Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Antimicrob Agents Chemother ; 67(3): e0151422, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36852998

ABSTRACT

Anti-SARS-CoV-2 immunoglobulin (human) investigational product (COVID-HIGIV) is a purified immunoglobulin preparation containing SARS-CoV-2 polyclonal antibodies. This single-center clinical trial aimed to characterize the safety and pharmacokinetics of COVID-HIGIV in healthy, adult volunteers. Participants were enrolled to receive one of three doses of COVID-HIGIV (100, 200, 400 mg/kg) or placebo in a 2:2:2:1 randomization scheme. Between 24 December 2020 and 27 July 2021, 28 participants met eligibility and were randomized with 27 of these 28 (96.4%) being administered either COVID-HIGIV (n = 23) or placebo (n = 4). Only one SAE was observed, and it occurred in the placebo group. A total of 18 out of 27 participants (66.7%) reported 50 adverse events (AEs) overall. All COVID-HIGIV-related adverse events were mild or moderate in severity and transient. The most frequent AEs (>5% of participants) reported in the safety population were headache (n = 6, 22.2%), chills (n = 3, 11.1%), increased bilirubin (n = 2, 7.4%), muscle spasms (n = 2, 7.4%), seasonal allergies (n = 2, 7.4%), pyrexia (n = 2, 7.4%), and oropharyngeal pain (n = 2, 7.4%). Using the SARS-CoV-2 binding IgG immunoassay (n = 22, specific for pharmacokinetics), the geometric means of Cmax (AU/mL) for the three COVID-HIGIV dose levels (low to high) were 7.69, 17.02, and 33.27 AU/mL; the average values of Tmax were 7.09, 7.93, and 5.36 h, respectively. The half-life of COVID-HIGIV per dose level was 24 d (583 h), 31 d (753 h), and 26 d (619 h) for the 100 mg/kg, 200 mg/kg, and 400 mg/kg groups, respectively. The safety and pharmacokinetics of COVID-HIGIV support its development as a single-dose regimen for postexposure prophylaxis or treatment of COVID-19.


Subject(s)
COVID-19 , Humans , Adult , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G , Administration, Intravenous , Double-Blind Method
2.
Life (Basel) ; 13(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36676159

ABSTRACT

(1) Background: Several retrospective observational analyzed treatment outcomes for COVID-19; (2) Methods: Inverse probability of censoring weighting (IPCW) was applied to correct for bias due to informative censoring in database of hospitalized patients who did and did not receive convalescent plasma; (3) Results: When compared with an IPCW analysis, overall mortality was overestimated using an unadjusted Kaplan-Meier curve, and hazard ratios for the older age group compared to the youngest were underestimated using the Cox proportional hazard models and 30-day mortality; (4) Conclusions: An IPCW analysis provided stabilizing weights by hospital admission.

3.
Vaccines (Basel) ; 9(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204268

ABSTRACT

Fc-dependent effector functions are an important determinant of the in vivo potency of therapeutic antibodies. Effector function is determined by the combination of FcRs bound by the antibody and the cell expressing the relevant FcRs, leading to antibody-dependent cellular cytotoxicity (ADCC). A number of ADCC assays have been developed; however, they suffer from limitations in terms of throughput, reproducibility, and in vivo relevance. Existing assays measure NK cell-mediated ADCC activity; however, studies suggest that macrophages mediate the effector function of many antibodies in vivo. Here, we report the development of a macrophage-based ADCC assay that relies on luciferase expression in target cells as a measure of live cell number. In the presence of primary mouse macrophages and specific antibodies, loss of luciferase signal serves as a surrogate for ADCC-dependent killing. We show that the assay functions for a variety of mouse and human isotypes with a model antigen/antibody complex in agreement with the known effector function of the isotypes. We also use this assay to measure the activity of a number of influenza-specific antibodies and show that the assay correlates well with the known in vivo effector functions of these antibodies.

