Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 996
Filter
1.
Bioresour Bioprocess ; 11(1): 78, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095685

ABSTRACT

Astaxanthin biosynthesis in Haematococcus pluvialis is driven by energy. However, the effect of the flagella-mediated energy-consuming movement process on astaxanthin accumulation has not been well studied. In this study, the profiles of astaxanthin and NADPH contents in combination with the photosynthetic parameters with or without flagella enabled by pH shock were characterized. The results demonstrated that there was no significant alteration in cell morphology, with the exception of the loss of flagella observed in the pH shock treatment group. In contrast, the astaxanthin content in the flagella removal groups was 62.9%, 62.8% and 91.1% higher than that of the control at 4, 8 and 12 h, respectively. Simultaneously, the increased Y(II) and decreased Y(NO) suggest that cells lacking the flagellar movement process may allocate more energy towards astaxanthin biosynthesis. This finding was verified by NADPH analysis, which revealed higher levels in flagella removal cells. These results provide preliminary insights into the underlying mechanism of astaxanthin accumulation enabled by energy reassignment in movement-lacking cells.

2.
Cell Death Dis ; 15(8): 555, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090096

ABSTRACT

Resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is a significant cause of treatment failure and cancer recurrence in non-small cell lung cancer (NSCLC). Approximately 30% of patients with EGFR-activating mutations exhibit primary resistance to EGFR-TKIs. However, the potential mechanisms of primary resistance to EGFR-TKIs remain poorly understood. Recent studies have shown that increased expression of programmed death ligand-1 (PD-L1) is associated with EGFR-TKIs resistance. Therefore, the present study aimed to investigate the mechanism of PD-L1 in primary resistance to EGFR-TKIs in EGFR-mutant lung adenocarcinoma (LUAD) cells. We found that PD-L1 was associated with poor prognosis in patients with EGFR-mutant LUAD, while the combination of EGFR-TKIs with chemotherapy could improve its therapeutic efficacy. In vitro and in vivo experiments revealed that PD-L1 promoted the proliferation and autophagy and inhibited the apoptosis of LUAD cells. Mechanistic studies demonstrated that upregulation of PD-L1 was critical in inducing autophagy through the mitogen-activated protein kinase (MAPK) signaling pathway, which was beneficial for tumor progression and the development of gefitinib resistance. Furthermore, we found that gefitinib combined with pemetrexed could synergistically enhance antitumor efficacy in PD-L1-overexpression LUAD cells. Overall, our study demonstrated that PD-L1 contributed to primary resistance to EGFR-TKIs in EGFR-mutant LUAD cells, which may be mediated by inducing autophagy via the MAPK signaling pathway. These findings not only help improve the prognosis of patients with EGFR-mutant LUAD but also provide a reference for the research of other cancer types.


Subject(s)
Adenocarcinoma of Lung , Autophagy , B7-H1 Antigen , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , MAP Kinase Signaling System , Mutation , Protein Kinase Inhibitors , Humans , Autophagy/drug effects , Autophagy/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Animals , MAP Kinase Signaling System/drug effects , Cell Line, Tumor , Mutation/genetics , Mice , Mice, Nude , Female , Male , Gefitinib/pharmacology , Gefitinib/therapeutic use , Cell Proliferation/drug effects , Apoptosis/drug effects , Mice, Inbred BALB C
3.
Nature ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048830

ABSTRACT

Most cases of herpes simplex virus 1 (HSV-1) encephalitis (HSE) remain unexplained1,2. Here, we report on two unrelated people who had HSE as children and are homozygous for rare deleterious variants of TMEFF1, which encodes a cell membrane protein that is preferentially expressed by brain cortical neurons. TMEFF1 interacts with the cell-surface HSV-1 receptor NECTIN-1, impairing HSV-1 glycoprotein D- and NECTIN-1-mediated fusion of the virus and the cell membrane, blocking viral entry. Genetic TMEFF1 deficiency allows HSV-1 to rapidly enter cortical neurons that are either patient specific or derived from CRISPR-Cas9-engineered human pluripotent stem cells, thereby enhancing HSV-1 translocation to the nucleus and subsequent replication. This cellular phenotype can be rescued by pretreatment with type I interferon (IFN) or the expression of exogenous wild-type TMEFF1. Moreover, ectopic expression of full-length TMEFF1 or its amino-terminal extracellular domain, but not its carboxy-terminal intracellular domain, impairs HSV-1 entry into NECTIN-1-expressing cells other than neurons, increasing their resistance to HSV-1 infection. Human TMEFF1 is therefore a host restriction factor for HSV-1 entry into cortical neurons. Its constitutively high abundance in cortical neurons protects these cells from HSV-1 infection, whereas inherited TMEFF1 deficiency renders them susceptible to this virus and can therefore underlie HSE.

