Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Turk J Obstet Gynecol ; 21(1): 7-14, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38440962

ABSTRACT

Objective: The most common indications for Levonorgestrel intrauterine device (LNG-IUD) are contraception and management of abnormal uterine bleeding (AUB). This study was conducted with the aim of exploring the differences in the clinical profile and outcome of women using LNG-IUD for contraception and AUB. Materials and Methods: This was a retrospective comparative cross-sectional study of women who underwent LNG-IUD (52 mg) between 2012 and 2017. Their electronic health records were reviewed until the last documented follow-up or until December 2021. Results: A total of 235 women had LNG-IUD with an age range of 21 to 62 years and a mean of (37.98 years±6.76). Of these women, 153/235 (65.1%) had it for contraception and 82/235 (34.89%) had it for AUB. The follow-up was 1-94 months with (mean ± SEM) follow-up for the AUB group of (21.48±2.31) months and for contraception group was (20.74±1.76) months (p-value of 0.80). There was a significant difference between the two groups in the age and body mass index (BMI), where women who had LNG-IUD for AUB were older (mean of 42.54±6.49 years, p-value <0.001) and had higher BMI (31.88±7.52 kg/m2, p-value =0.011). All LNG-IUDs that were indicated for contraception were inserted in an outpatient setting. However, 68.3% in the AUB, the insertion was in the operating theater in conjunction with hysteroscopy. After combining both expulsion and removal of LNG-IUD during the follow-up period, there was no significant difference between the 2 groups in the overall retention rate during the follow-up (p-value =0.998). Conclusion: this study shows that women using LNG-IUD for the management of AUB are older and have a higher BMI compared with those using it for contraception. AUB women experienced more expulsion compared with the contraception group, but there was no difference between the 2 groups in the overall survival/retention of LNG-IUD.

2.
Gastroenterology ; 166(4): 631-644.e17, 2024 04.
Article in English | MEDLINE | ID: mdl-38211712

ABSTRACT

BACKGROUND & AIMS: The incidence of Crohn's disease (CD) continues to increase worldwide. The contribution of CD4+ cell populations remains to be elucidated. We aimed to provide an in-depth transcriptional assessment of CD4+ T cells driving chronic inflammation in CD. METHODS: We performed single-cell RNA-sequencing in CD4+ T cells isolated from ileal biopsies of patients with CD compared with healthy individuals. Cells underwent clustering analysis, followed by analysis of gene signaling networks. We overlapped our differentially expressed genes with publicly available microarray data sets and performed functional in vitro studies, including an in vitro suppression assay and organoid systems, to model gene expression changes observed in CD regulatory T (Treg) cells and to test predicted therapeutics. RESULTS: We identified 5 distinct FOXP3+ regulatory Treg subpopulations. Tregs isolated from healthy controls represent the origin of pseudotemporal development into inflammation-associated subtypes. These proinflammatory Tregs displayed a unique responsiveness to tumor necrosis factor-α signaling with impaired suppressive activity in vitro and an elevated cytokine response in an organoid coculture system. As predicted in silico, the histone deacetylase inhibitor vorinostat normalized gene expression patterns, rescuing the suppressive function of FOXP3+ cells in vitro. CONCLUSIONS: We identified a novel, proinflammatory FOXP3+ T cell subpopulation in patients with CD and developed a pipeline to specifically target these cells using the US Food and Drug Administration-approved drug vorinostat.


Subject(s)
Crohn Disease , Humans , Crohn Disease/drug therapy , Crohn Disease/genetics , Crohn Disease/metabolism , Vorinostat/metabolism , T-Lymphocytes, Regulatory/metabolism , Inflammation/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
3.
ACS Appl Bio Mater ; 6(10): 4372-4382, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37791981