4.
Sci Transl Med ; 13(596)2021 06 02.
Article in English | MEDLINE | ID: mdl-34078743

ABSTRACT

Broadly neutralizing antibodies are critical for protection against both drifted and shifted influenza viruses. Here, we reveal that first exposure to the 2009 pandemic H1N1 influenza virus recalls memory B cells that are specific to the conserved receptor-binding site (RBS) or lateral patch epitopes of the hemagglutinin (HA) head domain. Monoclonal antibodies (mAbs) generated against these epitopes are broadly neutralizing against H1N1 viruses spanning 40 years of viral evolution and provide potent protection in vivo. Lateral patch-targeting antibodies demonstrated near universal binding to H1 viruses, and RBS-binding antibodies commonly cross-reacted with H3N2 viruses and influenza B viruses. Lateral patch-targeting mAbs were restricted to expressing the variable heavy-chain gene VH3-23 with or without the variable kappa-chain gene VK1-33 and often had a Y-x-R motif within the heavy-chain complementarity determining region 3 to make key contacts with HA. Moreover, lateral patch antibodies that used both VH3-23 and VK1-33 maintained neutralizing capability with recent pH1N1 strains that acquired mutations near the lateral patch. RBS-binding mAbs used a diverse repertoire but targeted the RBS epitope similarly and made extensive contacts with the major antigenic site Sb. Together, our data indicate that RBS- and lateral patch-targeting clones are abundant within the human memory B cell pool, and universal vaccine strategies should aim to drive antibodies against both conserved head and stalk epitopes.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinins , Humans , Influenza A Virus, H3N2 Subtype
5.
Mayo Clin Proc ; 96(5): 1262-1275, 2021 05.
Article in English | MEDLINE | ID: mdl-33958057

ABSTRACT

To determine the effect of COVID-19 convalescent plasma on mortality, we aggregated patient outcome data from 10 randomized clinical trials, 20 matched control studies, 2 dose-response studies, and 96 case reports or case series. Studies published between January 1, 2020, and January 16, 2021, were identified through a systematic search of online PubMed and MEDLINE databases. Random effects analyses of randomized clinical trials and matched control data demonstrated that patients with COVID-19 transfused with convalescent plasma exhibited a lower mortality rate compared with patients receiving standard treatments. Additional analyses showed that early transfusion (within 3 days of hospital admission) of higher titer plasma is associated with lower patient mortality. These data provide evidence favoring the efficacy of human convalescent plasma as a therapeutic agent in hospitalized patients with COVID-19.


Subject(s)
COVID-19/therapy , COVID-19/mortality , Humans , Immunization, Passive/methods , Mortality , SARS-CoV-2/immunology , Time-to-Treatment , COVID-19 Serotherapy
7.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33593910

ABSTRACT

In this study, we utilized a panel of human immunoglobulin (Ig) IgA monoclonal antibodies isolated from the plasmablasts of eight donors after 2014/2015 influenza virus vaccination (Fluarix) to study the binding and functional specificities of this isotype. In this cohort, isolated IgA monoclonal antibodies were primarily elicited against the hemagglutinin protein of the H1N1 component of the vaccine. To compare effector functionalities, an H1-specific subset of antibodies targeting distinct epitopes were expressed as monomeric, dimeric, or secretory IgA, as well as in an IgG1 backbone. When expressed with an IgG Fc domain, all antibodies elicited Fc-effector activity in a primary polymorphonuclear cell-based assay which differs from previous observations that found only stalk-specific antibodies activate the low-affinity FcγRIIIa. However, when expressed with IgA Fc domains, only antibodies targeting the stalk domain showed Fc-effector activity in line with these previous findings. To identify the cause of this discrepancy, we then confirmed that IgG signaling through the high-affinity FcγI receptor was not restricted to stalk epitopes. Since no corresponding high-affinity Fcα receptor exists, the IgA repertoire may therefore be limited to stalk-specific epitopes in the context of Fc receptor signaling.


