Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Am J Hum Genet ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908374

ABSTRACT

Methods of estimating polygenic scores (PGSs) from genome-wide association studies are increasingly utilized. However, independent method evaluation is lacking, and method comparisons are often limited. Here, we evaluate polygenic scores derived via seven methods in five biobank studies (totaling about 1.2 million participants) across 16 diseases and quantitative traits, building on a reference-standardized framework. We conducted meta-analyses to quantify the effects of method choice, hyperparameter tuning, method ensembling, and the target biobank on PGS performance. We found that no single method consistently outperformed all others. PGS effect sizes were more variable between biobanks than between methods within biobanks when methods were well tuned. Differences between methods were largest for the two investigated autoimmune diseases, seropositive rheumatoid arthritis and type 1 diabetes. For most methods, cross-validation was more reliable for tuning hyperparameters than automatic tuning (without the use of target data). For a given target phenotype, elastic net models combining PGS across methods (ensemble PGS) tuned in the UK Biobank provided consistent, high, and cross-biobank transferable performance, increasing PGS effect sizes (ß coefficients) by a median of 5.0% relative to LDpred2 and MegaPRS (the two best-performing single methods when tuned with cross-validation). Our interactively browsable online-results and open-source workflow prspipe provide a rich resource and reference for the analysis of polygenic scoring methods across biobanks.

2.
Nat Commun ; 15(1): 5007, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866767

ABSTRACT

Polygenic scores (PGSs) offer the ability to predict genetic risk for complex diseases across the life course; a key benefit over short-term prediction models. To produce risk estimates relevant to clinical and public health decision-making, it is important to account for varying effects due to age and sex. Here, we develop a novel framework to estimate country-, age-, and sex-specific estimates of cumulative incidence stratified by PGS for 18 high-burden diseases. We integrate PGS associations from seven studies in four countries (N = 1,197,129) with disease incidences from the Global Burden of Disease. PGS has a significant sex-specific effect for asthma, hip osteoarthritis, gout, coronary heart disease and type 2 diabetes (T2D), with all but T2D exhibiting a larger effect in men. PGS has a larger effect in younger individuals for 13 diseases, with effects decreasing linearly with age. We show for breast cancer that, relative to individuals in the bottom 20% of polygenic risk, the top 5% attain an absolute risk for screening eligibility 16.3 years earlier. Our framework increases the generalizability of results from biobank studies and the accuracy of absolute risk estimates by appropriately accounting for age- and sex-specific PGS effects. Our results highlight the potential of PGS as a screening tool which may assist in the early prevention of common diseases.


Subject(s)
Genetic Predisposition to Disease , Multifactorial Inheritance , Humans , Male , Female , Multifactorial Inheritance/genetics , Incidence , Middle Aged , Adult , Aged , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Risk Factors , Risk Assessment/methods , Global Burden of Disease , Sex Factors , Age Factors
3.
Nature ; 627(8003): 347-357, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374256

ABSTRACT

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Subject(s)
Diabetes Mellitus, Type 2 , Disease Progression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Adipocytes/metabolism , Chromatin/genetics , Chromatin/metabolism , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/classification , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Nephropathies/complications , Diabetic Nephropathies/genetics , Endothelial Cells/metabolism , Enteroendocrine Cells , Epigenomics , Genetic Predisposition to Disease/genetics , Islets of Langerhans/metabolism , Multifactorial Inheritance/genetics , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/genetics , Single-Cell Analysis
4.
Circ Genom Precis Med ; 17(3): e004272, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38380516

ABSTRACT

BACKGROUND: Predictive performance of polygenic risk scores (PRS) varies across populations. To facilitate equitable clinical use, we developed PRS for coronary heart disease (CHD; PRSCHD) for 5 genetic ancestry groups. METHODS: We derived ancestry-specific and multi-ancestry PRSCHD based on pruning and thresholding (PRSPT) and ancestry-based continuous shrinkage priors (PRSCSx) applied to summary statistics from the largest multi-ancestry genome-wide association study meta-analysis for CHD to date, including 1.1 million participants from 5 major genetic ancestry groups. Following training and optimization in the Million Veteran Program, we evaluated the best-performing PRSCHD in 176,988 individuals across 9 diverse cohorts. RESULTS: Multi-ancestry PRSPT and PRSCSx outperformed ancestry-specific PRSPT and PRSCSx across a range of tuning values. Two best-performing multi-ancestry PRSCHD (ie, PRSPTmult and PRSCSxmult) and 1 ancestry-specific (PRSCSxEUR) were taken forward for validation. PRSPTmult demonstrated the strongest association with CHD in individuals of South Asian ancestry and European ancestry (odds ratio per 1 SD [95% CI, 2.75 [2.41-3.14], 1.65 [1.59-1.72]), followed by East Asian ancestry (1.56 [1.50-1.61]), Hispanic/Latino ancestry (1.38 [1.24-1.54]), and African ancestry (1.16 [1.11-1.21]). PRSCSxmult showed the strongest associations in South Asian ancestry (2.67 [2.38-3.00]) and European ancestry (1.65 [1.59-1.71]), lower in East Asian ancestry (1.59 [1.54-1.64]), Hispanic/Latino ancestry (1.51 [1.35-1.69]), and the lowest in African ancestry (1.20 [1.15-1.26]). CONCLUSIONS: The use of summary statistics from a large multi-ancestry genome-wide meta-analysis improved the performance of PRSCHD in most ancestry groups compared with single-ancestry methods. Despite the use of one of the largest and most diverse sets of training and validation cohorts to date, improvement of predictive performance was limited in African ancestry. This highlights the need for larger genome-wide association study datasets of underrepresented populations to enhance the performance of PRSCHD.