ABSTRACT

Lipid droplets (LDs) are dynamic complex organelles involved in various physiological processes, and their number and activity are linked to multiple diseases, including cancer. In this study, we have developed LD-specific near-infrared (NIR) light-responsive nano-drug delivery systems (DDSs) based on chalcone derivatives for cancer treatment. The reported nano-DDSs localized inside the cancer microenvironment of LDs, and upon exposure to light, they delivered the anticancer drug valproic acid in a spatiotemporally controlled manner. The developed systems, namely, 2'-hydroxyacetophenone-dimethylaminobenzaldehyde-valproic (HA-DAB-VPA) and 2'-hydroxyacetophenone-diphenylaminobenzaldehyde-valproic (HA-DPB-VPA) ester conjugates, required only two simple synthetic steps. Our reported DDSs exhibited interesting properties such as excited-state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) phenomena, which provided advantages such as AIE-initiated photorelease and ESIPT-enhanced rate of photorelease upon exposure to one- or two-photon light. Further, colocalization studies of the nano-DDSs by employing two cancerous cell lines (MCF-7 cell line and CT-26 cell line) and one normal cell line (HEK cell line) revealed LD concentration-dependent enhanced fluorescence intensity. Furthermore, systematic investigations of both the nano-DDSs in the presence and absence of oleic acid inside the cells revealed that nano-DDS HA-DPB-VPA accumulated more selectively in the LDs. This unique selectivity by the nano-DDS HA-DPB-VPA toward the LDs is due to the hydrophobic nature of the diphenylaminobenzaldehyde (mimicking the LD core), which significantly leads to the aggregation and ESIPT (at 90% volume of fw, ΦF = 20.4% and in oleic acid ΦF = 24.6%), respectively. Significantly, we used this as a light-triggered anticancer drug delivery model to take advantage of the high selectivity and accumulation of the nano-DDS HA-DPB-VPA inside the LDs. Hence, these findings give a prototype for designing drug delivery models for monitoring LD-related intracellular activities and significantly triggering the release of LD-specific drugs in the biological field.


Subject(s)
Antineoplastic Agents , Lipid Droplets , Lipid Droplets/chemistry , Oleic Acid/analysis , Antineoplastic Agents/chemistry , Drug Delivery Systems
4.
Biochem J ; 480(20): 1675-1691, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37815456

ABSTRACT

Although Microrchidia 2 (MORC2) is widely overexpressed in human malignancies and linked to cancer cell proliferation, metabolism, and metastasis, the mechanism of action of MORC2 in cancer cell migration and invasion is yet undeciphered. Here, we identified for the first time that MORC2, a chromatin remodeler, regulates E-cadherin expression and, subsequently regulates breast cancer cell migration and invasion. We observed a negative correlation between the expression levels of MORC2 and E-cadherin in breast cancer. Furthermore, the overexpression of MORC2 resulted in decreased expression levels of E-cadherin. In addition, co-immunoprecipitation and chromatin immunoprecipitation assays revealed that MORC2 interacts with HDAC1 and gets recruited onto the E-cadherin promoter to inhibit its transcription, thereby suppress its expression. Consequently, knockdown of HDAC1 in MORC2-overexpressing cells led to reduced cancer cell migration and invasion. Interestingly, we noticed that MORC2-regulated glucose metabolism via c-Myc, and LDHA, also modulates the expression of E-cadherin. Collectively, these results demonstrate for the first time a mechanistic role for MORC2 as an upstream regulator of E-cadherin expression and its associated functions in breast cancer.


Subject(s)
Breast Neoplasms , Histone Deacetylase 1 , Humans , Female , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Cell Line, Tumor , Cadherins/genetics , Cadherins/metabolism , Breast Neoplasms/genetics , Gene Expression , Gene Expression Regulation, Neoplastic , Transcription Factors/metabolism
5.
ACG Case Rep J ; 10(9): e01145, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37681212

ABSTRACT

Rates of pediatric inflammatory bowel disease and biologic therapy use continue to rise. Consequently, specialists and generalists should recognize potential complications and side effects. We report the unique case of an adolescent with ulcerative colitis (UC) on vedolizumab presenting with severe abdominal pain, hematochezia, and subsequent purpura. After extensive investigation and a complex clinical course, diagnosis of atypical immunoglobulin A vasculitis was made. This is the first pediatric case of vasculitis in a patient with UC on vedolizumab and only the second reported case overall in UC. This case illustrates the emerging diagnostic challenge of distinguishing inflammatory bowel disease treatment complications from other common pediatric conditions.

