Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.831
Filter
1.
J Environ Sci (China) ; 147: 607-616, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003075

ABSTRACT

This study embarks on an explorative investigation into the effects of typical concentrations and varying particle sizes of fine grits (FG, the involatile portion of suspended solids) and fine debris (FD, the volatile yet unbiodegradable fraction of suspended solids) within the influent on the mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio of an activated sludge system. Through meticulous experimentation, it was discerned that the addition of FG or FD, the particle size of FG, and the concentration of FD bore no substantial impact on the pollutant removal efficiency (denoted by the removal rate of COD and ammonia nitrogen) under constant operational conditions. However, a notable decrease in the MLVSS/MLSS ratio was observed with a typical FG concentration of 20 mg/L, with smaller FG particle sizes exacerbating this reduction. Additionally, variations in FD concentrations influenced both MLSS and MLVSS/MLSS ratios; a higher FD concentration led to an increased MLSS and a reduced MLVSS/MLSS ratio, indicating FD accumulation in the system. A predictive model for MLVSS/MLSS was constructed based on quality balance calculations, offering a tool for foreseeing the MLVSS/MLSS ratio under stable long-term influent conditions of FG and FD. This model, validated using data from the BXH wastewater treatment plant (WWTP), showcased remarkable accuracy.


Subject(s)
Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Particle Size , Water Pollutants, Chemical/analysis
2.
Clin Neurol Neurosurg ; 244: 108463, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39053321

ABSTRACT

OBJECTIVE: This study assesses the safety and efficacy of tirofiban for patients with large vessel occlusion stroke after intravenous thrombolysis. METHODS: This study data was from SUSTAIN, DEVT, and RESCUE BT trials. According to whether the use of tirofiban who underwent endovascular treatment and preceding intravenous thrombolysis was divided into the tirofiban group and the no-tirofiban group. The safety outcomes were symptomatic intracranial hemorrhage, any intracranial hemorrhage within 48 h, and 3-month mortality. The efficacy outcome was defined as a score of 0-2 on the modified Rankin Scale scores at 3 months. RESULTS: A total of 372 patients with intravenous thrombolysis were included in these SUSTAIN, DEVT, and RESCUE BT trials. Adjusted multivariate analysis showed that tirofiban with intravenous thrombolysis was not associated with symptomatic intracranial hemorrhage (aOR, 0.87; 95 % CI, 0.49-1.57; P=0.65), any intracranial hemorrhage within 48 h (aOR, 1.00; 95 % CI, 0.60-1.66; P=1.00), 3-month mortality (aOR, 1.10; 95 % CI, 0.56-2.19; P=0.78) and 3-month modified Rankin Scale scores 0-2 (aOR, 0.72; 95 % CI, 0.42-1.25; P=0.25) in patients with acute large vessel occlusion. In the subgroup analysis, we found that tirofiban was not recommended for females (aOR, 0.34; 95 % CI, 0.12-0.93), baseline Alberta Stroke Program Early CT Score≤9 (aOR, 0.37; 95 % CI, 0.18-0.76), and cardiogenic embolism (aOR, 0.36; 95 % CI, 0.14-0.97). CONCLUSION: Tirofiban combined with intravenous thrombolysis in patients with acute large vessel occlusion may be safe. Further studies need to confirm the effectiveness of tirofiban after intravenous thrombolysis in different stroke etiology.

3.
Chem Sci ; 15(29): 11166-11187, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39055001

ABSTRACT

Carbon dioxide (CO2) electrolysis to carbon monoxide (CO) is a very promising strategy for economically converting CO2, with high-temperature solid oxide electrolysis cells (SOECs) being regarded as the most suitable technology due to their high electrode reaction kinetics and nearly 100% faradaic efficiency, while their practical application is highly dependent on the performance of their fuel electrode (cathode), which significantly determines the cell activity, selectivity, and durability. In this review, we provide a timely overview of the recent progress in the understanding and development of fuel electrodes, predominantly based on perovskite oxides, for CO2 electrochemical reduction to CO (CO2RR) in SOECs. Initially, the current understanding of the reaction mechanisms over the perovskite electrocatalyst for CO synthesis from CO2 electrolysis in SOECs is provided. Subsequently, the recent experimental advances in fuel electrodes are summarized, with importance placed on perovskite oxides and their modification, including bulk doping with multiple elements to introduce high entropy effects, various methods for realizing surface nanoparticles or even single atom catalyst modification, and nanocompositing. Additionally, the recent progress in numerical modeling-assisted fast screening of perovskite electrocatalysts for high-temperature CO2RR is summarized, and the advanced characterization techniques for an in-depth understanding of the related fundamentals for the CO2RR over perovskite oxides are also reviewed. The recent pro-industrial application trials of the CO2RR in SOECs are also briefly discussed. Finally, the future prospects and challenges of SOEC cathodes for the CO2RR are suggested.