Subject(s)
Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin A/immunology , Immunoglobulin Fc Fragments/immunology , Influenza A Virus, H1N1 Subtype/immunology , Adult , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibody Affinity , Binding Sites, Antibody , Chick Embryo , Cryoelectron Microscopy , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza Vaccines/immunology , Male , Neutrophils/immunology , Neutrophils/virology
8.
medRxiv ; 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33140056

ABSTRACT

To determine the effect of COVID-19 convalescent plasma on mortality, we aggregated patient outcome data from 10 randomized clinical trials (RCT), 20 matched-control studies, two dose-response studies, and 96 case-reports or case series. Studies published between January 1, 2020 to January 16, 2021 were identified through a systematic search of online PubMed and MEDLINE databases. Random effects analyses of RCT and matched-control data demonstrated that COVID-19 patients transfused with convalescent plasma exhibited a lower mortality rate compared to patients receiving standard treatments. Additional analyses showed that early transfusion (within 3 days of hospital admission) of higher titer plasma is associated with lower patient mortality. These data provide evidence favoring the efficacy of human convalescent plasma as a therapeutic agent in hospitalized COVID-19 patients.

9.
Transfusion ; 61(1): 78-93, 2021 01.
Article in English | MEDLINE | ID: mdl-33125158

ABSTRACT

BACKGROUND: Convalescent plasma (CP) for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown preliminary signs of effectiveness in moderate to severely ill patients in reducing mortality. While studies have demonstrated a low risk of serious adverse events, the comprehensive incidence and nature of the spectrum of transfusion reactions to CP is unknown. We retrospectively examined 427 adult inpatient CP transfusions to determine incidence and types of reactions, as well as clinical parameters and risk factors associated with transfusion reactions. STUDY DESIGN AND METHODS: Retrospective analysis was performed for 427 transfusions to 215 adult patients with coronavirus 2019 (COVID-19) within the Mount Sinai Health System, through the US Food and Drug Administration emergency investigational new drug and the Mayo Clinic Expanded Access Protocol to Convalescent Plasma approval pathways. Transfusions were blindly evaluated by two reviewers and adjudicated by a third reviewer in discordant cases. Patient demographics and clinical and laboratory parameters were compared and analyzed. RESULTS: Fifty-five reactions from 427 transfusions were identified (12.9% incidence), and 13 were attributed to transfusion (3.1% incidence). Reactions were classified as underlying COVID-19 (76%), febrile nonhemolytic (10.9%), transfusion-associated circulatory overload (9.1%), and allergic (1.8%) and hypotensive (1.8%) reactions. Statistical analysis identified increased transfusion reaction risk for ABO blood group B or Sequential Organ Failure Assessment scores of 12 to 13, and decreased risk within the age group of 80 to 89 years. CONCLUSION: Our findings support the use of CP as a safe, therapeutic option from a transfusion reaction perspective, in the setting of COVID-19. Further studies are needed to confirm the clinical significance of ABO group B, age, and predisposing disease severity in the incidence of transfusion reaction events.


Subject(s)
COVID-19/therapy , SARS-CoV-2/pathogenicity , Aged , Blood Transfusion , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , Retrospective Studies , Transfusion Reaction , COVID-19 Serotherapy
10.
Immunity ; 53(6): 1230-1244.e5, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33096040

ABSTRACT

Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.