Subject(s)
Coronary Disease , Genome-Wide Association Study , Multifactorial Inheritance , Humans , Coronary Disease/genetics , Male , Female , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Risk Factors , Middle Aged , Genetic Risk Score
5.
Nat Commun ; 14(1): 6713, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872160

ABSTRACT

Thyroid hormones play a critical role in regulation of multiple physiological functions and thyroid dysfunction is associated with substantial morbidity. Here, we use electronic health records to undertake a genome-wide association study of thyroid-stimulating hormone (TSH) levels, with a total sample size of 247,107. We identify 158 novel genetic associations, more than doubling the number of known associations with TSH, and implicate 112 putative causal genes, of which 76 are not previously implicated. A polygenic score for TSH is associated with TSH levels in African, South Asian, East Asian, Middle Eastern and admixed American ancestries, and associated with hypothyroidism and other thyroid disease in South Asians. In Europeans, the TSH polygenic score is associated with thyroid disease, including thyroid cancer and age-of-onset of hypothyroidism and hyperthyroidism. We develop pathway-specific genetic risk scores for TSH levels and use these in phenome-wide association studies to identify potential consequences of pathway perturbation. Together, these findings demonstrate the potential utility of genetic associations to inform future therapeutics and risk prediction for thyroid diseases.


Subject(s)
Hyperthyroidism , Hypothyroidism , Thyroid Diseases , Humans , Thyrotropin/genetics , Genome-Wide Association Study , Thyroid Diseases/genetics , Hypothyroidism/genetics , Hyperthyroidism/genetics , Thyroxine
6.
medRxiv ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37609230

ABSTRACT

Background: Predictive performance of polygenic risk scores (PRS) varies across populations. To facilitate equitable clinical use, we developed PRS for coronary heart disease (PRSCHD) for 5 genetic ancestry groups. Methods: We derived ancestry-specific and multi-ancestry PRSCHD based on pruning and thresholding (PRSP+T) and continuous shrinkage priors (PRSCSx) applied on summary statistics from the largest multi-ancestry genome-wide meta-analysis for CHD to date, including 1.1 million participants from 5 continental populations. Following training and optimization of PRSCHD in the Million Veteran Program, we evaluated predictive performance of the best performing PRSCHD in 176,988 individuals across 9 cohorts of diverse genetic ancestry. Results: Multi-ancestry PRSP+T outperformed ancestry specific PRSP+T across a range of tuning values. In training stage, for all ancestry groups, PRSCSx performed better than PRSP+T and multi-ancestry PRS outperformed ancestry-specific PRS. In independent validation cohorts, the selected multi-ancestry PRSP+T demonstrated the strongest association with CHD in individuals of South Asian (SAS) and European (EUR) ancestry (OR per 1SD[95% CI]; 2.75[2.41-3.14], 1.65[1.59-1.72]), followed by East Asian (EAS) (1.56[1.50-1.61]), Hispanic/Latino (HIS) (1.38[1.24-1.54]), and weakest in African (AFR) ancestry (1.16[1.11-1.21]). The selected multi-ancestry PRSCSx showed stronger associacion with CHD in comparison within each ancestry group where the association was strongest in SAS (2.67[2.38-3.00]) and EUR (1.65[1.59-1.71]), progressively decreasing in EAS (1.59[1.54-1.64]), HIS (1.51[1.35-1.69]), and lowest in AFR (1.20[1.15-1.26]). Conclusions: Utilizing diverse summary statistics from a large multi-ancestry genome-wide meta-analysis led to improved performance of PRSCHD in most ancestry groups compared to single-ancestry methods. Improvement of predictive performance was limited, specifically in AFR and HIS, despite use of one of the largest and most diverse set of training and validation cohorts to date. This highlights the need for larger GWAS datasets of AFR and HIS individuals to enhance performance of PRSCHD.