6.
J Crohns Colitis ; 17(11): 1847-1857, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37280154

ABSTRACT

BACKGROUND: The development of Crohn's disease [CD] involves immune cell signalling pathways regulated by epigenetic modifications. Aberrant DNA methylation has been identified in peripheral blood and bulk intestinal tissue from CD patients. However, the DNA methylome of disease-associated intestinal CD4+ lymphocytes has not been evaluated. MATERIALS AND METHODS: Genome-wide DNA methylation sequencing was performed from terminal ileum CD4+ cells from 21 CD patients and 12 age- and sex-matched controls. Data were analysed for differentially methylated CpGs [DMCs] and methylated regions [DMRs]. Integration was performed with RNA-sequencing data to evaluate the functional impact of DNA methylation changes on gene expression. DMRs were overlapped with regions of differentially open chromatin [by ATAC-seq] and CCCTC-binding factor [CTCF] binding sites [by ChIP-seq] between peripherally derived Th17 and Treg cells. RESULTS: CD4+ cells in CD patients had significantly increased DNA methylation compared to those from the controls. A total of 119 051 DMCs and 8113 DMRs were detected. While hypermethylated genes were mostly related to cell metabolism and homeostasis, hypomethylated genes were significantly enriched within the Th17 signalling pathway. The differentially enriched ATAC regions in Th17 cells [compared to Tregs] were hypomethylated in CD patients, suggesting heightened Th17 activity. There was significant overlap between hypomethylated DNA regions and CTCF-associated binding sites. CONCLUSIONS: The methylome of CD patients shows an overall dominant hypermethylation yet hypomethylation is more concentrated in proinflammatory pathways, including Th17 differentiation. Hypomethylation of Th17-related genes associated with areas of open chromatin and CTCF binding sites constitutes a hallmark of CD-associated intestinal CD4+ cells.


Subject(s)
Crohn Disease , DNA Methylation , Humans , Crohn Disease/genetics , Crohn Disease/metabolism , Th17 Cells , CD4-Positive T-Lymphocytes/metabolism , Chromatin/metabolism
7.
Mod Pathol ; 36(9): 100246, 2023 09.
Article in English | MEDLINE | ID: mdl-37307874

ABSTRACT

Lipoblastoma-like tumor (LLT) is a benign soft tissue tumor demonstrating mixed morphologic features of lipoblastoma, myxoid liposarcoma, and spindle cell lipoma but lacking genetic alterations associated with those tumors. LLT was originally thought to be specific to the vulva but has since been reported in the paratesticular region. The morphologic features of LLT overlap with those of "fibrosarcoma-like lipomatous neoplasm" (FLLN), a rare, indolent adipocytic neoplasm considered by some to form part of the spectrum of atypical spindle cell and pleomorphic lipomatous tumor. We compared the morphologic, immunohistochemical, and genetic features of 23 tumors previously classified as LLT (n = 17) and FLLN (n = 6). The 23 tumors occurred in 13 women and 10 men (mean age, 42 years; range, 17 to 80 years). Eighteen (78%) cases arose in the inguinogenital region, whereas 5 tumors (22%) involved noninguinogenital soft tissue, including the flank (n = 1), shoulder (n = 1), foot (n = 1), forearm (n = 1), and chest wall (n = 1). Microscopically, the tumors were lobulated and septated, with variably collagenized fibromyxoid stroma, prominent thin-walled vessels, scattered univacuolated or bivacuolated lipoblasts, and a minor component of mature adipose tissue. Using immunohistochemistry, 5 tumors (42%) showed complete RB1 loss, with partial loss in 7 cases (58%). RNA sequencing, chromosomal microarray, and DNA next-generation sequencing study results were negative for significant alterations. There were no clinical, morphologic, immunohistochemical, or molecular genetic differences between cases previously classified as LLT or FLLN. Clinical follow-up (11 patients [48%]; range, 2-276 months; mean, 48.2 months) showed all patients were alive without disease, and only one patient had experienced a single local recurrence. We conclude that LLT and FLLN represent the same entity, for which "LLT" seems most appropriate. LLT may occur in either sex and any superficial soft tissue location. Careful morphologic study and appropriate ancillary testing should allow for the distinction of LLT from its potential mimics.


