Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302724, 2024.
Article in English | MEDLINE | ID: mdl-38709788

ABSTRACT

The early gut microbiota composition is fundamentally important for piglet health, affecting long-term microbiome development and immunity. In this study, the gut microbiota of postparturient dams was compared with that of their offspring in three Finnish pig farms at three growth phases. The differences in fecal microbiota of three study development groups (Good, Poorly, and PrematureDeath) were analyzed at birth (initial exposure phase), weaning (transitional phase), and before slaughter (stable phase). Dam Lactobacillaceae abundance was lower than in piglets at birth. Limosilactobacillus reuteri and Lactobacillus amylovorus were dominantly expressed in dams and their offspring. Altogether 17 piglets (68%) were identified with Lactobacillaceae at the initial exposure phase, divided unevenly among the development groups: 85% of Good, 37.5% of Poorly, and 75% of PrematureDeath pigs. The development group Good was identified with the highest microbial diversity, whereas the development group PrematureDeath had the lowest diversity. After weaning, the abundance and versatility of Lactobacillaceae in piglets diminished, shifting towards the microbiome of the dam. In conclusion, the fecal microbiota of pigs tends to develop towards a similar alpha and beta diversity despite development group and rearing environment.


Subject(s)
Feces , Gastrointestinal Microbiome , Weaning , Animals , Feces/microbiology , Swine/microbiology , Swine/growth & development , Female , Lactobacillaceae/growth & development , Lactobacillaceae/genetics , RNA, Ribosomal, 16S/genetics
2.
Porcine Health Manag ; 10(1): 21, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773547

ABSTRACT

BACKGROUND: Identification of animals in need of medical treatment is important in porcine health management, where analytical samples applicable at farm level could be utilized. Several biomarkers are measurable in saliva, which is less stressful to collect than blood. Saliva sampling is easy to learn and repeatable, making it suitable for monitoring purposes. Previous research suggests that porcine health biomarkers are dependent on production stage and gender, and that combining biomarkers improves diagnostic sensitivity. However, proper monitoring of biomarkers during the complete production cycle has not been studied. We aimed to describe the dynamics of salivary and serum haptoglobin (Hp), adenosine deaminase (ADA), and immunoglobulin G (IgG) in four production stages (suckling, early growing, late growing, finishing), on commercial Finnish pig farms using a total of 117 piglets. The relationship between gender and biomarker dynamics was investigated, as well as the relationships between these biomarkers in saliva and serum. RESULTS: The highest salivary concentrations of Hp, ADA and IgG were measured in suckling piglets. The differences between production stages were generally larger in saliva than for the corresponding serum biomarkers. All correlation coefficients between salivary biomarkers were positive in each production stage and the strength of the correlation varied from 0.245 to 0.762. No similar trend was observed regarding correlation coefficients either between serum biomarkers or between salivary and serum biomarkers. Gender was associated with some biomarker concentrations. CONCLUSIONS: The biomarker dynamics supported previous findings that collection of analytical samples should be conducted in age-matched populations. Positive and even strong relationships between salivary biomarkers indicate the potential to use especially saliva for health monitoring. Our results also suggest the importance of considering gender effects when assessing some salivary or serum biomarkers.

3.
Sci Rep ; 14(1): 132, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168466

ABSTRACT

Manipulative behaviour that consists of touching or close contact with ears or tails of pen mates is common in pigs and can become damaging. Manipulative behaviour was analysed from video recordings of 45-day-old pigs, and 15 manipulator-control pairs (n = 30) were formed. Controls neither received nor performed manipulative behaviour. Rectal faecal samples of manipulators and controls were compared. 16S PCR was used to identify Lactobacillaceae species and 16S amplicon sequencing to determine faecal microbiota composition. Seven culturable Lactobacillaceae species were identified in control pigs and four in manipulator pigs. Manipulators (p = 0.02) and females (p = 0.005) expressed higher Lactobacillus amylovorus, and a significant interaction was seen (sex * status: p = 0.005) with this sex difference being more marked in controls. Females (p = 0.08) and manipulator pigs (p = 0.07) tended to express higher total Lactobacillaceae. A tendency for an interaction was seen in Limosilactobacillus reuteri (sex * status: p = 0.09). Results suggest a link between observed low diversity in Lactobacillaceae and the development of manipulative behaviour.


Subject(s)
Lactobacillaceae , Rectum , Swine , Female , Male , Animals , Feces
4.
Animals (Basel) ; 11(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430499

ABSTRACT

We studied the fecal lactobacilli count and species diversity of growing pigs along with immune parameters associated with intestinal lactobacilli. Thirty pigs categorized as small (S, n = 12) or large (L, n = 18) at birth were followed from birth to slaughter in two commercial herds, H1 and H2. Herds differed in terms of their general management. We determined sow colostrum quality, colostrum intake, piglet serum immunoglobulins, and pig growth. We took individual fecal samples from pigs in the weaning and finishing units. We studied lactobacilli count and identified their diversity with 16S PCR. Total lactobacilli count increased in H1 and decreased in H2 between samplings. Lactobacilli species diversity was higher in H1 in both fecal sampling points, whereas diversity decreased over time in both herds. We identified altogether seven lactobacilli species with a maximum of five (one to five) species in one herd. However, a relatively large proportion of lactobacilli remained unidentified with the used sequencing technique. Small pigs had higher lactobacilli counts in both herds but the difference was significant only in H2 (p = 0.01). Colostrum quality was numerically better in H1 than in H2, where colostrum intake tended to be associated with total lactobacilli count (p = 0.05).

5.
J Sci Food Agric ; 99(4): 1492-1500, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30129042

ABSTRACT

BACKGROUND: Nitrite and hexamine are used as silage additives because of their adverse effects on Clostridia and Clostridia spores. The effect of sodium nitrite and sodium nitrite/hexamine mixtures on silage quality was investigated. A white lupin-wheat mixture was treated with sodium nitrite (NaHe0) (900 g t-1 forage), or mixtures of sodium nitrite (900 g t-1 ) and hexamine. The application rate of hexamine was 300 g t-1 (NaHe300) or 600 g t-1 (NaHe600). Additional treatments were the untreated control (Con), and formic acid (FA) applied at a rate of 4 L t-1 (1000 g kg-1 ). RESULTS: Additives improved silage quality noticeably only by reducing silage ammonia content compared with the control. The addition of hexamine to a sodium nitrite solution did not improve silage quality compared with the solution containing sodium nitrite alone. The increasing addition of hexamine resulted in linearly rising pH values (P < 0.001) and decreasing amounts of lactic acid (P < 0.01). Sodium nitrite based additives were more effective than formic acid in preventing butyric acid formation. Additives did not restrict the growth of Saccharomyces cerevisiae compared to the control. CONCLUSION: The addition of hexamine did not improve silage quality compared with a solution of sodium nitrite. © 2018 Society of Chemical Industry.


Subject(s)
Clostridium/metabolism , Food Additives/analysis , Lupinus/microbiology , Methenamine/analysis , Nitrites/analysis , Saccharomyces cerevisiae/metabolism , Silage/analysis , Triticum/microbiology , Clostridium/growth & development , Fermentation , Food Additives/metabolism , Food Handling , Lupinus/chemistry , Lupinus/metabolism , Methenamine/metabolism , Nitrites/metabolism , Saccharomyces cerevisiae/growth & development , Silage/microbiology , Triticum/chemistry , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...