8.
Nat Genet ; 55(6): 964-972, 2023 06.
Article in English | MEDLINE | ID: mdl-37248441

ABSTRACT

Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Vascular Diseases , Humans , Female , Genome-Wide Association Study , Vascular Diseases/genetics , Coronary Artery Disease/genetics
10.
Nat Genet ; 54(12): 1803-1815, 2022 12.
Article in English | MEDLINE | ID: mdl-36474045

ABSTRACT

The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR-Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/genetics , Genome-Wide Association Study
11.
Genome Biol ; 23(1): 268, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575460

ABSTRACT

BACKGROUND: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Sex Characteristics , Phenotype , Lipids/genetics , Polymorphism, Single Nucleotide , Genetic Pleiotropy
12.
Circulation ; 146(25): 1930-1945, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36417924

ABSTRACT

BACKGROUND: Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS: In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS: We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS: Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury.


Subject(s)
Autoimmune Diseases , Cardiomyopathies , Myocarditis , Humans , Mice , Animals , Autoimmunity , Memory T Cells , Myocarditis/etiology , Myocardium , Cardiomyopathies/complications , Cardiac Myosins , Inflammation/complications
13.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931049

ABSTRACT

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Chromatin/genetics , Genomics , Humans , Lipids/genetics , Polymorphism, Single Nucleotide/genetics
14.
J Clin Endocrinol Metab ; 107(7): e2952-e2961, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35306566

ABSTRACT

BACKGROUND: Accelerated reproductive aging, in women indicated by early natural menopause, is associated with increased coronary heart disease (CHD) risk in observational studies. Conversely, an adverse CHD risk profile has been suggested to accelerate menopause. OBJECTIVES: To study the direction and evidence for causality of the relationship between reproductive aging and (non-)fatal CHD and CHD risk factors in a bidirectional Mendelian randomization (MR) approach, using age at natural menopause (ANM) genetic variants as a measure for genetically determined reproductive aging in women. We also studied the association of these variants with CHD risk (factors) in men. DESIGN: Two-sample MR, using both cohort data as well as summary statistics, with 4 methods: simple and weighted median-based, standard inverse-variance weighted (IVW) regression, and MR-Egger regression. PARTICIPANTS: Data from EPIC-CVD and summary statistics from UK Biobank and publicly available genome-wide association studies were pooled for the different analyses. MAIN OUTCOME MEASURES: CHD, CHD risk factors, and ANM. RESULTS: Across different methods of MR, no association was found between genetically determined reproductive aging and CHD risk in women (relative risk estimateIVW = 0.99; 95% confidence interval (CI), 0.97-1.01), or any of the CHD risk factors. Similarly, no associations were found in men. Neither did the reversed analyses show evidence for an association between CHD (risk factors) and reproductive aging. CONCLUSION: Genetically determined reproductive aging is not causally associated with CHD risk (factors) in women, nor were the genetic variants associated in men. We found no evidence for a reverse association in a combined sample of women and men.


Subject(s)
Coronary Disease , Genome-Wide Association Study , Aging/genetics , Coronary Disease/epidemiology , Coronary Disease/genetics , Female , Genome-Wide Association Study/methods , Humans , Male , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide
15.
Nature ; 600(7890): 675-679, 2021 12.
Article in English | MEDLINE | ID: mdl-34887591

ABSTRACT

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study , Cardiovascular Diseases/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Linkage Disequilibrium , Multifactorial Inheritance , Polymorphism, Single Nucleotide/genetics , Population Groups
17.
Front Immunol ; 12: 683028, 2021.
Article in English | MEDLINE | ID: mdl-34025683