Subject(s)
B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Orthomyxoviridae/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Affinity , Broadly Neutralizing Antibodies/genetics , Cross Reactions , Epitopes, B-Lymphocyte/immunology , Genes, Immunoglobulin , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Orthomyxoviridae/classification , Protein Domains , Somatic Hypermutation, Immunoglobulin
11.
Clin Transplant ; 34(12): e14089, 2020 12.
Article in English | MEDLINE | ID: mdl-32918761

ABSTRACT

Solid organ transplant (SOT) recipients may be at higher risk for poor outcomes with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Convalescent plasma is an investigational therapy that may benefit immunosuppressed patients by providing passive immunity. Convalescent plasma was administered to hospitalized patients with coronavirus disease-2019 (COVID-19) at an academic transplant center in New York City. Eligible patients were hospitalized and required to have positive nasopharyngeal polymerase chain reaction (PCR) diagnosis of SARS-CoV-2 infection, be at least 18 years old, and have either dyspnea, blood oxygen saturation ≤ 93% on ambient air, respiratory frequency ≥ 30 breaths/min, partial pressure of arterial oxygen to fraction of inspired oxygen ratio < 300, or lung infiltrates > 50%. Thirteen SOT recipients received convalescent plasma from April 9, 2020, to May 17, 2020. The median time from symptom onset to plasma infusion was 8 days. Eight of 13 patients (62%) had de-escalating oxygenation support by day 7 post-convalescent plasma. Nine (69%) patients were discharged, 1 (7%) patients remain hospitalized, and 3 (23%) patients died. This series supports the need for additional studies on convalescent plasma use in SOT recipients with COVID-19 to better determine efficacy and identify patients who are likely to benefit.


Subject(s)
COVID-19/therapy , Organ Transplantation , Postoperative Complications/therapy , Adult , Aged , COVID-19/etiology , Female , Humans , Immunization, Passive , Male , Middle Aged , New York City , Treatment Outcome , COVID-19 Serotherapy
12.
Nat Med ; 26(11): 1708-1713, 2020 11.
Article in English | MEDLINE | ID: mdl-32934372

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a new human disease with few effective treatments1. Convalescent plasma, donated by persons who have recovered from COVID-19, is the acellular component of blood that contains antibodies, including those that specifically recognize SARS-CoV-2. These antibodies, when transfused into patients infected with SARS-CoV-2, are thought to exert an antiviral effect, suppressing virus replication before patients have mounted their own humoral immune responses2,3. Virus-specific antibodies from recovered persons are often the first available therapy for an emerging infectious disease, a stopgap treatment while new antivirals and vaccines are being developed1,2. This retrospective, propensity score-matched case-control study assessed the effectiveness of convalescent plasma therapy in 39 patients with severe or life-threatening COVID-19 at The Mount Sinai Hospital in New York City. Oxygen requirements on day 14 after transfusion worsened in 17.9% of plasma recipients versus 28.2% of propensity score-matched controls who were hospitalized with COVID-19 (adjusted odds ratio (OR), 0.86; 95% confidence interval (CI), 0.75-0.98; chi-square test P value = 0.025). Survival also improved in plasma recipients (adjusted hazard ratio (HR), 0.34; 95% CI, 0.13-0.89; chi-square test P = 0.027). Convalescent plasma is potentially effective against COVID-19, but adequately powered, randomized controlled trials are needed.


Subject(s)
COVID-19/pathology , COVID-19/therapy , Adult , Aged , Antibodies, Viral/blood , COVID-19/epidemiology , Case-Control Studies , Female , Humans , Immunization, Passive , Male , Middle Aged , Pandemics , Propensity Score , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Treatment Outcome , COVID-19 Serotherapy
14.
Cancer Med ; 9(22): 8571-8578, 2020 11.
Article in English | MEDLINE | ID: mdl-32945149

ABSTRACT

BACKGROUND: Patients with malignancy are particularly vulnerable to infection with Severe Acute Respiratory Disease-Coronavirus-2 (SARS-CoV-2) given their immunodeficiency secondary to their underlying disease and cancer-directed therapy. We report a case series of patients with cancer who received convalescent plasma, an investigational therapy for severe Coronavirus Disease 2019 (COVID-19). METHODS: Patients with cancer were identified who received convalescent plasma. Enrolled patients had confirmed COVID-19 with severe or life-threatening disease and were transfused with convalescent plasma from donors with a SARS-CoV-2 anti-spike antibody titer of ≥ 1:320 dilution. Oxygen requirements and clinical outcomes of interests were captured as well as laboratory parameters at baseline and 3 days after treatment. RESULTS: We identified 24 patients with cancer, 14 of whom had a hematological malignancy, who were treated with convalescent plasma. Fifteen patients (62.5%) were on cancer-directed treatment at the time of COVID-19 infection. After a median of hospital duration of 9 days, 13 patients (54.2%) had been discharged home, 1 patient (4.2%) was still hospitalized, and 10 patients had died (41.7%). Non-intubated patients, particularly those on nasal cannula alone, had favorable outcomes. Three mild febrile non-hemolytic transfusion reactions were observed. C-reactive protein significantly decreased after 3 days of treatment, while other laboratory parameters including ferritin and D-dimer remained unchanged. CONCLUSIONS: Convalescent plasma may be a promising therapy in cancer patients with COVID-19.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Hospitalization/statistics & numerical data , Neoplasms/therapy , Pneumonia, Viral/complications , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Humans , Immunization, Passive , Male , Middle Aged , Neoplasms/epidemiology , Neoplasms/virology , Pandemics , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Prognosis , Risk Factors , SARS-CoV-2 , Survival Rate , United States/epidemiology , COVID-19 Serotherapy
15.
J Infect Dis ; 222(10): 1629-1634, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32860510

ABSTRACT

More than 24 million infections with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were confirmed globally by September 2020. While polymerase chain reaction-based assays are used for diagnosis, there is a need for high-throughput, rapid serologic methods. A Luminex binding assay was developed and used to assess simultaneously the presence of coronavirus disease 2019 (COVID-19)-specific antibodies in human serum and plasma. Clear differentiation was achieved between specimens from infected and uninfected subjects, and a wide range of serum/plasma antibody levels was delineated in infected subjects. All 25 specimens from 18 patients with COVID-19 were positive in the assays with both the trimeric spike and the receptor-binding domain proteins. None of the 13 specimens from uninfected subjects displayed antibodies to either antigen. There was a highly statistically significant difference between the antibody levels of COVID-19-infected and -uninfected specimens (P < .0001). This high-throughput antibody assay is accurate, requires only 2.5 hours, and uses 5 ng of antigen per test.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , High-Throughput Screening Assays/methods , Pneumonia, Viral/diagnosis , Spike Glycoprotein, Coronavirus/immunology , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Coronavirus Infections/virology , Data Accuracy , Humans , Longitudinal Studies , Pandemics , Pneumonia, Viral/virology , Polymerase Chain Reaction , Protein Domains/immunology , Recombinant Proteins/immunology , SARS-CoV-2
16.
medRxiv ; 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32511441

ABSTRACT

SARS-Cov-2 (severe acute respiratory disease coronavirus 2), which causes Coronavirus Disease 2019 (COVID19) was first detected in China in late 2019 and has since then caused a global pandemic. While molecular assays to directly detect the viral genetic material are available for the diagnosis of acute infection, we currently lack serological assays suitable to specifically detect SARS-CoV-2 antibodies. Here we describe serological enzyme-linked immunosorbent assays (ELISA) that we developed using recombinant antigens derived from the spike protein of SARS-CoV-2. Using negative control samples representing pre-COVID 19 background immunity in the general adult population as well as samples from COVID19 patients, we demonstrate that these assays are sensitive and specific, allowing for screening and identification of COVID19 seroconverters using human plasma/serum as early as two days post COVID19 symptoms onset. Importantly, these assays do not require handling of infectious virus, can be adjusted to detect different antibody types and are amendable to scaling. Such serological assays are of critical importance to determine seroprevalence in a given population, define previous exposure and identify highly reactive human donors for the generation of convalescent serum as therapeutic. Sensitive and specific identification of coronavirus SARS-Cov-2 antibody titers may, in the future, also support screening of health care workers to identify those who are already immune and can be deployed to care for infected patients minimizing the risk of viral spread to colleagues and other patients.