4.
Org Lett ; 26(29): 6225-6229, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39004828

ABSTRACT

We report herein a deoxygenative radical multicomponent reaction involving alcohols, aryl alkenes, and cyanopyridine under photoredox conditions. This method is photoredox-neutral, suitable for late-stage modification, and compatible with a wide array of alcohols as alkyl radical sources, including primary, secondary, and tertiary alcohols. This reaction comprises a radical relay mechanism encompassing the Giese addition of aryl alkenes by alkyl radicals, followed by the decyanative pyridination of benzyl radicals.

5.
Aging (Albany NY) ; 16(13): 10765-10783, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38985127

ABSTRACT

The calcitonin receptor (CALCR) is an essential protein for maintaining calcium homeostasis and has been reported to be upregulated in numerous cancers. However, the molecular role of CALCR in renal cell carcinoma (RCC) is not well understood. In this study, we identified the overexpression of CALCR in RCC using human tissue chip by immunohistochemical (IHC) staining, which was associated with a poor prognosis. Functionally, CALCR depletion inhibited RCC cell proliferation and migration, and induced cell apoptosis and cycle arrest. CALCR is also essential for in vivo tumor formation. Mechanistically, we demonstrated that CALCR could directly bind to CD44, preventing CD44 protein degradation and thereby upregulating CD44 expression. Moreover, a deficiency in CD44 significantly attenuated the promoting role of CALCR on RCC cell proliferation, migration and anti-apoptosis capacities. Collectively, CALCR exacerbates RCC progression via stabilizing CD44, offering a fundamental basis for considering CALCR as a potential therapeutic target for RCC patients.


Subject(s)
Apoptosis , Carcinoma, Renal Cell , Cell Proliferation , Disease Progression , Hyaluronan Receptors , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Cell Line, Tumor , Animals , Cell Movement , Mice , Male , Gene Expression Regulation, Neoplastic , Female
6.
NPJ Biofilms Microbiomes ; 10(1): 59, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034349

ABSTRACT

The dominant bacteria in the hindgut of calves play an important role in their growth and health, which could even lead to lifelong consequences. However, the identification of core probiotics in the hindgut and its mechanism regulating host growth remain unclear. Here, a total of 1045 fecal samples were analyzed by 16S rRNA gene sequencing from the 408 Holstein dairy calves at the age of 0, 14, 28, 42, 56, and 70 days to characterize the dynamic changes of core taxa. Moreover, the mechanisms of nutrient metabolism of calf growth regulated by core bacteria were investigated using multi-omics analyses. Finally, fecal microbiota transplantation (FMT) in mice were conducted to illustrate the potential beneficial effects of core bacteria. Four calf enterotypes were identified and enterotypes dominated by Bifidobacterium and Oscillospiraceae_UCG-005 were representative. The frequency of enterotype conversion shifted from variable to stable. The close relationship observed between phenotype and enterotype, revealing a potential pro-growth effect of Bifidobacterium, might be implemented by promoting the use of carbohydrate, activating the synthesis of volatile fatty acids, amino acids and vitamin B6, and inhibiting methane production in the hindgut. The FMT results indicated the beneficial effect of Bifidobacterium on host growth and hindgut development. These results support the notion that the Bifidobacterium-dominated fecal microbiome would be an important driving force for promoting the host growth in the early life. Our findings provide new insights into the potential probiotic mining and application strategies to promote the growth of young animals or improve their growth retardation.


Subject(s)
Bifidobacterium , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Feces/microbiology , Cattle , RNA, Ribosomal, 16S/genetics , Bifidobacterium/genetics , Bifidobacterium/growth & development , Mice , Fecal Microbiota Transplantation/methods , Phenotype , Probiotics/administration & dosage , Phylogeny , DNA, Bacterial/genetics
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124749, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38981291

ABSTRACT

Coal type identification is the basic work of coal quality inspection, which is of great significance to the normal operation of power generation, metallurgy, and other industries. The traditional coal-type identification method is complicated and requires comprehensive determination of various chemical parameters to obtain more accurate analysis results. Hyperspectral detection and analysis technology has the advantages of being simple, fast, nondestructive, and safe, and is widely used in a variety of fields. In this study, typical spectral feature parameters of coal samples were extracted based on hyperspectral data, and the parameters' sensitivity to coal types was explored using one-way ANOVA. The results showed that the coal spectral feature parameters of DI1-2µm and AD2.2µm significantly differed with coal species, indicating that the two parameters were class-sensitive features. When DI1-2µm and AD2.2µm were used to construct the Fisher discriminant model, the coal types could be discriminated with high accuracy. At the same time, the correlation between the extracted spectral feature parameters and the physicochemical parameters of bituminous coal and anthracite was analyzed. The results showed that there was a certain basis for using the extracted spectral feature parameters as the sensitive spectral characteristics of the model, and the application potential of the spectral characteristics of coal in the nondestructive prediction analysis of coal parameters was further discussed.

8.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000392

ABSTRACT

Preeclampsia (PE) is a pregnancy-specific disorder associated with shallow invasion of the trophoblast cells and insufficient remodeling of the uterine spiral artery. Protein glycosylation plays an important role in trophoblast cell invasion. However, the glycobiological mechanism of PE has not been fully elucidated. In the current study, employing the Lectin array, we found that soybean agglutinin (SBA), which recognizes the terminal N-acetylgalactosamine α1,3-galactose (GalNAc α1,3 Gal) glycotype, was significantly increased in placental trophoblast cells from PE patients compared with third-trimester pregnant controls. Upregulating the expression of the key enzyme α1,3 N-acetylgalactosaminyl transferase (GTA) promoted the biosynthesis of terminal GalNAc α1,3 Gal and inhibited the migration/invasion of HTR8/SVneo trophoblast cells. Moreover, the methylation status of GTA promoter in placental tissues from PE patients was lower than that in the third trimester by methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) analysis. Elevated GTA expression in combination with the DNA methylation inhibitor 5-azacytidine (5-AzaC) treatment increased the glycotype biosynthesis and impaired the invasion potential of trophoblast cells, leading to preeclampsia. This study suggests that elevated terminal GalNAc α1,3 Gal biosynthesis and GTA expression may be applied as the new markers for evaluating placental function and the auxiliary diagnosis of preeclampsia.


Subject(s)
Cell Movement , N-Acetylgalactosaminyltransferases , Pre-Eclampsia , Trophoblasts , Humans , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Trophoblasts/metabolism , Trophoblasts/pathology , Female , Pregnancy , N-Acetylgalactosaminyltransferases/metabolism , N-Acetylgalactosaminyltransferases/genetics , Adult , DNA Methylation , Promoter Regions, Genetic , Cell Line , Placenta/metabolism
9.
J Chem Phys ; 161(3)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39007487

ABSTRACT

The conductivity type is one of the most fundamental transport properties of semiconductors, which is usually identified by fabricating the field-effect transistor, the Hall-effect device, etc. However, it is challenging to obtain an Ohmic contact if the sample is down to nanometer-scale because of the small size and intrinsic heterogeneity. Noncontact dielectric force microscopy (DFM) can identify the conductivity type of the sample by applying a DC gate voltage to the tip, which is effective in tuning the accumulation or depletion of charge carriers. Here, we further developed a dual-modulation DFM, which simplified the conductivity type identification from multiple scan times under different DC gate voltages to a single scan under an AC gate voltage. Taking single-walled carbon nanotubes as testing samples, the semiconducting-type sample exhibits a more significant charge carrier accumulation/depletion under each half-period of the AC gate voltage than the metallic-type sample due to the stronger rectification effect. The charge carrier accumulation or depletion of the p-type sample is opposite to that of the n-type sample at the same half-period of the AC gate voltage because of the reversed charge carrier type.

10.
Article in English | MEDLINE | ID: mdl-39037435

ABSTRACT

Coral reefs are declining due to the rising seawater temperature. Bacteria within and surrounding corals play key roles in maintaining the homeostasis of the coral holobiont. Research on coral-related bacteria could provide benefits for coral reef restoration. During the isolation of coral-associated bacteria, a Gram-stain-negative, motile bacterium (D5M38T) was isolated from seawater surrounding corals in Daya Bay, Shenzhen, PR China. Phylogenetic analysis revealed that strain D5M38T represents a novel species in the genus Cognatishimia. The temperature range for strain D5M38T growth was 10-40 °C, and the optimum temperature was 37 °C. The salinity range for the growth of this isolate was from 0 to 4.0 %, with an optimal salinity level of 0.5 %. The pH range necessary for strain D5M38T growth was between pH 5.0 and 9.0, with an optimal pH being 7.5. The predominant fatty acid was summed feature 8 (65.0 %). The major respiratory quinone was Q-10. The DNA G+C content was 56.8 %. The genome size was 3.88 Mb. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strain D5M38T and its two closest neighbours, Cognatishimia activa LMG 29900T and Cognatishimia maritima KCTC 23347T, were 73.2/73.6%, 73.2/73.6% and 19.7/19.5%, respectively. Strain D5M38T was clearly distinct from its closest neighbours C. activa LMG 29900T and C. maritima KCTC 23347T, with 16S rRNA gene sequence similarity values of 97.5 and 97.3 %, respectively. The phylogenetic analysis, along with the ANI, AAI, and dDDH values, demonstrated that strain D5M38T is a member of the genus Cognatishimia, and is distinct from the other two recognized species within this genus. The physiological, biochemical and chemotaxonomic characteristics also supported the species novelty of strain D5M38T. Thus, strain D5M38T is considered to be classified as representing a novel species in the genus Cognatishimia, for which the name Cognatishimia coralii sp. nov. is proposed. The type strain is D5M38T (=MCCC 1K08692T=KCTC 8160T).


Subject(s)
Anthozoa , Bacterial Typing Techniques , Base Composition , Coral Reefs , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Anthozoa/microbiology , Seawater/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Animals , China , Ubiquinone/analogs & derivatives , Nucleic Acid Hybridization
11.
Surg Endosc ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009729

ABSTRACT

BACKGROUND: To evaluate the perioperative, oncological, and functional outcomes of reproductive organ-preserving radical cystectomy (ROPRC) compared to standard radical cystectomy (SRC) in the treatment of female bladder cancer. METHODS: A systematic search was conducted in November 2023 across several scientific databases. We executed a systematic review and cumulative meta-analysis of the primary outcomes of interest, adhering to the PRISMA and AMSTAR guidelines. The study was registered in PROSPERO (CRD42024501522). RESULTS: The meta-analysis included 10 studies with a total of 2015 participants. ROPRC showed a significant reduction in operative time and postoperative fasting period compared to SRC (MD - 45.69, 95% CI - 78.91 ~ - 12.47, p = 0.007, and MD - 0.69, 95% CI - 1.25 ~ - 0.13, p = 0.02, respectively). Functional outcomes, both daytime continence rate (OR 4.94, 95% CI 1.53 ~ 15.91, p = 0.008) and nighttime continence rate (OR 5.91, 95% CI 1.94 ~ 18.01, p = 0.002), and sexual function measured by the Female Sexual Function Index (MD 5.72, 95% CI 0.19 ~ 11.26, p = 0.04), were significantly improved in the ROPRC group. There were no significant differences between ROPRC and SRC in terms of estimated blood loss, length of hospital stay, overall postoperative complications, minor complications or major complications. Oncologically, both procedures showed comparable outcomes with no significant differences in positive surgical margins, tumor recurrence rates, overall survival, cancer-specific survival, recurrence-free survival, or progression-free survival. CONCLUSIONS: ROPRC is a viable and effective alternative to SRC in female bladder cancer patients, offering enhanced functional outcomes and similar oncological safety. These findings suggest that ROPRC can improve the quality of life in female bladder cancer patients without compromising the efficacy of cancer treatment.

12.
Mar Pollut Bull ; 206: 116669, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38991609

ABSTRACT

Dichlorvos (DDVP) is a widely used organophosphorus pesticide (OPP) that has been frequently detected in the marine environment of China. Water quality criteria (WQC) is however not available for this emergent pollutant in the marine environment, which hinders its ecological risk assessment. This study, therefore, screened toxicity values of DDVP and conducted toxicity tests on six marine species to supplement toxicity data. The WQC for DDVP was derived with the species sensitivity distribution (SSD) methodology, based on which the ecological risk of DDVP in the seawater of China was assessed. The results showed that the recommended short-term (SWQC) and long-term water quality criteria (LWQC) for DDVP were 1.47 and 0.0521 µg/L, respectively. Most marine waters of China showed low or negligible risk (HQ < 1, ORP < 2 %), whereas some estuarine waters warrant further concern due to higher risk. This study provides the scientific basis for seawater quality standard formulation and ecological risk management for DDVP.

13.
Exp Neurol ; : 114880, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972370

ABSTRACT

Research has revealed that prolonged or repeated exposure to isoflurane, a common general anesthetic, can lead to cognitive and behavioral deficiencies, particularly in early life. The brain contains a wealth of LanCL1, an antioxidant enzyme that is thought to mitigate oxidative stress. Nevertheless, its precise function in mammals remains uncertain. This study uncovered a decrease in the expression of LanCL1 due to prolonged isoflurane anesthesia, accompanied by anesthesia-induced neurotoxicity in vivo and in vitro. To better understand LanCL1's essential function, LanCL1 overexpressing adenoviruses were employed to increase LanCL1 levels. The outcomes were analyzed using western blot and immunofluorescence methods. According to the findings, extended exposure to isoflurane anesthesia may lead to developmental neurotoxicity in vivo and in vitro. The anesthesia-induced neurotoxicity was concomitant with a reduction in LanCL1 expression. Moreover, the study revealed that overexpression of LanCL1 can mitigate the neurotoxic effects of isoflurane anesthesia, resulting in improved synaptic growth, less reactive oxygen species enhanced cell viability and rescued memory deficits in the developing brain. In conclusion, prolonged anesthesia-induced LanCL1 deficiency could be responsible for neurotoxicity and subsequent cognitive impairments in the developing brain. Additional LanCL1 counteracts this neurotoxic effect and protects neurons from long-term isoflurane anesthesia.

14.
Adv Funct Mater ; 34(19)2024 May 10.
Article in English | MEDLINE | ID: mdl-39022395

ABSTRACT

High-quality-factor microring resonators are highly desirable in many applications. Fabricating a microring resonator typically requires delicate instruments to ensure a smooth side wall of waveguides and 100-nm critical feature size in the coupling region. In this work, we demonstrate a new method "damascene soft nanoimprinting lithography" that can create high-fidelity waveguide by simply backfill an imprinted cladding template with a high refractive index polymer core. This method can easily realize high Q-factor polymer microring resonators (e.g., ~5 x 105 around 770 nm wavelength) without the use of any expensive instruments and can be conducted in a normal lab environment. The high Q-factors can be attributed to the residual layer-free feature and controllable meniscus cross-section profile of the filled polymer core. Furthermore, the new method is compatible with different polymers, yields low fabrication defects, enables new functionalities, and allows flexible substrate. These benefits can broaden the applicability of the fabricated microring resonator.

15.
J Hazard Mater ; 477: 135246, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39032177

ABSTRACT

The Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is the only freshwater cetacean found in China. However, per- and polyfluoroalkyl substances (PFASs) risks in YFPs remain unclear. In this study, legacy PFASs, their precursors and alternatives, were determined in YFP muscles (n = 32), liver (n = 29), kidney (n = 24), skin (n = 5), and blubbers (n = 25) collected from Poyang Lake (PL) and Yangtze River (YR) between 2017 and 2023. Perfluorooctane sulfonic acid (PFOS) was the predominant PFAS in all YFP tissues, with a median hepatic concentration of 1700 ng/g wet weight, which is higher than that in other finless porpoises worldwide. PFOS, chlorinated polyfluorinated ether sulfonates (Cl-PFESAs), and perfluoroalkane sulfonamides concentrations in YFP livers from PL were significantly higher than those from YR (p < 0.05); however, the opposite was observed for hexafluoropropylene oxide acids. Biomagnification and trophic magnification factors (BMF and TMF, respectively) of most PFASs in the YFP food web were > 1. Perfluoroheptane sulfonic acid had the highest BMF value (99), followed by 6:2 Cl-PFESA (94) and PFOS (81). The TMFmuscle and TMFliver values of the total PFASs were 3.4 and 6.6, respectively, and were significantly positively correlated with the fluorinated carbon chain length (p < 0.01). In addition, up to 62 % of the hazard quotients for 6:2 Cl-PFESA were > 1, which was higher than that of PFOS (48 %), suggesting a high hepatotoxicity of 6:2 Cl-PFESA to YFPs. Bioaccumulation and biotoxicity of legacy and emerging alternatives in aquatic organisms continue to be a concern, especially for underscoring the vulnerability of the long-lived and endangered species.

16.
Microbiol Spectr ; : e0062524, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980032

ABSTRACT

The ordered mesoporous ZnO was successfully synthesized using the template method in this article, and Bi ions were etched into ZnO to form two-dimensional nanoflower structures of Bi12ZnO20 with NA3SSA as a guiding agent. The crystal structure, morphology, and optical properties of the photocatalyst were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy-dispersive spectrometer(EDS), and ultraviolet-visible diffuse reflectance spectrum (UV-vis DRS). Under illumination conditions, the obtained materials exhibited excellent bactericidal ability against both gram-positive and gram-negative bacteria, as well as effective inhibition against fungi. Among them, the bactericidal effect of Pseudomonas aeruginosa was found to be the most rapid, achieving a sterilization rate of 100% within 30 min of light irradiation. Even after three cycles of antibacterial activity testing, the Bi12ZnO20 material still demonstrated good photocatalytic performance. The nanoflower-shaped materials provide an enhanced fluid adsorption capacity and more active centers for photocatalytic reactions while also improving light absorption capacity, photogenerated electron-hole separation efficiency, and electron transport efficiency. The cytotoxicity assessment of Bi12ZnO20 revealed no significant toxic effects. Therefore, this study presents a nanoflower-shaped material with highly efficient photocatalytic antibacterial properties for applications in production and daily life; it holds significant importance in eliminating harmful bacteria and plays a crucial role in environmental protection. IMPORTANCE: The flower-shaped photocatalytic material Bi12ZnO20, consisting of nanoparticles, was successfully synthesized in this study. Rigorous antibacterial experiments were conducted on various fungi using the material, yielding excellent results. Furthermore, the application of this material for antibacterial treatment of livestock and poultry manure sewage in real-life scenarios demonstrated remarkable efficacy.

17.
Nat Commun ; 15(1): 5659, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969646

ABSTRACT

Fully targeted mRNA therapeutics necessitate simultaneous organ-specific accumulation and effective translation. Despite some progress, delivery systems are still unable to fully achieve this. Here, we reformulate lipid nanoparticles (LNPs) through adjustments in lipid material structures and compositions to systematically achieve the pulmonary and hepatic (respectively) targeted mRNA distribution and expression. A combinatorial library of degradable-core based ionizable cationic lipids is designed, following by optimisation of LNP compositions. Contrary to current LNP paradigms, our findings demonstrate that cholesterol and phospholipid are dispensable for LNP functionality. Specifically, cholesterol-removal addresses the persistent challenge of preventing nanoparticle accumulation in hepatic tissues. By modulating and simplifying intrinsic LNP components, concurrent mRNA accumulation and translation is achieved in the lung and liver, respectively. This targeting strategy is applicable to existing LNP systems with potential to expand the progress of precise mRNA therapy for diverse diseases.


Subject(s)
Lipids , Liver , Lung , Nanoparticles , RNA, Messenger , RNA, Messenger/metabolism , RNA, Messenger/genetics , Nanoparticles/chemistry , Animals , Liver/metabolism , Lung/metabolism , Lipids/chemistry , Humans , Mice , Cholesterol/metabolism , Cholesterol/chemistry , Protein Biosynthesis , Mice, Inbred C57BL , Phospholipids/chemistry , Phospholipids/metabolism , Liposomes
18.
Nat Commun ; 15(1): 5565, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956062

ABSTRACT

Long-term treatment of myocardial infarction is challenging despite medical advances. Tissue engineering shows promise for MI repair, but implantation complexity and uncertain outcomes pose obstacles. microRNAs regulate genes involved in apoptosis, angiogenesis, and myocardial contraction, making them valuable for long-term repair. In this study, we find downregulated miR-199a-5p expression in MI. Intramyocardial injection of miR-199a-5p into the infarcted region of male rats revealed its dual protective effects on the heart. Specifically, miR-199a-5p targets AGTR1, diminishing early oxidative damage post-myocardial infarction, and MARK4, which influences long-term myocardial contractility and enhances cardiac function. To deliver miR-199a-5p efficiently and specifically to ischemic myocardial tissue, we use CSTSMLKAC peptide to construct P-MSN/miR199a-5p nanoparticles. Intravenous administration of these nanoparticles reduces myocardial injury and protects cardiac function. Our findings demonstrate the effectiveness of P-MSN/miR199a-5p nanoparticles in repairing MI through enhanced contraction and anti-apoptosis. miR199a-5p holds significant therapeutic potential for long-term repair of myocardial infarction.


Subject(s)
MicroRNAs , Myocardial Infarction , Nanoparticles , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/administration & dosage , Animals , Myocardial Infarction/genetics , Male , Rats , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Rats, Sprague-Dawley , Apoptosis/drug effects , Myocardium/metabolism , Myocardium/pathology , Disease Models, Animal , Myocardial Contraction/drug effects , Administration, Intravenous , Myocardial Ischemia/genetics , Myocardial Ischemia/therapy , Myocardial Ischemia/metabolism
19.
Research (Wash D C) ; 7: 0410, 2024.
Article in English | MEDLINE | ID: mdl-38966747

ABSTRACT

Amino acid bioconjugation technology has emerged as a pivotal tool for linking small-molecule fragments with proteins, antibodies, and even cells. The study in Nature by Chang and Toste introduces a redox-based strategy for tryptophan bioconjugation, employing N-sulfonyloxaziridines as oxidative cyclization reagents, demonstrating high efficiency comparable to traditional click reactions. Meanwhile, this tool provides feasible methods for investigating the mechanisms underlying functional tryptophan-related biochemical processes, paving the way for protein function exploration, activity-based proteomics for functional amino acid identification and characterization, and even the design of covalent inhibitors.

20.
BMC Neurol ; 24(1): 227, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956505

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the factors influencing good outcomes in patients receiving only intravenous tirofiban with endovascular thrombectomy for large vessel occlusion stroke. METHODS: Post hoc exploratory analysis using the RESCUE BT trial identified consecutive patients who received intravenous tirofiban with endovascular thrombectomy for large vessel occlusion stroke in 55 comprehensive stroke centers from October 2018 to January 2022 in China. RESULTS: A total of 521 patients received intravenous tirofiban, 253 of whom achieved a good 90-day outcome (modified Rankin Scale [mRS] 0-2). Younger age (adjusted odds ratio [aOR]: 0.965, 95% confidence interval [CI]: 0.947-0.982; p < 0.001), lower serum glucose (aOR: 0.865, 95%CI: 0.807-0.928; p < 0.001), lower baseline National Institutes of Health Stroke Scale (NIHSS) score (aOR: 0.907, 95%CI: 0.869-0.947; p < 0.001), fewer total passes (aOR: 0.791, 95%CI: 0.665-0.939; p = 0.008), shorter punctures to recanalization time (aOR: 0.995, 95%CI:0.991-0.999; p = 0.017), and modified Thrombolysis in Cerebral Infarction (mTICI) score 2b to 3 (aOR: 8.330, 95%CI: 2.705-25.653; p < 0.001) were independent predictors of good outcomes after intravenous tirofiban with endovascular thrombectomy for large vessel occlusion stroke. CONCLUSION: Younger age, lower serum glucose level, lower baseline NIHSS score, fewer total passes, shorter punctures to recanalization time, and mTICI scores of 2b to 3 were independent predictors of good outcomes after intravenous tirofiban with endovascular thrombectomy for large vessel occlusion stroke. CHINESE CLINICAL TRIAL REGISTRY IDENTIFIER: ChiCTR-IOR-17014167.


Subject(s)
Thrombectomy , Tirofiban , Humans , Tirofiban/administration & dosage , Tirofiban/therapeutic use , Male , Female , Middle Aged , Aged , Thrombectomy/methods , Treatment Outcome , Ischemic Stroke/drug therapy , Endovascular Procedures/methods , Administration, Intravenous , Stroke/drug therapy , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/therapeutic use , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL