Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38808617

ABSTRACT

Despite clinical advances with protein kinase inhibitors (PKIs), oral administration of many PKIs is associated with highly variable plasma exposure and a narrow therapeutic window. We developed a novel hybrid nanoparticle-amorphous solid dispersion (ASD) technology platform consisting of an amorphous PKI embedded in a polymer matrix. The technology was used to manufacture immediate-release formulations of 2 tyrosine kinase inhibitors (TKIs), dasatinib and sorafenib. Our primary objective was to improve the absorption properties and reduce the pharmacokinetic (PK) variability of each TKI. The PKs of XS004 (dasatinib-ASD, 100 mg tablet) and XS005 (sorafenib-ASD, 2 × 50 mg capsules) were compared with their crystalline formulated reference drugs (140 mg of dasatinib-reference and 200 mg of sorafenib-reference). The in vitro biopharmaceutics of dasatinib-ASD and XS005-granulate showed sustained increased solubility in the pH range 1.2-8.0 compared to their crystalline references. In vivo, XS004 was bioequivalent at a 30% lower dose and showed increased absorption and bioavailability, with 2.1-4.8 times lower intra- and intersubject variability compared to the reference. XS005 had an increased absorption and bioavailability of 45% and 2.2-2.8 times lower variability, respectively, but it was not bioequivalent at the investigated dose level. Taken together, the formulation platform is suited to generate improved PKI formulations with consistent bioavailability and a reduced pH-dependent absorption process.

2.
Eur J Haematol ; 111(4): 644-654, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37503797

ABSTRACT

BACKGROUND: Dasatinib and other tyrosine kinase inhibitors (TKI) have revolutionized the treatment of chronic myeloid leukemia (CML). However, as a lipophilic weak base, crystalline monohydrate, dasatinib (Sprycel®) is poorly soluble, rendering a pH-dependent absorption and a highly variable bioavailability. Thus, co-medication with proton pump inhibitors (PPI) profoundly impairs dasatinib uptake and is clearly recommended against. XS004 is a novel oral immediate release and amorphous solid dispersion (ASD) formulation of dasatinib and is bioequivalent to the original crystalline dasatinib at 30% lower dosages. XS004 is designed to mitigate gastric pH dependency, thus optimizing absorption and bioavailability. METHODS: We investigated the prevalence of dasatinib and PPI co-medication among chronic-phase CML patients in a real-world setting and assessed the plasma pharmacokinetics (PK) of XS004 with and without PPI co-medication (omeprazole) in healthy volunteers. RESULTS: Using the Swedish CML and Prescribed Drug Registers, we identified 676 TKI-treated CML patients; 320 (47%) had been prescribed PPI at some point after CML diagnosis. Among dasatinib-treated patients, the 2-year cumulative PPI co-medication was 24%. Interestingly, the 5-year overall survival was significantly lower for TKI-treated CML patients with versus without PPI co-medication (79% vs. 94%; hazard ratio 3.5; 95% confidence interval, 2.1-5.3; p < .0001). When assessing PK of XS004, neither Cmax nor area under the plasma concentration curve levels in plasma were significantly altered by the PPI co-medication. CONCLUSION: In conclusion, despite warnings, PPI co-medication is common among dasatinib-treated CML patients in a real-world setting. The new XS004 ASD formulation of dasatinib provided, in contrast to original crystalline dasatinib, superior pH independence with stable bioavailability, thereby minimizing drug-drug interactions. This may improve the long-term efficacy and tolerability of dasatinib in CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Proton Pump Inhibitors , Humans , Dasatinib/adverse effects , Proton Pump Inhibitors/adverse effects , Protein Kinase Inhibitors/adverse effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/epidemiology , Drug Interactions , Hydrogen-Ion Concentration
3.
J Pharmacol Exp Ther ; 309(2): 711-9, 2004 May.
Article in English | MEDLINE | ID: mdl-14747616

ABSTRACT

Growth factor and insulin signal transduction comprise series of protein kinases and protein phosphatases whose combined activities serve to propagate the growth factor signal in a regulated fashion. It was shown previously that such signaling cascades generate hydrogen peroxide inside cells. Recent work has implied that one function of this might be to enhance the feed-forward signal through the reversible oxidation and inhibition of protein tyrosine phosphatases (PTPs). We identified compound 4-hydroxy-3,3-dimethyl-2H-benzo[g]indole-2,5(3H)-dione (BVT.948) as an agent that is able to inhibit PTP activity in vitro noncompetitively, a mechanism involving oxidation of the catalytic cysteine residue. We investigated the pharmaceutical utility of this compound by examining its effects in a series of in vitro cellular and in vivo assays. Results showed that BVT.948 was able to enhance insulin signaling in cells, although it did not increase tyrosine phosphorylation globally. Furthermore, the compound was active in vivo, enhancing insulin tolerance tests in ob/ob mice, therefore apparently enhancing insulin sensitivity. BVT.948 was able to inhibit several other PTPs tested and also was efficient at inhibiting several cytochrome P450 (P450) isoforms in vitro. The data suggest that inhibitors of PTPs that display noncompetitive kinetics must be viewed with caution because they may oxidize the enzyme irreversibly. Furthermore, although such compounds display interesting biological effects in vitro and in vivo, their general pharmaceutical utility may be limited due to undesired effects on P450 enzymes.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Protein Tyrosine Phosphatases/metabolism , Animals , Cytochrome P-450 Enzyme Inhibitors , Humans , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Recombinant Proteins/metabolism , Substrate Specificity/drug effects
4.
Bioorg Med Chem ; 10(10): 3197-212, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12150865

ABSTRACT

A series of novel pyridazine analogues were prepared and the structure-activity relationship of their behavior as inhibitors of PTP1B was evaluated. Most of the analogues had potencies in the low micromolar range. The in vitro kinetics of this compound series demonstrated that they were reversible non-competitive binders. This indicates that there may exist another site in the enzyme through which enzyme activity can be inhibited, which is not a recognized interaction domain. Some of the analogues exhibited high selectivity for other PTPases, for example, compound 12 mp showed 20-fold selectivity for PTP1B (IC50=5.6 microM) versus both TCPTP and LAR (>100 microM, respectively). In contrast to many tyrosine phosphatase mimetic inhibitors, this compound class lacks negative charge and thus showed high permeability across cell membranes. Selective analogues in the series were analyzed in an in vitro cellular assay, which showed increased insulin-stimulated insulin receptor phosphorylation.


Subject(s)
Protein Tyrosine Phosphatases/antagonists & inhibitors , Pyridazines/chemical synthesis , Animals , Binding Sites , Cell Line , Cell Membrane Permeability , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Insulin/pharmacology , Insulin Resistance , Kinetics , Phosphorylation/drug effects , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Rats , Receptor, Insulin/metabolism , Structure-Activity Relationship
5.
J Med Chem ; 45(9): 1785-98, 2002 Apr 25.
Article in English | MEDLINE | ID: mdl-11960490

ABSTRACT

Protein tyrosine phosphatases (PTPs) constitute a diverse family of enzymes that, together with protein tyrosine kinases, control the level of intracellular tyrosine phosphorylation, thus regulating many cellular functions. PTP1B negatively regulates insulin signaling, in part, by dephosphorylating key tyrosine residues within the regulatory domain of the beta-subunit of the insulin receptor, thereby attenuating receptor kinase activity. Inhibitors of PTP1B would therefore have the potential of prolonging the phosphorylated (activated) state of the insulin receptor and are anticipated to be a novel treatment of the insulin resistance characteristic of type 2 diabetes. We previously reported a series of small molecular weight peptidomimetics as competitive inhibitors of PTP1B, with the most active analogues having K(i) values in the low nanomolar range. Furthermore, we confirmed that the O-carboxymethyl salicylic acid moiety is a remarkably effective novel phosphotyrosine mimetic. Because of the low cell permeability of this compound class, it was important to investigate the possibility of replacing one or both of the remaining carboxyl groups while maintaining PTP1B inhibitory activity. The analogues described herein further support the importance of an acidic functionality at both positions of the tyrosine head moiety. An important discovery was the ortho tetrazole analogue 29 (K(i) = 2.0 microM), which was equipotent to the dicarboxylic acid analogue 2 (K(i) = 2.0 microM). Solution of the X-ray cocrystal structure of the ortho tetrazole analogue 29 bound to PTP1B revealed that the tetrazole moiety is well-accommodated in the active site and binds in a fashion similar to the ortho carboxylate analogue 2 reported previously. This novel monocarboxylic acid analogue revealed significantly higher Caco-2 cell permeability as compared to all previous compounds. Furthermore, compound 29 exhibited modest enhancement of insulin-stimulated 2-deoxyglucose uptake by L6 myocytes.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Peptides/chemistry , Propionates/chemical synthesis , Protein Tyrosine Phosphatases/antagonists & inhibitors , Tetrazoles/chemical synthesis , Binding, Competitive , Caco-2 Cells , Cell Membrane Permeability , Crystallography, X-Ray , Deoxyglucose/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Insulin Resistance , Models, Molecular , Molecular Mimicry , Phenoxyacetates , Propionates/chemistry , Propionates/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/metabolism , Structure-Activity Relationship , Tetrazoles/chemistry , Tetrazoles/metabolism , Tetrazoles/pharmacology
6.
J Med Chem ; 45(3): 598-622, 2002 Jan 31.
Article in English | MEDLINE | ID: mdl-11806712

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling in part by dephosphorylating key tyrosine residues within the regulatory domain of the beta-subunit of the insulin receptor (IR), thereby attenuating receptor tyrosine kinase activity. Inhibition of PTP1B is therefore anticipated to improve insulin resistance and has recently become the focus of discovery efforts aimed at identifying new drugs to treat type II diabetes. We previously reported that the tripeptide Ac-Asp-Tyr(SO(3)H)-Nle-NH(2) is a surprisingly effective inhibitor of PTP1B (K(i) = 5 microM). With the goal of improving the stability and potency of this lead, as well as attenuating its peptidic character, an analogue program was undertaken. Specific elements of the initial phase of this program included replacement of the N- and C-termini with non-amino acid components, modification of the tyrosine subunit, and replacement of the tyrosine sulfate with other potential phosphate mimics. The most potent analogue arising from this effort was triacid 71, which inhibits PTP1B competitively with a K(i) = 0.22 microM without inhibiting SHP-2 or LAR at concentrations up to 100 microM. Overall, the inhibitors generated in this work showed little or no enhancement of insulin signaling in cellular assays. However, potential prodrug triester 70 did induce enhancements in 2-deoxyglucose uptake into two different cell lines with concomitant augmentation of the tyrosine phosphorylation levels of insulin-signaling molecules. Key elements of the overall SAR reported herein include confirmation of the effectiveness and remarkable PTP1B-specificity of the novel tyrosine phosphate bioisostere, O-carboxymethyl salicylic acid; demonstration that the tyrosine skeleton is optimal relative to closely related structures; replacement of the p-1 aspartic acid with phenylalanine with little effect on activity; and demonstration that inhibitory activity can be maintained in the absence of an N-terminal carboxylic acid. An X-ray cocrystal structure of an analogue bearing a neutral N-terminus (69) bound to PTP1B is reported that confirms a mode of binding similar to that of peptidic substrates.


Subject(s)
Dipeptides/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Peptides/chemistry , Protein Tyrosine Phosphatases/antagonists & inhibitors , Cell Line , Crystallography, X-Ray , Deoxyglucose/metabolism , Dipeptides/chemistry , Dipeptides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydrogen Bonding , Insulin/pharmacology , Models, Molecular , Molecular Mimicry , Molecular Weight , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Structure-Activity Relationship , Tyrosine/chemistry
7.
J Org Chem ; 61(12): 4028-4034, 1996 Jun 14.
Article in English | MEDLINE | ID: mdl-11667278

ABSTRACT

Novel prostaglandin F(2)(alpha) derivatives, functionalized at C13 and C14, have been prepared. 17-Phenyl-18,19,20-trinorprostaglandin F(2)(alpha) isopropyl ester [(15S)-1] and its epimer [(15R)-1] were stereoselectively epoxidized, using Sharpless conditions, to produce each of the four diastereomeric epoxides (15S)-2, (15S)-3, (15R)-2, and (15R)-3. Treatment of the four epoxides with LiOH stereospecifically-produced the pentahydroxy substituted analogues 12 and 13. Alternatively, epoxides 2 and 3were allowed to react with thiophenolate ion. The attack of the sulfur nucleophile on the epoxide occurred at either C13 or C14 depending on the stereochemistry of the epoxide and of C15.

SELECTION OF CITATIONS
SEARCH DETAIL