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease with no therapeutic consensus. Oxidation and inflammation are hallmarks in the progression of this complex disease, which also involves interactions between the genetic background and the environment. Mastiha is a natural nutritional supplement known to possess antioxidant and anti-inflammatory properties. This study investigated how a 6-month Mastiha supplementation (2.1 g/day) could impact the antioxidant and inflammatory status of patients with NAFLD, and whether genetic variants significantly mediate these effects. We recruited 98 patients with obesity (BMI ≥ 30 kg/m2) and NAFLD and randomly allocated them to either the Mastiha or the placebo group for 6 months. The anti-oxidative and inflammatory status was assessed at baseline and post-treatment. Genome-wide genetic data was also obtained from all participants, to investigate gene-by-Mastiha interactions. NAFLD patients with severe obesity (BMI > 35kg/m2) taking the Mastiha had significantly higher total antioxidant status (TAS) compared to the corresponding placebo group (P value=0.008). We did not observe any other significant change in the investigated biomarkers as a result of Mastiha supplementation alone. We identified several novel gene-by-Mastiha interaction associations with levels of cytokines and antioxidant biomarkers. Some of the identified genetic loci are implicated in the pathological pathways of NAFLD, including the lanosterol synthase gene (LSS) associated with glutathione peroxidase activity (Gpx) levels, the mitochondrial pyruvate carrier-1 gene (MPC1) and the sphingolipid transporter-1 gene (SPNS1) associated with hemoglobin levels, the transforming growth factor-beta-induced gene (TGFBI) and the micro-RNA 129-1 (MIR129-1) associated with IL-6 and the granzyme B gene (GZMB) associated with IL-10 levels. Within the MAST4HEALTH randomized clinical trial (NCT03135873, www.clinicaltrials.gov) Mastiha supplementation improved the TAS levels among NAFLD patients with severe obesity. We identified several novel genome-wide significant nutrigenetic interactions, influencing the antioxidant and inflammatory status in NAFLD. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03135873.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Dietary Supplements , Mastic Resin/chemistry , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Nutrigenomics , Adult , Aged , Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Biomarkers , Disease Management , Disease Susceptibility , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/etiology , Nutrigenomics/methods , Oxidative Stress/drug effects , Young Adult
19.
Mol Nutr Food Res ; 65(10): e2001178, 2021 05.
Article in English | MEDLINE | ID: mdl-33629536

ABSTRACT

SCOPE: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease with poor therapeutic strategies. Mastiha possesses antioxidant/anti-inflammatory and lipid-lowering properties. The authors investigate the effectiveness of Mastiha as a nonpharmacological intervention in NAFLD. METHODS AND RESULTS: Ninety-eight patients with NAFLD in three countries (Greece, Italy, Serbia) are randomly allocated to either Mastiha or Placebo for 6 months, as part of a multicenter, randomized, double-blind, placebo-controlled, parallel-group clinical trial. The authors assess NAFLD severity via magnetic resonance imaging (MRI) scanning and LiverMultiScan technique and evaluate the effectiveness of Mastiha through medical, anthropometric, biochemical, metabolomic, and microbiota assessment. Mastiha is not superior to Placebo on changes in iron-corrected T1 (cT1) and Liver Inflammation Fibrosis score (LIF) in entire patient population; however, after BMI stratification (BMI ≤ 35 kg m-2 and BMI > 35 kg m-2 ), severely obese patients show an improvement in cT1 and LIF in Mastiha versus Placebo. Mastiha increases dissimilarity of gut microbiota, as shown by the Bray-Curtis index, downregulates Flavonifractor, a known inflammatory taxon and decreases Lysophosphatidylcholines-(LysoPC) 18:1, Lysophosphatidylethanolamines-(LysoPE) 18:1, and cholic acid compared to Placebo. CONCLUSION: Mastiha supplementation improves microbiota dysbiosis and lipid metabolite levels in patients with NAFLD, although it reduces parameters of liver inflammation/fibrosis only in severely obese patients.


Subject(s)
Mastic Resin/administration & dosage , Non-alcoholic Fatty Liver Disease/drug therapy , Adult , Aged , Body Mass Index , Dietary Supplements , Double-Blind Method , Dysbiosis/drug therapy , Female , Gastrointestinal Microbiome/drug effects , Greece , Humans , Italy , Liver/pathology , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/physiopathology , Obesity/complications , Placebos , Serbia
20.
Biol Open ; 10(3)2021 03 09.
Article in English | MEDLINE | ID: mdl-33597201

ABSTRACT

Protein kinase D2 belongs to a family of evolutionarily conserved enzymes regulating several biological processes. In a forward genetic screen for zebrafish cardiovascular mutants, we identified a mutation in the prkd2 gene. Homozygous mutant embryos develop as wild type up to 36 h post-fertilization and initiate blood flow, but fail to maintain it, resulting in a complete outflow tract stenosis. We identified a mutation in the prkd2 gene that results in a T757A substitution at a conserved residue in the kinase domain activation loop (T714A in human PRKD2) that disrupts catalytic activity and drives this phenotype. Homozygous mutants survive without circulation for several days, allowing us to study the extreme phenotype of no intracardiac flow, in the background of a functional heart. We show dysregulation of atrioventricular and outflow tract markers in the mutants and higher sensitivity to the Calcineurin inhibitor, Cyclosporin A. Finally we identify TBX5 as a potential regulator of PRKD2. Our results implicate PRKD2 catalytic activity in outflow tract development in zebrafish.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Mutation , Protein Interaction Domains and Motifs , Protein Kinase D2/genetics , Threonine/genetics , Zebrafish/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Ectopic Gene Expression , Enzyme Activation , Heart/embryology , Humans , Organogenesis/genetics , Phenotype , Protein Kinase D2/chemistry , Protein Kinase D2/metabolism , Threonine/chemistry , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...