Subject(s)
Fibrosarcoma , Lipoblastoma , Lipoma , Liposarcoma, Myxoid , Liposarcoma , Male , Adult , Humans , Female , Lipoblastoma/genetics , Biomarkers, Tumor/genetics , Lipoma/genetics , Lipoma/pathology , Liposarcoma/genetics , Molecular Biology
8.
J Med Chem ; 66(6): 3732-3745, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36913722

ABSTRACT

Targeted release of bioactive molecules for therapeutic purposes is a key area in the biomedical field that is growing quickly, where bioactive molecules are released passively or actively from drug delivery systems (DDSs) or bioactive donors. In the past decade, researchers have identified light as one of the prime stimuli that can implement the efficient spatiotemporally targeted delivery of drugs or gaseous molecules with minimal cytotoxicity and a real-time monitoring ability. This perspective emphasizes recent advances in the photophysical properties of ESIPT- (excited-state intramolecular proton transfer), AIE- (aggregation-induced emission), and AIE + ESIPT-attributed light-activated delivery systems or donors. The three major sections of this perspective describe the distinctive features of DDSs and donors concerning their design, synthesis, photophysical and photochemical properties, and in vitro and in vivo studies demonstrating their relevance as carrier molecules for releasing cancer drugs and gaseous molecules in the biological system.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Antineoplastic Agents/pharmacology , Protons
9.
Oman Med J ; 38(1): e470, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36742176

ABSTRACT

A 29-year-old woman (gravida 3, para 2) presented at 28 weeks+2 days of gestation with a two-months history of dyspnea associated with orthopnea and occasional palpitations. On transthoracic echocardiography, she was diagnosed with a 3.2 × 2.7 cm left atrial myxoma. The patient underwent open surgical resection at 30 weeks of gestation. She had an uneventful postoperative recovery and was discharged on the ninth day. At 41 weeks of gestation, she gave birth by cesarean to a healthy baby of normal weight. Both the mother and the baby were discharged in stable condition.

10.
Circ Genom Precis Med ; 16(2): e003756, 2023 04.
Article in English | MEDLINE | ID: mdl-36802768

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is characterized by asymmetric left ventricular hypertrophy. Currently, hypertrophy pathways responsible for HCM have not been fully elucidated. Their identification could serve as a nidus for the generation of novel therapeutics aimed at halting disease development or progression. Herein, we performed a comprehensive multi-omic characterization of hypertrophy pathways in HCM. METHODS: Flash-frozen cardiac tissues were collected from genotyped HCM patients (n=97) undergoing surgical myectomy and tissue from 23 controls. RNA sequencing and mass spectrometry-enabled deep proteome and phosphoproteomic assessment were performed. Rigorous differential expression, gene set enrichment, and pathway analyses were performed to characterize HCM-mediated alterations with emphasis on hypertrophy pathways. RESULTS: We identified transcriptional dysregulation with 1246 (8%) differentially expressed genes and elucidated downregulation of 10 hypertrophy pathways. Deep proteomic analysis identified 411 proteins (9%) that differed between HCM and controls with strong dysregulation of metabolic pathways. Seven hypertrophy pathways were upregulated with antagonistic upregulation of 5 of 10 hypertrophy pathways shown to be downregulated in the transcriptome. Most upregulated hypertrophy pathways encompassed the rat sarcoma-mitogen-activated protein kinase signaling cascade. Phosphoproteomic analysis demonstrated hyperphosphorylation of the rat sarcoma-mitogen-activated protein kinase system suggesting activation of this signaling cascade. There was a common transcriptomic and proteomic profile regardless of genotype. CONCLUSIONS: At time of surgical myectomy, the ventricular proteome, independent of genotype, reveals widespread upregulation and activation of hypertrophy pathways, mainly involving the rat sarcoma-mitogen-activated protein kinase signaling cascade. In addition, there is a counterregulatory transcriptional downregulation of the same pathways. Rat sarcoma-mitogen-activated protein kinase activation may serve a crucial role in hypertrophy observed in HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Proteome , Humans , Proteome/genetics , Proteomics , Multiomics , Proto-Oncogene Proteins p21(ras)/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Hypertrophy, Left Ventricular , Mitogen-Activated Protein Kinases/metabolism
11.
Gut ; 72(1): 54-65, 2023 01.
Article in English | MEDLINE | ID: mdl-35580964