4.
Oncol Res ; 32(7): 1173-1184, 2024.
Article in English | MEDLINE | ID: mdl-38948026

ABSTRACT

Background: Inhibitor of NF-κB kinase-interacting protein (IKIP) is known to promote proliferation of glioblastoma (GBM) cells, but how it affects migration and invasion by those cells is unclear. Methods: We compared levels of IKIP between glioma tissues and normal brain tissue in clinical samples and public databases. We examined the effects of IKIP overexpression and knockdown on the migration and invasion of GBM using transwell and wound healing assays, and we compared the transcriptomes under these different conditions to identify the molecular mechanisms involved. Results: Based on data from our clinical samples and from public databases, IKIP was overexpressed in GBM tumors, and its expression level correlated inversely with survival. IKIP overexpression in GBM cells inhibited migration and invasion in transwell and wound healing assays, whereas IKIP knockdown exerted the opposite effects. IKIP overexpression in GBM cells that were injected into mouse brain promoted tumor growth but inhibited tumor invasion of surrounding tissue. The effects of IKIP were associated with downregulation of THBS1 mRNA and concomitant inhibition of THBS1/FAK signaling. Conclusions: IKIP inhibits THBS1/FAK signaling to suppress migration and invasion of GBM cells.


Subject(s)
Brain Neoplasms , Cell Movement , Focal Adhesion Kinase 1 , Glioblastoma , Neoplasm Invasiveness , Signal Transduction , Thrombospondin 1 , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Animals , Mice , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Proliferation
5.
Laryngoscope ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082625

ABSTRACT

OBJECTIVES: To investigate the efficacy and safety of carbon dioxide (CO2) laser cauterization in the treatment of pediatric congenital pyriform sinus fistula (CPSF), and to track and follow up the long-term outcome of the postoperative patients. METHODS: This retrospective study was conducted at a single center, where clinical data and follow-up information of children with CPSF who underwent CO2 laser cauterization with the assistance of a suspension laryngoscope and microscope were collected and analyzed their clinical characteristics and prognosis. Subsequently, multiple logistic regression analysis was performed to identify potential predictors of the number of laser cauterization procedures. RESULTS: A total of 238 children diagnosed with CPSF were recruited for this study, with 235 patients successfully achieving closure of the internal fistula through one or more CO2 laser cauterization procedures without recurrence. The median duration of follow-up was 6.46 (5.20, 7.64) years. Merely three patients (1.3%) developed recurrent cervical infection and eventually underwent open neck surgery. There were no instances of permanent perioperative complications throughout the follow-up. Additionally, our analysis revealed that the age at the first operation of CO2 laser cauterization was an independent risk factor associated with the number of operations. CONCLUSIONS: The CO2 laser cauterization for children with CPSF is an effective and safe treatment with a low recurrence rate and minimal complications during the follow-up period. Consequently, it is advisable to consider CO2 laser cauterization as a viable therapeutic option for managing pediatric CPSF. LEVEL OF EVIDENCE: 4 Laryngoscope, 2024.