17.
Nat Med ; 26(7): 1033-1036, 2020 07.
Article in English | MEDLINE | ID: mdl-32398876

ABSTRACT

Here, we describe a serological enzyme-linked immunosorbent assay for the screening and identification of human SARS-CoV-2 seroconverters. This assay does not require the handling of infectious virus, can be adjusted to detect different antibody types in serum and plasma and is amenable to scaling. Serological assays are of critical importance to help define previous exposure to SARS-CoV-2 in populations, identify highly reactive human donors for convalescent plasma therapy and investigate correlates of protection.


Subject(s)
Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Seroconversion , Adult , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Case-Control Studies , Coronavirus Infections/blood , Coronavirus Infections/therapy , Coronavirus Infections/virology , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive , Longitudinal Studies , Middle Aged , Neutralization Tests , Pandemics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Young Adult , COVID-19 Serotherapy
18.
NPJ Vaccines ; 4: 31, 2019.
Article in English | MEDLINE | ID: mdl-31341648

ABSTRACT

Current seasonal influenza virus vaccines only provide limited, short-lived protection, and antigenic drift in the hemagglutinin surface glycoprotein necessitates their annual re-formulation and re-administration. To overcome these limitations, universal vaccine strategies that aim at eliciting broadly protective antibodies to conserved epitopes of the hemagglutinin show promise for protecting against diverse and drifted influenza viruses. Here a vaccination strategy that focuses antibody responses to conserved epitopes of the H3 hemagglutinin is described. The approach is based on antigenic silencing of the immunodominant major antigenic sites of an H3 protein from 2014 by replacing them with corresponding sequences of exotic avian hemagglutinins, yielding "mosaic" hemagglutinins. In mice, vaccination with inactivated viruses expressing mosaic hemagglutinins induced highly cross-reactive antibodies against the H3 stalk domain that elicited Fc-mediated effector functions in vitro. In addition, the mosaic viruses elicited head-specific antibodies with neutralizing and hemagglutination-inhibiting activity against recent H3N2 viruses in vitro. Immune sera protected mice from heterologous challenge with viruses carrying H3 proteins from 1968 and 1982, whereas immune sera generated with a seasonal vaccine did not protect. Consequently, the mosaic vaccination approach provides a promising avenue toward a universal influenza virus vaccine.

19.
J Virol ; 93(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30381487

ABSTRACT

The influenza B virus hemagglutinin contains four major antigenic sites (the 120 loop, the 150 loop, the 160 loop, and the 190 helix) within the head domain. These immunodominant antigenic sites are the main targets of neutralizing antibodies and are subject to antigenic drift. Yet little is known about the specific antibody responses toward each site in terms of antibody prevalence and hemagglutination inhibition activity. In this study, we used modified hemagglutinins of influenza B virus which display only one or none of the major antigenic sites to measure antibody responses toward the classical as well as the noncanonical epitopes in mice, ferrets, and humans. With our novel reagents, we found that both hemagglutination inhibition antibodies and total IgGs were mostly induced by the major antigenic sites. However, in human adults, we observed high hemagglutination inhibition antibody responses toward the noncanonical epitopes. By stratifying the human samples into age groups, we found that the noncanonical antibody responses appeared to increase with age.IMPORTANCE This study dissected the specific antibody responses toward the major antigenic sites and the noncanonical epitopes of influenza B virus hemagglutinin in animals and humans using novel reagents. These findings will guide the design of the next generation of influenza virus vaccines.


Subject(s)
Antibodies, Neutralizing/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza B virus/immunology , Influenza, Human/immunology , Adult , Age Factors , Aged , Animals , Antibodies, Viral/metabolism , Child, Preschool , Dogs , Ferrets , Genetic Drift , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunodominant Epitopes/immunology , Infant , Influenza B virus/genetics , Influenza Vaccines/immunology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Mice , Middle Aged , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...