ABSTRACT

OBJECTIVE: There are altered mucosal functions in irritable bowel syndrome with diarrhoea (IBS-D); ~30% of patients with IBS-D have abnormal bile acid (BA) metabolism (ABAM) and diarrhoea (summarised as BAD). AIM: To compare biochemical parameters, gastrointestinal and colonic transit, rectal sensation and pathobiological mechanisms in IBS-D without ABAM and in BAD (serum 7C4>52 ng/mL). DESIGN: In patients with Rome III criteria of IBS-D, we compared biochemical features, colonic transit, rectal sensation, deep genotype of five BA-related genes, ileal and colonic mucosal mRNA (differential expression (DE) analysis) and stool dysbiosis (including functional analysis of microbiome). Results in BAD were compared with IBS-D without ABAM. RESULTS: Compared with 161 patients with IBS-D without ABAM, 44 patients with BAD had significantly faster colonic transit, lower microbial alpha diversity, different compositional profile (beta diversity) and higher Firmicutes to Bacteroidetes ratio with evidence of decreased expression of bile acid thiol ligase (involved in transformation of primary to secondary BAs) and decreased sulfatases. In BAD (compared with IBS-D without ABAM), terminal ileal biopsies showed downregulation of SLC44A5 (a BA transporter), and ascending colon biopsies showed upregulation in barrier-weakening genes (CLDN2), serine protease inhibitors, immune activation, cellular differentiation and a cellular transporter (FABP6; BA binding). No DE of genes was documented in descending colon biopsies. The two groups had similar rectal sensation. CONCLUSION: Though sharing clinical symptoms with IBS-D, BAD is associated with biological differences and mechanisms that have potential to enhance diagnosis and treatment targeting barrier dysfunction, inflammatory and microbial changes.


Subject(s)
Irritable Bowel Syndrome , Humans , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/metabolism , Bile Acids and Salts , Diarrhea/genetics , Diarrhea/diagnosis , Feces , RNA, Messenger/genetics
12.
J Cell Physiol ; 238(2): 379-392, 2023 02.
Article in English | MEDLINE | ID: mdl-36538650

ABSTRACT

Arboviruses target bone forming osteoblasts and perturb bone remodeling via paracrine factors. We previously reported that Zika virus (ZIKV) infection of early-stage human mesenchymal stromal cells (MSCs) inhibited the osteogenic lineage commitment of MSCs. To understand the physiological interplay between bone development and ZIKV pathogenesis, we employed a primary in vitro model to examine the biological responses of MSCs to ZIKV infection at different stages of osteogenesis. Precommitted MSCs were infected at the late stage of osteogenic stimulation (Day 7) with ZIKV (multiplicity of infection of 5). We observe that MSCs infected at the late stage of differentiation are highly susceptible to ZIKV infection similar to previous observations with early stage infected MSCs (Day 0). However, in contrast to ZIKV infection at the early stage of differentiation, infection at a later stage significantly elevates the key osteogenic markers and calcium content. Comparative RNA sequencing (RNA-seq) of early and late stage infected MSCs reveals that ZIKV infection alters the mRNA transcriptome during osteogenic induction of MSCs (1251 genes). ZIKV infection provokes a robust antiviral response at both stages of osteogenic differentiation as reflected by the upregulation of interferon responsive genes (n > 140). ZIKV infection enhances the expression of immune-related genes in early stage MSCs while increasing cell cycle genes in late stage MSCs. Remarkably, ZIKA infection in early stage MSCs also activates lipid metabolism-related pathways. In conclusion, ZIKV infection has differentiation stage-dependent effects on MSCs and this mechanistic understanding may permit the development of new therapeutic or preventative measures for bone-related effects of ZIKV infection.