6.
Ear Nose Throat J ; : 1455613241257353, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853413

ABSTRACT

Objectives: The study aims to retrospectively summarize the clinical features of pediatric thyroglossal duct cyst (TGDC), investigate the efficacy of the modified Sistrunk (mSis) procedure, and analyze the recurrence risks. Methods: The clinical data of 391 children with TGDC admitted to Beijing Children's Hospital affiliated Capital Medical University and Baoding Children's Hospital from March 2012 to December 2021 were retrospectively analyzed. All patients underwent cervical ultrasound for preoperative evaluation. Twenty cases had magnetic resonance imaging and 8 cases had computed tomography for further evaluation. All patients underwent the standard mSis procedure, and clinical manifestations information, surgical information, complications, and prognosis were analyzed. Results: Among the 391 TGDC cases, 118 (30.2%) had a history of recurrent neck infection and 36 (9.2%) had undergone previous neck cyst and fistula resection surgeries, initially diagnosed as neck cyst (22 cases), TGDC (12 cases), or branchial fistula (2 cases), with only 6 cases having undergone partial hyoid bone resection in the previous operation. During the 15 to 156 months of follow-up, 10 children experienced local wound infection, but no other complications were reported. The recurrence rate was 2.30%, and the recurrence time ranged from 0.5 to 34 (average, 7.2) months post surgery. In the Poisson regression model examining factors related to recurrence, the P values of the 3 factors were <.05: clearness of the lesion boundary, surgical history, and maximum diameter and the relative risk (RR) values corresponding to the 3 risk factors, such as Exp (B), were 27.918, 10.054, and 6.606, respectively. Conclusions: The mSis procedure demonstrated safety and efficacy with fewer complications and a low recurrence rate of 2.30% in the study. Furthermore, the indistinct lesion boundary, surgical history, and large lesion diameter (>2 cm) were independent risk factors for recurrence in pediatric TGDC.Level of Evidence: IV.

7.
Article in English | MEDLINE | ID: mdl-38833401

ABSTRACT

Superpixel aggregation is a powerful tool for automated neuron segmentation from electron microscopy (EM) volume. However, existing graph partitioning methods for superpixel aggregation still involve two separate stages-model estimation and model solving, and therefore model error is inherent. To address this issue, we integrate the two stages and propose an end-to-end aggregation framework based on deep learning of the minimum cost multicut problem called DeepMulticut. The core challenge lies in differentiating the NPhard multicut problem, whose constraint number is exponential in the problem size. With this in mind, we resort to relaxing the combinatorial solver-the greedy additive edge contraction (GAEC)-to a continuous Soft-GAEC algorithm, whose limit is shown to be the vanilla GAEC. Such relaxation thus allows the DeepMulticut to integrate edge cost estimators, Edge-CNNs, into a differentiable multicut optimization system and allows a decision-oriented loss to feed decision quality back to the Edge-CNNs for adaptive discriminative feature learning. Hence, the model estimators, Edge-CNNs, can be trained to improve partitioning decisions directly while beyond the NP-hardness. Also, we explain the rationale behind the DeepMulticut framework from the perspective of bi-level optimization. Extensive experiments on three public EM datasets demonstrate the effectiveness of the proposed DeepMulticut.

8.
J Hazard Mater ; 475: 134923, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889469

ABSTRACT

This study investigates the co-precipitation of calcium and barium ions in hypersaline wastewater under the action of Bacillus licheniformis using microbially induced carbonate precipitation (MICP) technology, as well as the bactericidal properties of the biomineralized product vaterite. The changes in carbonic anhydrase activity, pH, carbonate and bicarbonate concentrations in different biomineralization systems were negatively correlated with variations in metal ion concentrations, while the changes in polysaccharides and protein contents in bacterial extracellular polymers were positively correlated with variations in barium concentrations. In the mixed calcium and barium systems, the harvested minerals were vaterite containing barium. The increasing concentrations of calcium promoted the incorporation and adsorption of barium onto vaterite. The presence of barium significantly increased the contents of O-CO, N-CO, and Ba-O in vaterite. Calcium promoted barium precipitation, but barium inhibited calcium precipitation. After being treated by immobilized bacteria, the concentrations of calcium and barium ions decreased from 400 and 274 to 1.72 and 0 mg/L (GB/T15454-2009 and GB8978-1996). Intracellular minerals were also vaterite containing barium. Extracellular vaterite exhibited bactericidal properties. This research presents a promising technique for simultaneously removing and recycling hazardous heavy metals and calcium in hypersaline wastewater.


Subject(s)
Barium , Calcium , Chemical Precipitation , Wastewater , Wastewater/chemistry , Barium/chemistry , Calcium/chemistry , Calcium/metabolism , Bacillus/metabolism , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Recycling , Carbonates/chemistry , Carbonic Anhydrases/metabolism , Water Purification/methods
9.
Mol Pharm ; 21(7): 3407-3415, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38822792

ABSTRACT

Transarterial radioembolization (TARE) is a highly effective localized radionuclide therapy that has been successfully used to treat hepatocellular carcinoma (HCC). Extensive research has been conducted on the use of radioactive microspheres (MSs) in TARE, and the development of ideal radioactive MSs is crucial for clinical trials and patient treatment. This study presents the development of a radioactive MS for TARE of HCC. These MSs, referred to as 177Lu-MS@PLGA, consist of poly(lactic-co-glycolic acid) (PLGA) copolymer and radioactive silica MSs, labeled with 177Lu and then coated with PLGA. It has an extremely high level of radiostability. Cellular experiments have shown that it can cause DNA double-strand breaks, leading to cell death. In vivo radiostability of 177Lu-MS@PLGA is demonstrated by microSPECT/CT imaging. In addition, the antitumor study has shown that TARE of 177Lu-MS@PLGA can effectively restrain tumor growth without harmful side effects. Thus, 177Lu-MS@PLGA exhibits significant potential as a radioactive MS for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Embolization, Therapeutic , Liver Neoplasms , Lutetium , Microspheres , Polylactic Acid-Polyglycolic Acid Copolymer , Radioisotopes , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/radiotherapy , Liver Neoplasms/therapy , Liver Neoplasms/radiotherapy , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Animals , Humans , Mice , Lutetium/chemistry , Radioisotopes/chemistry , Radioisotopes/administration & dosage , Embolization, Therapeutic/methods , Cell Line, Tumor , Mice, Inbred BALB C , Mice, Nude , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/therapeutic use , Xenograft Model Antitumor Assays
10.
Forensic Sci Int Genet ; 72: 103078, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38889491

ABSTRACT

DNA mixtures are a common sample type in forensic genetics, and we typically assume that contributors to the mixture are unrelated when calculating the likelihood ratio (LR). However, scenarios involving mixtures with related contributors, such as in family murder or incest cases, can also be encountered. Compared to the mixtures with unrelated contributors, the kinship within the mixture would bring additional challenges for the inference of the number of contributors (NOC) and the construction of probabilistic genotyping models. To evaluate the influence of potential kinship on the individual identification of the person of interest (POI), we conducted simulations of two-person (2 P) and three-person (3 P) DNA mixtures containing unrelated or related contributors (parent-child, full-sibling, and uncle-nephew) at different mixing ratios (for 2 P: 1:1, 4:1, 9:1, and 19:1; for 3 P: 1:1:1, 2:1:1, 5:4:1, and 10:5:1), and performed massively parallel sequencing (MPS) using MGIEasy Signature Identification Library Prep Kit on MGI platform. In addition, in silico simulations of mixtures with unrelated and related contributors were also performed. In this study, we evaluated 1): the MPS performance; 2) the influence of multiple genetic markers on determining the presence of related contributors and inferring the NOC within the mixture; 3) the probability distribution of MAC (maximum allele count) and TAC (total allele count) based on in silico mixture profiles; 4) trends in LR values with and without considering kinship in mixtures with related and unrelated contributors; 5) trends in LR values with length- and sequence-based STR genotypes. Results indicated that multiple numbers and types of genetic markers positively influenced kinship and NOC inference in a mixture. The LR values of POI were strongly dependent on the mixing ratio. Non- and correct-kinship hypotheses essentially did not affect the individual identification of the major POI; the correct kinship hypothesis yielded more conservative LR values; the incorrect kinship hypothesis did not necessarily lead to the failure of POI individual identification. However, it is noteworthy that these considerations could lead to uncertain outcomes in the identification of minor contributors. Compared to length-based STR genotyping, using sequence-based STR genotype increases the individual identification power of the POI, concurrently improving the accuracy of mixing ratio inference using EuroForMix. In conclusion, the MGIEasy Signature Identification Library Prep kit demonstrated robust individual identification power, which is a viable MPS panel for forensic DNA mixture interpretations, whether involving unrelated or related contributors.


Subject(s)
DNA Fingerprinting , DNA , High-Throughput Nucleotide Sequencing , Humans , DNA/genetics , Likelihood Functions , Sequence Analysis, DNA , Microsatellite Repeats , Genotype , Forensic Genetics/methods
11.
FASEB J ; 38(9): e23630, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38713100

ABSTRACT

Heat shock proteins (HSPs) are a group of highly conserved proteins found in a wide range of organisms. In recent years, members of the HSP family were overexpressed in various tumors and widely involved in oncogenesis, tumor development, and therapeutic resistance. In our previous study, DNAJC24, a member of the DNAJ/HSP40 family of HSPs, was found to be closely associated with the malignant phenotype of hepatocellular carcinoma. However, its relationship with other malignancies needs to be further explored. Herein, we demonstrated that DNAJC24 exhibited upregulated expression in LUAD tissue samples and predicted poor survival in LUAD patients. The upregulation of DNAJC24 expression promoted proliferation and invasion of LUAD cells in A549 and NCI-H1299 cell lines. Further studies revealed that DNAJC24 could regulate the PI3K/AKT signaling pathway by affecting AKT phosphorylation. In addition, a series of experiments such as Co-IP and mass spectrometry confirmed that DNAJC24 could directly interact with PCNA and promoted the malignant phenotypic transformation of LUAD. In conclusion, our results suggested that DNAJC24 played an important role in the progression of LUAD and may serve as a specific prognostic biomarker for LUAD patients. The DNAJC24/PCNA/AKT axis may be a potential target for future individualized and precise treatment of LUAD patients.


Subject(s)
Cell Proliferation , HSP40 Heat-Shock Proteins , Proliferating Cell Nuclear Antigen , Proto-Oncogene Proteins c-akt , Animals , Female , Humans , Male , Mice , Middle Aged , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction
12.
BMC Plant Biol ; 24(1): 454, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789943

ABSTRACT

Pleiotropy is frequently detected in agronomic traits of wheat (Triticum aestivum). A locus on chromosome 4B, QTn/Ptn/Sl/Sns/Al/Tgw/Gl/Gw.caas-4B, proved to show pleiotropic effects on tiller, spike, and grain traits using a recombinant inbred line (RIL) population of Qingxinmai × 041133. The allele from Qingxinmai increased tiller numbers, and the allele from line 041133 produced better performances of spike traits and grain traits. Another 52 QTL for the eight traits investigated were detected on 18 chromosomes, except for chromosomes 5D, 6D, and 7B. Several genes in the genomic interval of the locus on chromosome 4B were differentially expressed in crown and inflorescence samples between Qingxinmai and line 041133. The development of the KASP marker specific for the locus on chromosome 4B is useful for molecular marker-assisted selection in wheat breeding.


Subject(s)
Alleles , Chromosomes, Plant , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Chromosomes, Plant/genetics , Phenotype , Genetic Pleiotropy , Plant Breeding
13.
Int Urol Nephrol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771415

ABSTRACT

The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway has been confirmed as a therapeutic target for type 2 diabetes mellitus (T2DM), however few studies revealed its effect in diabetic bladder dysfunction (DBD). Herein, we reported a Nrf2 deletion diabetic mouse model induced by 8-week high-fat diet feeding combined with streptozocin (STZ) injection in Nrf2 knockout mice. Besides, wild-type mice (WT) were used as control group, wild-type mice with high-fat diet feeding and STZ injection as diabetic group (WT-T2DM), and Nrf2 knockout mice as Nrf2 deletion group (KO). The pathophysiological indexes and bladder morphology showed typical pathological features of diabetic bladder dysfunction in Nrf2 knockout diabetic mouse mice (KO-T2DM). ELISA results showed that advanced glycation end products (AGEs), ROS and malondialdehyde (MDA) levels in bladder was were up-regulated in both WT-T2DM and KO-T2DM group, while superoxide dismutase (SOD) and glutathione (GSH) levels decreased in these two groups. Compared with WT-T2DM group, western blot analysis of the bladder showed down-regulated expression of NQO1 and HO-1 in KO-T2DM group. However, apoptosis, marked by Caspase3 and bax/bcl-2 ratio, was increased in KO-T2DM group. Neurotrophic factor (NGF) was significantly decreased in DBD model, and even much lower in KO-T2DM group. Collectively, our findings demonstrated that deletion of Nrf2 lead to severe oxidative stress, apoptosis, and lower level of neurotrophic factor, and provided the first set of experimental evidence, in a mouse model, to support Nrf2 as a promising target for DBD.

14.
Biomed J ; : 100732, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697480

ABSTRACT

BACKGROUND: Electrocardiogram (ECG) abnormalities have demonstrated potential as prognostic indicators of patient survival. However, the traditional statistical approach is constrained by structured data input, limiting its ability to fully leverage the predictive value of ECG data in prognostic modeling. METHODS: This study aims to introduce and evaluate a deep-learning model to simultaneously handle censored data and unstructured ECG data for survival analysis. We herein introduce a novel deep neural network called ECG-surv, which includes a feature extraction neural network and a time-to-event analysis neural network. The proposed model is specifically designed to predict the time to 1-year mortality by extracting and analyzing unique features from 12-lead ECG data. ECG-surv was evaluated using both an independent test set and an external set, which were collected using different ECG devices. RESULTS: The performance of ECG-surv surpassed that of the Cox proportional model, which included demographics and ECG waveform parameters, in predicting 1-year all-cause mortality, with a significantly higher concordance index (C-index) in ECG-surv than in the Cox model using both the independent test set (0.860 [95% CI: 0.859- 0.861] vs. 0.796 [95% CI: 0.791- 0.800]) and the external test set (0.813 [95% CI: 0.807- 0.814] vs. 0.764 [95% CI: 0.755- 0.770]). ECG-surv also demonstrated exceptional predictive ability for cardiovascular death (C-index of 0.891 [95% CI: 0.890- 0.893]), outperforming the Framingham risk Cox model (C-index of 0.734 [95% CI: 0.715-0.752]). CONCLUSION: ECG-surv effectively utilized unstructured ECG data in a survival analysis. It outperformed traditional statistical approaches in predicting 1-year all-cause mortality and cardiovascular death, which makes it a valuable tool for predicting patient survival.

15.
Front Plant Sci ; 15: 1397274, 2024.
Article in English | MEDLINE | ID: mdl-38779062

ABSTRACT

A recombinant inbred line (RIL) population derived from wheat landrace Qingxinmai and breeding line 041133 exhibited segregation in resistance to powdery mildew and stripe rust in five and three field tests, respectively. A 16K genotyping by target sequencing (GBTS) single-nucleotide polymorphism (SNP) array-based genetic linkage map was used to dissect the quantitative trait loci (QTLs) for disease resistance. Four and seven QTLs were identified for adult-plant resistance (APR) against powdery mildew and stripe rust. QPm.caas-1B and QPm.caas-5A on chromosomes 1B and 5A were responsible for the APR against powdery mildew in line 041133. QYr.caas-1B, QYr.caas-3B, QYr.caas-4B, QYr.caas-6B.1, QYr.caas-6B.2, and QYr.caas-7B detected on the five B-genome chromosomes of line 041133 conferred its APR to stripe rust. QPm.caas-1B and QYr.caas.1B were co-localized with the pleiotropic locus Lr46/Yr29/Sr58/Pm39/Ltn2. A Kompetitive Allele Specific Polymorphic (KASP) marker KASP_1B_668028290 was developed to trace QPm/Yr.caas.1B. Four lines pyramiding six major disease resistance loci, PmQ, Yr041133, QPm/Yr.caas-1B, QPm.caas-2B.1, QYr.caas-3B, and QPm.caas-6B, were developed. They displayed effective resistance against both powdery mildew and stripe rust at the seedling and adult-plant stages.

16.
Heliyon ; 10(9): e30770, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38774087

ABSTRACT

Students' academic achievement relies on a variety of pedagogical, affective, and individual factors. The investigation of academic emotions and epistemic cognition has been a focal point in existing research. Previous studies have predominantly delved into the essence of students' epistemic cognition and academic emotions. Nonetheless, the correlation between the epistemic cognition, academic emotions, and academic success of Chinese undergraduate students remains inadequately explored. This research delves into the interconnectedness of these variables and examines which facets of epistemic cognition and academic emotions can forecast students' academic performance. A total of three hundred and eighty (380) Chinese undergraduate students were chosen via random sampling for this study. Their self-reported academic achievements were taken into account. Additionally, they completed questionnaires tailored to evaluate their epistemic cognition and academic emotions. The participants' scores underwent Pearson correlation and multiple regression analyses. The findings indicate that positive emotions correlate positively, while negative emotions correlate negatively with students' academic success. Furthermore, positive emotions and three categories of epistemic cognition were found to be predictors of students' academic accomplishments. In conclusion, it is deduced that both epistemic cognition and positive emotions play a role in enhancing students' academic success. The implications of these findings extend to educational psychologists, educators, and students, both theoretically and practically.

17.
Int J Biol Sci ; 20(7): 2763-2778, 2024.
Article in English | MEDLINE | ID: mdl-38725845

ABSTRACT

Dysregulation of the aldehyde dehydrogenase (ALDH) family has been implicated in various pathological conditions, including cancer. However, a systematic evaluation of ALDH alterations and their therapeutic relevance in hepatocellular carcinoma (HCC) remains lacking. Herein, we found that 15 of 19 ALDHs were transcriptionally dysregulated in HCC tissues compared to normal liver tissues. A four gene signature, including ALDH2, ALDH5A1, ALDH6A1, and ALDH8A1, robustly predicted prognosis and defined a high-risk subgroup exhibiting immunosuppressive features like regulatory T cell (Tregs) infiltration. Single-cell profiling revealed selective overexpression of tumor necrosis factor receptor superfamily member 18 (TNFRSF18) on Tregs, upregulated in high-risk HCC patients. We identified ALDH2 as a tumor suppressor in HCC, with three novel phosphorylation sites mediated by protein kinase C zeta that enhanced enzymatic activity. Mechanistically, ALDH2 suppressed Tregs differentiation by inhibiting ß-catenin/TGF-ß1 signaling in HCC. Collectively, our integrated multi-omics analysis defines an ALDH-Tregs-TNFRSF18 axis that contributes to HCC pathogenesis and represents potential therapeutic targets for this aggressive malignancy.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Carcinoma, Hepatocellular , Liver Neoplasms , T-Lymphocytes, Regulatory , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Humans , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Animals , Cell Line, Tumor , Male , Mice , Multiomics
18.
Forensic Sci Res ; 9(2): owae027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774862

ABSTRACT

In paternity testing, when there are Mendelian errors in the alleles between the child and the parents, a slippage mutation, or silent allele may not fully explain the phenomenon. Sometimes, it is attributed to chromosomal abnormalities, such as uniparental disomy (UPD). Here, we present the investigation of two cases of suspected UPD in paternity testing based on short tandem repeat (STR) detection (capillary electrophoresis platform). Case 1 involves a trio, where all genotypes detected on chromosome 6 in the child are homozygous and found in the father. Case 2 is a duo (mother and child), where all genotypes on chromosome 3 in the child are homozygous and not always found in the mother. At the same time, Mendelian error alleles were also observed at specific loci in these two chromosomes. Furthermore, we used the MGIEasy Signature Identification Library Prep Kit for sequencing on the massively parallel sequencing platform, which included common autosomal, X and Y chromosomes, and mitochondrial genetic markers used in forensic practice. The results showed that the genotypes of shared STRs on the two platforms were consistent, and STRs and single nucleotide polymorphisms (SNPs) on these two chromosomes were homozygous. All other genetic markers followed the laws of inheritance. A comprehensive analysis supported the parent-child relationship between the child and the alleged parent, and the observed genetic anomalies can be attributed to UPD. UPD occurrences are rare, and ignoring its presence can lead to erroneous exclusions in paternity testing, particularly when multiple loci on a chromosome exhibit homozygosity.

19.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688721

ABSTRACT

The mouse auditory organ cochlea contains two types of sound receptors: inner hair cells (IHCs) and outer hair cells (OHCs). Tbx2 is expressed in IHCs but repressed in OHCs, and neonatal OHCs that misexpress Tbx2 transdifferentiate into IHC-like cells. However, the extent of this switch from OHCs to IHC-like cells and the underlying molecular mechanism remain poorly understood. Furthermore, whether Tbx2 can transform fully mature adult OHCs into IHC-like cells is unknown. Here, our single-cell transcriptomic analysis revealed that in neonatal OHCs misexpressing Tbx2, 85.6% of IHC genes, including Slc17a8, are upregulated, but only 38.6% of OHC genes, including Ikzf2 and Slc26a5, are downregulated. This suggests that Tbx2 cannot fully reprogram neonatal OHCs into IHCs. Moreover, Tbx2 also failed to completely reprogram cochlear progenitors into IHCs. Lastly, restoring Ikzf2 expression alleviated the abnormalities detected in Tbx2+ OHCs, which supports the notion that Ikzf2 repression by Tbx2 contributes to the transdifferentiation of OHCs into IHC-like cells. Our study evaluates the effects of ectopic Tbx2 expression on OHC lineage development at distinct stages of either male or female mice and provides molecular insights into how Tbx2 disrupts the gene expression profile of OHCs. This research also lays the groundwork for future studies on OHC regeneration.


Subject(s)
Hair Cells, Auditory, Inner , Hair Cells, Auditory, Outer , T-Box Domain Proteins , Animals , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Mice , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Outer/metabolism , Female , Animals, Newborn , Cell Transdifferentiation/physiology , Cell Transdifferentiation/genetics , Male , Cochlea/metabolism , Cochlea/cytology , Mice, Inbred C57BL
20.
Lancet Neurol ; 23(6): 603-614, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614108

ABSTRACT

BACKGROUND: Parkinson's disease is a progressive neurodegenerative disorder with multifactorial causes, among which genetic risk factors play a part. The RAB GTPases are regulators and substrates of LRRK2, and variants in the LRRK2 gene are important risk factors for Parkinson's disease. We aimed to explore genetic variability in RAB GTPases within cases of familial Parkinson's disease. METHODS: We did whole-exome sequencing in probands from families in Canada and Tunisia with Parkinson's disease without a genetic cause, who were recruited from the Centre for Applied Neurogenetics (Vancouver, BC, Canada), an international consortium that includes people with Parkinson's disease from 36 sites in 24 countries. 61 RAB GTPases were genetically screened, and candidate variants were genotyped in relatives of the probands to assess disease segregation by linkage analysis. Genotyping was also done to assess variant frequencies in individuals with idiopathic Parkinson's disease and controls, matched for age and sex, who were also from the Centre for Applied Neurogenetics but unrelated to the probands or each other. All participants were aged 18 years or older. The sequencing and genotyping findings were validated by case-control association analyses using bioinformatic data obtained from publicly available clinicogenomic databases (AMP-PD, GP2, and 100 000 Genomes Project) and a private German clinical diagnostic database (University of Tübingen). Clinical and pathological findings were summarised and haplotypes were determined. In-vitro studies were done to investigate protein interactions and enzyme activities. FINDINGS: Between June 1, 2010, and May 31, 2017, 130 probands from Canada and Tunisia (47 [36%] female and 83 [64%] male; mean age 72·7 years [SD 11·7; range 38-96]; 109 White European ancestry, 18 north African, two east Asian, and one Hispanic] underwent whole-exome sequencing. 15 variants in RAB GTPase genes were identified, of which the RAB32 variant c.213C>G (Ser71Arg) cosegregated with autosomal dominant Parkinson's disease in three families (nine affected individuals; non-parametric linkage Z score=1·95; p=0·03). 2604 unrelated individuals with Parkinson's disease and 344 matched controls were additionally genotyped, and five more people originating from five countries (Canada, Italy, Poland, Turkey, and Tunisia) were identified with the RAB32 variant. From the database searches, in which 6043 individuals with Parkinson's disease and 62 549 controls were included, another eight individuals were identified with the RAB32 variant from four countries (Canada, Germany, UK, and USA). Overall, the association of RAB32 c.213C>G (Ser71Arg) with Parkinson's disease was significant (odds ratio [OR] 13·17, 95% CI 2·15-87·23; p=0·0055; I2=99·96%). In the people who had the variant, Parkinson's disease presented at age 54·6 years (SD 12·75, range 31-81, n=16), and two-thirds had a family history of parkinsonism. RAB32 Ser71Arg heterozygotes shared a common haplotype, although penetrance was incomplete. Findings in one individual at autopsy showed sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In functional studies, RAB32 Arg71 activated LRRK2 kinase to a level greater than RAB32 Ser71. INTERPRETATION: RAB32 Ser71Arg is a novel genetic risk factor for Parkinson's disease, with reduced penetrance. The variant was found in individuals with Parkinson's disease from multiple ethnic groups, with the same haplotype. In-vitro assays show that RAB32 Arg71 activates LRRK2 kinase, which indicates that genetically distinct causes of familial parkinsonism share the same mechanism. The discovery of RAB32 Ser71Arg also suggests several genetically inherited causes of Parkinson's disease originated to control intracellular immunity. This shared aetiology should be considered in future translational research, while the global epidemiology of RAB32 Ser71Arg needs to be assessed to inform genetic counselling. FUNDING: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J Fox Foundation for Parkinson's Research, and the UK Medical Research Council.


Subject(s)
Parkinson Disease , rab GTP-Binding Proteins , Humans , Female , Male , Parkinson Disease/genetics , rab GTP-Binding Proteins/genetics , Middle Aged , Aged , Genetic Linkage/genetics , Adult , Canada/epidemiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Tunisia , Genetic Predisposition to Disease/genetics , Exome Sequencing , Case-Control Studies , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL