilities associated with KCNQ3-mutations in humans.


Subject(s)
Action Potentials/physiology , KCNQ3 Potassium Channel/physiology , Pyramidal Cells/physiology , Theta Rhythm/physiology , Animals , Hippocampus/cytology , Humans , KCNQ3 Potassium Channel/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Optogenetics/methods
15.
Am J Hum Genet ; 108(8): 1450-1465, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34186028

ABSTRACT

The genetic causes of global developmental delay (GDD) and intellectual disability (ID) are diverse and include variants in numerous ion channels and transporters. Loss-of-function variants in all five endosomal/lysosomal members of the CLC family of Cl- channels and Cl-/H+ exchangers lead to pathology in mice, humans, or both. We have identified nine variants in CLCN3, the gene encoding CIC-3, in 11 individuals with GDD/ID and neurodevelopmental disorders of varying severity. In addition to a homozygous frameshift variant in two siblings, we identified eight different heterozygous de novo missense variants. All have GDD/ID, mood or behavioral disorders, and dysmorphic features; 9/11 have structural brain abnormalities; and 6/11 have seizures. The homozygous variants are predicted to cause loss of ClC-3 function, resulting in severe neurological disease similar to the phenotype observed in Clcn3-/- mice. Their MRIs show possible neurodegeneration with thin corpora callosa and decreased white matter volumes. Individuals with heterozygous variants had a range of neurodevelopmental anomalies including agenesis of the corpus callosum, pons hypoplasia, and increased gyral folding. To characterize the altered function of the exchanger, electrophysiological analyses were performed in Xenopus oocytes and mammalian cells. Two variants, p.Ile607Thr and p.Thr570Ile, had increased currents at negative cytoplasmic voltages and loss of inhibition by luminal acidic pH. In contrast, two other variants showed no significant difference in the current properties. Overall, our work establishes a role for CLCN3 in human neurodevelopment and shows that both homozygous loss of ClC-3 and heterozygous variants can lead to GDD/ID and neuroanatomical abnormalities.


Subject(s)
Chloride Channels/genetics , Disease Models, Animal , Ion Channels/physiology , Mutation , Neurodevelopmental Disorders/pathology , Phenotype , Adolescent , Animals , Child , Child, Preschool , Female , Homozygote , Humans , Infant , Infant, Newborn , Male , Mice , Mice, Knockout , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/metabolism
16.
J Biol Chem ; 296: 100074, 2021.
Article in English | MEDLINE | ID: mdl-33187987

ABSTRACT

The ClC-2 chloride channel is expressed in the plasma membrane of almost all mammalian cells. Mutations that cause the loss of ClC-2 function lead to retinal and testicular degeneration and leukodystrophy, whereas gain-of-function mutations cause hyperaldosteronism. Leukodystrophy is also observed with a loss of GlialCAM, a cell adhesion molecule that binds to ClC-2 in glia. GlialCAM changes the localization of ClC-2 and opens the channel by altering its gating. We now used cell type-specific deletion of ClC-2 in mice to show that retinal and testicular degeneration depend on a loss of ClC-2 in retinal pigment epithelial cells and Sertoli cells, respectively, whereas leukodystrophy was fully developed only when ClC-2 was disrupted in both astrocytes and oligodendrocytes. The leukodystrophy of Glialcam-/- mice could not be rescued by crosses with Clcn2op/op mice in which a mutation mimics the "opening" of ClC-2 by GlialCAM. These data indicate that GlialCAM-induced changes in biophysical properties of ClC-2 are irrelevant for GLIALCAM-related leukodystrophy. Taken together, our findings suggest that the pathology caused by Clcn2 disruption results from disturbed extracellular ion homeostasis and identifies the cells involved in this process.


Subject(s)
Brain Diseases/physiopathology , Chloride Channels/physiology , Testicular Diseases/physiopathology , Animals , Astrocytes/metabolism , Brain Diseases/metabolism , CLC-2 Chloride Channels , Cell Adhesion Molecules, Neuron-Glia/genetics , Cell Cycle Proteins/genetics , Chloride Channels/genetics , Chloride Channels/metabolism , Homeostasis , Humans , Ion Channel Gating , Iron/metabolism , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Oligodendroglia/metabolism , Retinal Pigment Epithelium/metabolism , Testicular Diseases/metabolism
17.
Am J Hum Genet ; 107(6): 1062-1077, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33217309

ABSTRACT

Dysfunction of the endolysosomal system is often associated with neurodegenerative disease because postmitotic neurons are particularly reliant on the elimination of intracellular aggregates. Adequate function of endosomes and lysosomes requires finely tuned luminal ion homeostasis and transmembrane ion fluxes. Endolysosomal CLC Cl-/H+ exchangers function as electric shunts for proton pumping and in luminal Cl- accumulation. We now report three unrelated children with severe neurodegenerative disease, who carry the same de novo c.1658A>G (p.Tyr553Cys) mutation in CLCN6, encoding the late endosomal Cl-/H+-exchanger ClC-6. Whereas Clcn6-/- mice have only mild neuronal lysosomal storage abnormalities, the affected individuals displayed severe developmental delay with pronounced generalized hypotonia, respiratory insufficiency, and variable neurodegeneration and diffusion restriction in cerebral peduncles, midbrain, and/or brainstem in MRI scans. The p.Tyr553Cys amino acid substitution strongly slowed ClC-6 gating and increased current amplitudes, particularly at the acidic pH of late endosomes. Transfection of ClC-6Tyr553Cys, but not ClC-6WT, generated giant LAMP1-positive vacuoles that were poorly acidified. Their generation strictly required ClC-6 ion transport, as shown by transport-deficient double mutants, and depended on Cl-/H+ exchange, as revealed by combination with the uncoupling p.Glu200Ala substitution. Transfection of either ClC-6Tyr553Cys/Glu200Ala or ClC-6Glu200Ala generated slightly enlarged vesicles, suggesting that p.Glu200Ala, previously associated with infantile spasms and microcephaly, is also pathogenic. Bafilomycin treatment abrogated vacuole generation, indicating that H+-driven Cl- accumulation osmotically drives vesicle enlargement. Our work establishes mutations in CLCN6 associated with neurological diseases, whose spectrum of clinical features depends on the differential impact of the allele on ClC-6 function.


Subject(s)
Chloride Channels/genetics , Gain of Function Mutation , Neurodegenerative Diseases/genetics , Alleles , Animals , CHO Cells , Child , Cricetulus , Electrophysiology , Endosomes/metabolism , Female , HeLa Cells , Heterozygote , Homeostasis , Humans , Hydrogen-Ion Concentration , Infant , Ion Transport , Ions , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Macrolides/pharmacology , Magnetic Resonance Imaging , Male , Mice , Mice, Knockout , Microscopy, Video , Transfection
18.
Commun Biol ; 3(1): 240, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415200

ABSTRACT

Members of the leucine-rich repeat-containing 8 (LRRC8) protein family, composed of the five LRRC8A-E isoforms, are pore-forming components of the volume-regulated anion channel (VRAC). LRRC8A and at least one of the other LRRC8 isoforms assemble into heteromers to generate VRAC transport activities. Despite the availability of the LRRC8A structures, the structural basis of how LRRC8 isoforms other than LRRC8A contribute to the functional diversity of VRAC has remained elusive. Here, we present the structure of the human LRRC8D isoform, which enables the permeation of organic substrates through VRAC. The LRRC8D homo-hexamer structure displays a two-fold symmetric arrangement, and together with a structure-based electrophysiological analysis, revealed two key features. The pore constriction on the extracellular side is wider than that in the LRRC8A structures, which may explain the increased permeability of organic substrates. Furthermore, an N-terminal helix protrudes into the pore from the intracellular side and may be critical for gating.


Subject(s)
Ion Transport/physiology , Signal Transduction , Cryoelectron Microscopy , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/ultrastructure , Voltage-Dependent Anion Channels/chemistry , Voltage-Dependent Anion Channels/ultrastructure
19.
Immunity ; 52(5): 767-781.e6, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32277911

ABSTRACT

The enzyme cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA in infected and malignant cells and catalyzes the formation of 2'3'cGMP-AMP (cGAMP), which in turn triggers interferon (IFN) production via the STING pathway. Here, we examined the contribution of anion channels to cGAMP transfer and anti-viral defense. A candidate screen revealed that inhibition of volume-regulated anion channels (VRACs) increased propagation of the DNA virus HSV-1 but not the RNA virus VSV. Chemical blockade or genetic ablation of LRRC8A/SWELL1, a VRAC subunit, resulted in defective IFN responses to HSV-1. Biochemical and electrophysiological analyses revealed that LRRC8A/LRRC8E-containing VRACs transport cGAMP and cyclic dinucleotides across the plasma membrane. Enhancing VRAC activity by hypotonic cell swelling, cisplatin, GTPγS, or the cytokines TNF or interleukin-1 increased STING-dependent IFN response to extracellular but not intracellular cGAMP. Lrrc8e-/- mice exhibited impaired IFN responses and compromised immunity to HSV-1. Our findings suggest that cell-to-cell transmission of cGAMP via LRRC8/VRAC channels is central to effective anti-viral immunity.


Subject(s)
Fibroblasts/immunology , Interferons/immunology , Membrane Proteins/immunology , Nucleotides, Cyclic/immunology , Voltage-Dependent Anion Channels/immunology , Animals , Antiviral Agents/immunology , Antiviral Agents/metabolism , Bystander Effect , Cell Line , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HeLa Cells , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology , Humans , Interferons/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Nucleotides, Cyclic/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/immunology , Nucleotidyltransferases/metabolism , Voltage-Dependent Anion Channels/metabolism
20.
EMBO J ; 39(9): e103358, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32118314

ABSTRACT

CLC chloride/proton exchangers may support acidification of endolysosomes and raise their luminal Cl- concentration. Disruption of endosomal ClC-3 causes severe neurodegeneration. To assess the importance of ClC-3 Cl- /H+ exchange, we now generate Clcn3unc/unc mice in which ClC-3 is converted into a Cl- channel. Unlike Clcn3-/- mice, Clcn3unc/unc mice appear normal owing to compensation by ClC-4 with which ClC-3 forms heteromers. ClC-4 protein levels are strongly reduced in Clcn3-/- , but not in Clcn3unc/unc mice because ClC-3unc binds and stabilizes ClC-4 like wild-type ClC-3. Although mice lacking ClC-4 appear healthy, its absence in Clcn3unc/unc /Clcn4-/- mice entails even stronger neurodegeneration than observed in Clcn3-/- mice. A fraction of ClC-3 is found on synaptic vesicles, but miniature postsynaptic currents and synaptic vesicle acidification are not affected in Clcn3unc/unc or Clcn3-/- mice before neurodegeneration sets in. Both, Cl- /H+ -exchange activity and the stabilizing effect on ClC-4, are central to the biological function of ClC-3.


Subject(s)
Chloride Channels/genetics , Chloride Channels/metabolism , Endosomes/metabolism , Neurodegenerative Diseases/genetics , Animals , COS Cells , Chlorocebus aethiops , Disease Models, Animal , Mice , Mutation , Neurodegenerative Diseases/metabolism , Synaptic Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...