Subject(s)
Mesenchymal Stem Cells , Zika Virus Infection , Zika Virus , Humans , Osteogenesis , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Cells, Cultured
13.
Gastroenterology ; 164(2): 256-271.e10, 2023 02.
Article in English | MEDLINE | ID: mdl-36272457

ABSTRACT

BACKGROUND & AIMS: Although T-cell intrinsic expression of G9a has been associated with murine intestinal inflammation, mechanistic insight into the role of this methyltransferase in human T-cell differentiation is ill defined, and manipulation of G9a function for therapeutic use against inflammatory disorders is unexplored. METHODS: Human naive T cells were isolated from peripheral blood and differentiated in vitro in the presence of a G9a inhibitor (UNC0642) before being characterized via the transcriptome (RNA sequencing), chromatin accessibility (assay for transposase-accessible chromatin by sequencing), protein expression (cytometry by time of flight, flow cytometry), metabolism (mitochondrial stress test, ultrahigh performance liquid chromatography-tandem mas spectroscopy) and function (T-cell suppression assay). The in vivo role of G9a was assessed using 3 murine models. RESULTS: We discovered that pharmacologic inhibition of G9a enzymatic function in human CD4 T cells led to spontaneous generation of FOXP3+ T cells (G9a-inibitors-T regulatory cells [Tregs]) in vitro that faithfully reproduce human Tregs, functionally and phenotypically. Mechanistically, G9a inhibition altered the transcriptional regulation of genes involved in lipid biosynthesis in T cells, resulting in increased intracellular cholesterol. Metabolomic profiling of G9a-inibitors-Tregs confirmed elevated lipid pathways that support Treg development through oxidative phosphorylation and enhanced lipid membrane composition. Pharmacologic G9a inhibition promoted Treg expansion in vivo upon antigen (gliadin) stimulation and ameliorated acute trinitrobenzene sulfonic acid-induced colitis secondary to tissue-specific Treg development. Finally, Tregs lacking G9a expression (G9a-knockout Tregs) remain functional chronically and can rescue T-cell transfer-induced colitis. CONCLUSION: G9a inhibition promotes cholesterol metabolism in T cells, favoring a metabolic profile that facilitates Treg development in vitro and in vivo. Our data support the potential use of G9a inhibitors in the treatment of immune-mediated conditions including inflammatory bowel disease.


Subject(s)
CD4-Positive T-Lymphocytes , Colitis , Mice , Humans , Animals , Lipid Metabolism , T-Lymphocytes, Regulatory/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/genetics , Chromatin , Inflammation , Cholesterol , Lipids , Forkhead Transcription Factors/metabolism
14.
Indian J Clin Biochem ; 38(2): 275-278, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35966150

ABSTRACT

SARS-CoV-2, an etiological agent of COVID-19, has been reported to inflict remarkably diverse manifestations in different subjects across the globe. Though patients with COVID-19 predominantly have fever, respiratory and constitutional symptoms, atypical presentations are becoming increasingly evident. COVID-19 may predispose to both venous and arterial thromboembolism due to excessive inflammation, hypoxia, immobilization, and diffuse intravascular coagulation in moderate to severe symptomatic cases. In this case report, we are reporting thromboembolic complications of COVID-19 in a mild symptomatic subject incidentally diagnosed with mesenteric venous occlusion with no abdominal symptoms. Early recognition of the abdominal symptoms, diagnosis, initiation of anticoagulants, and timely surgical intervention may improvise the outcome in a patient with COVID-19 infection-induced mesenteric thrombosis. Superior mesenteric artery and venous thrombosis may lead to subsequent ischemia necessitating emergency laparotomy. Thus, the usage of low-dose anticoagulants in all the patients of COVID-19 irrespective of the categorization into mild, moderate, and severe COVID-19 disease should be considered.

15.
Am J Physiol Gastrointest Liver Physiol ; 323(2): G88-G101, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35502856

ABSTRACT

Altered mucosal functions are documented in jejunal or colorectal mucosa from patients with irritable bowel syndrome (IBS). Our aim was to quantify ileal, ascending, and rectosigmoid colon mucosal expression of genes in IBS-diarrhea (D) and IBS-constipation (C). Forty-four patients with IBS-D, 30 with IBS-C, and 30 healthy volunteers underwent colonoscopic ileal, ascending, and rectosigmoid colon biopsies. Biopsies were stored in RNAlater at -80 °C, purified with on-column DNase, cDNA libraries prepared from 100-200 ng of total RNA, sequenced on Illumina NovaSeq 6000, and analyzed on Illumina's RTA version 3.4.4. Normalized mRNA expression was obtained using MAP-RSeq bioinformatics pipeline. Differential expressions in the groups (Log2-fold change) were measured using the bioinformatics package edgeR 2.6.2, corrected for false discovery rate (PADJ <0.05). There were 30 females with IBS-C and 31 females and 13 males with IBS-D. In IBS-D and IBS-C groups, there were differential expressions of 181 genes in ascending colon and 199 genes in rectosigmoid colon. The majority were gene upregulations in IBS-D with functions reflecting activation of inflammation genes, TRPV1 (visceral hypersensitivity) and neurotransmitters/receptors (specifically purinergic, GABA, and cannabinoid). Although gene differential expressions in the ascending and rectosigmoid colon mucosa of the two groups were different, the diverse upregulated genes involved immune functions, receptors, transmitters, ion channels, and transporters. Conversely, there was reduced expression of PI15 and PI16 genes that inhibit proteases. In patients with IBS-D and IBS-C, differential expressions of genes related to immune, transmitter, nociceptive, protease inhibition, channel, and transporter functions suggest opportunities to reverse the pathobiology and treat patients with IBS.NEW & NOTEWORTHY This study compares gene expression in mucosa of the terminal ileum, right colon, and left colon in patients with diarrhea- or constipation-predominant irritable bowel syndrome (IBS) and contrasts expression between these two disease entities and also between each entity and mucosa from healthy controls. The study shows there is differential expression of genes related to immune, transmitter, nociceptive, ion channel, and transporter functions, as well as reduced serine protease inhibition, in patients with IBS.


Subject(s)
Irritable Bowel Syndrome , Biopsy , Case-Control Studies , Colon/metabolism , Constipation/genetics , Constipation/metabolism , Diarrhea/metabolism , Female , Humans , Ileum/metabolism , Intestinal Mucosa/metabolism , Irritable Bowel Syndrome/metabolism , Male , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Nat Microbiol ; 7(5): 680-694, 2022 05.
Article in English | MEDLINE | ID: mdl-35484230

ABSTRACT

Intestinal proteases mediate digestion and immune signalling, while increased gut proteolytic activity disrupts the intestinal barrier and generates visceral hypersensitivity, which is common in irritable bowel syndrome (IBS). However, the mechanisms controlling protease function are unclear. Here we show that members of the gut microbiota suppress intestinal proteolytic activity through production of unconjugated bilirubin. This occurs via microbial ß-glucuronidase-mediated conversion of bilirubin conjugates. Metagenomic analysis of faecal samples from patients with post-infection IBS (n = 52) revealed an altered gut microbiota composition, in particular a reduction in Alistipes taxa, and high gut proteolytic activity driven by specific host serine proteases compared with controls. Germ-free mice showed 10-fold higher proteolytic activity compared with conventional mice. Colonization with microbiota samples from high proteolytic activity IBS patients failed to suppress proteolytic activity in germ-free mice, but suppression of proteolytic activity was achieved with colonization using microbiota from healthy donors. High proteolytic activity mice had higher intestinal permeability, a higher relative abundance of Bacteroides and a reduction in Alistipes taxa compared with low proteolytic activity mice. High proteolytic activity IBS patients had lower fecal ß-glucuronidase activity and end-products of bilirubin deconjugation. Mice treated with unconjugated bilirubin and ß-glucuronidase-overexpressing E. coli significantly reduced proteolytic activity, while inhibitors of microbial ß-glucuronidases increased proteolytic activity. Together, these data define a disease-relevant mechanism of host-microbial interaction that maintains protease homoeostasis in the gut.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Animals , Bilirubin , Endopeptidases , Escherichia coli , Gastrointestinal Microbiome/physiology , Glucuronidase/genetics , Humans , Mice , Serine Proteases/genetics
17.
ACS Appl Bio Mater ; 5(3): 1202-1209, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35148052

ABSTRACT

Developing green or red light-activated drug delivery systems (DDSs) for cancer treatment is highly desirable. Herein, we have reported a green light-responsive single component-based organic fluorescence nano-DDS by simply anchoring 2-hydroxy-6-naphthacyl (phototrigger) on both sides of the 1,5-diaminonaphthalene (DAN) chromophore. This green light (λ ≥ 500 nm)-activated DDS released two equivalents of the anticancer drug (valproic acid) in a spatio-temporally controlled manner. Our photoresponsive DDS [DAN-bis(HO-Naph-VPA)] exhibited interesting properties such as excited-state intramolecular proton transfer (ESIPT) accompanied with aggregation-induced emission (AIE) phenomena. AIE initiated the photorelease, and ESIPT enhanced the rate of the photorelease. Further, in vitro studies revealed that our green light-activated nano-DDS exhibited good cytocompatibility, excellent cellular internalization, and effective cancer cell killing ability.


Subject(s)
Antineoplastic Agents , Nanoparticle Drug Delivery System , Antineoplastic Agents/pharmacology , Drug Delivery Systems , Fluorescence , Protons
18.
FEBS J ; 289(13): 3770-3788, 2022 07.
Article in English | MEDLINE | ID: mdl-35066976

ABSTRACT

The bacterial heterodimeric ATP-binding cassette (ABC) multidrug exporter PatAB has a critical role in conferring antibiotic resistance in multidrug-resistant infections by Streptococcus pneumoniae. As with other heterodimeric ABC exporters, PatAB contains two transmembrane domains that form a drug translocation pathway for efflux and two nucleotide-binding domains that bind ATP, one of which is hydrolysed during transport. The structural and functional elements in heterodimeric ABC multidrug exporters that determine interactions with drugs and couple drug binding to nucleotide hydrolysis are not fully understood. Here, we used mass spectrometry techniques to determine the subunit stoichiometry in PatAB in our lactococcal expression system and investigate locations of drug binding using the fluorescent drug-mimetic azido-ethidium. Surprisingly, our analyses of azido-ethidium-labelled PatAB peptides point to ethidium binding in the PatA nucleotide-binding domain, with the azido moiety crosslinked to residue Q521 in the H-like loop of the degenerate nucleotide-binding site. Investigation into this compound and residue's role in nucleotide hydrolysis pointed to a reduction in the activity for a Q521A mutant and ethidium-dependent inhibition in both mutant and wild type. Most transported drugs did not stimulate or inhibit nucleotide hydrolysis of PatAB in detergent solution or lipidic nanodiscs. However, further examples for ethidium-like inhibition were found with propidium, novobiocin and coumermycin A1, which all inhibit nucleotide hydrolysis by a non-competitive mechanism. These data cast light on potential mechanisms by which drugs can regulate nucleotide hydrolysis by PatAB, which might involve a novel drug binding site near the nucleotide-binding domains.


Subject(s)
ATP-Binding Cassette Transporters , Streptococcus pneumoniae , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism , Ethidium/metabolism , Hydrolysis , Nucleotides/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism
20.
Vet World ; 14(10): 2817-2826, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34903944

ABSTRACT

The recent coronavirus disease (COVID-19) outbreak is one of its kind in the history of public health that has created a major global threat. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a zoonotic source and hence, reverse zoonosis (disease transmission from humans to animals) increases the risk and rate of SARS-CoV-2 infection. Serological and molecular analyses and experimental infection studies have identified SARS-CoV-2 infection in several animal species in various countries. Different domestic and wild animals, including cats, dogs, tigers, lions, puma, snow leopard, minks, and pet ferrets, are infected naturally with SARS-CoV-2, mostly through suspected human to animal transmission. In addition, in vivo experimental inoculation studies have reported the susceptibility of cats, ferrets, hamsters, Egyptian fruit bats, and non-human primates to the virus. These experimentally infected species are found to be capable of virus transmission to co-housed animals of the same species. However, SARS-CoV-2 showed poor replication in livestock species such as pigs, chickens, and ducks with no detection of viral RNA after the animals were deliberately inoculated with the virus or exposed to the infected animals. As the pets/companion animals are more susceptible to COVID-19, the infection in animals needs an in-depth and careful study to avoid any future transmissions. The one health approach is the best inter-disciplinary method to understand the consequences of viral spread and prevention in novel host populations for the betterment of public health. Further in this review, we will explain in detail the different natural and experimentally induced cases of human to animal SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...