Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Neuron ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38878768

ABSTRACT

NMDA receptors (NMDARs) are ionotropic receptors crucial for brain information processing. Yet, evidence also supports an ion-flux-independent signaling mode mediating synaptic long-term depression (LTD) and spine shrinkage. Here, we identify AETA (Aη), an amyloid-ß precursor protein (APP) cleavage product, as an NMDAR modulator with the unique dual regulatory capacity to impact both signaling modes. AETA inhibits ionotropic NMDAR activity by competing with the co-agonist and induces an intracellular conformational modification of GluN1 subunits. This favors non-ionotropic NMDAR signaling leading to enhanced LTD and favors spine shrinkage. Endogenously, AETA production is increased by in vivo chemogenetically induced neuronal activity. Genetic deletion of AETA production alters NMDAR transmission and prevents LTD, phenotypes rescued by acute exogenous AETA application. This genetic deletion also impairs contextual fear memory. Our findings demonstrate AETA-dependent NMDAR activation (ADNA), characterizing AETA as a unique type of endogenous NMDAR modulator that exerts bidirectional control over NMDAR signaling and associated information processing.

2.
Proc Natl Acad Sci U S A ; 121(25): e2318838121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870057

ABSTRACT

Hertwig's rule states that cells divide along their longest axis, usually driven by forces acting on the mitotic spindle. Here, we show that in contrast to this rule, microtubule-based pulling forces in early Caenorhabditis elegans embryos align the spindle with the short axis of the cell. We combine theory with experiments to reveal that in order to correct this misalignment, inward forces generated by the constricting cytokinetic ring rotate the entire cell until the spindle is aligned with the cell's long axis. Experiments with slightly compressed mouse zygotes indicate that this cytokinetic ring-driven mechanism of ensuring Hertwig's rule is general for cells capable of rotating inside a confining shell, a scenario that applies to early cell divisions of many systems.


Subject(s)
Caenorhabditis elegans , Spindle Apparatus , Animals , Caenorhabditis elegans/embryology , Mice , Spindle Apparatus/metabolism , Microtubules/metabolism , Cytokinesis/physiology , Rotation , Zygote/metabolism , Zygote/cytology , Zygote/growth & development , Embryo, Nonmammalian/cytology , Embryonic Development/physiology , Models, Biological
3.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791102

ABSTRACT

Congenital Adrenal Hyperplasia (CAH) is an autosomal recessive disorder impairing cortisol synthesis due to reduced enzymatic activity. This leads to persistent adrenocortical overstimulation and the accumulation of precursors before the blocked enzymatic step. The predominant form of CAH arises from mutations in CYP21A2, causing 21-hydroxylase deficiency (21-OHD). Despite emerging treatment options for CAH, it is not always possible to physiologically replace cortisol levels and counteract hyperandrogenism. Moreover, there is a notable absence of an effective in vivo model for pre-clinical testing. In this work, we developed an animal model for CAH with the clinically relevant point mutation p.R484Q in the previously humanized CYP21A2 mouse strain. Mutant mice showed hyperplastic adrenals and exhibited reduced levels of corticosterone and 11-deoxycorticosterone and an increase in progesterone. Female mutants presented with higher aldosterone concentrations, but blood pressure remained similar between wildtype and mutant mice in both sexes. Male mutant mice have normal fertility with a typical testicular appearance, whereas female mutants are infertile, exhibit an abnormal ovarian structure, and remain in a consistent diestrus phase. Conclusively, we show that the animal model has the potential to contribute to testing new treatment options and to prevent comorbidities that result from hormone-related derangements and treatment-related side effects in CAH patients.


Subject(s)
Adrenal Hyperplasia, Congenital , Disease Models, Animal , Steroid 21-Hydroxylase , Animals , Adrenal Hyperplasia, Congenital/genetics , Adrenal Hyperplasia, Congenital/pathology , Adrenal Hyperplasia, Congenital/metabolism , Steroid 21-Hydroxylase/genetics , Steroid 21-Hydroxylase/metabolism , Mice , Female , Male , Humans , Corticosterone/metabolism , Corticosterone/blood , Aldosterone/metabolism , Adrenal Glands/metabolism , Adrenal Glands/pathology , Mutation , Progesterone/metabolism
4.
Nat Commun ; 15(1): 3468, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658571

ABSTRACT

Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-αKG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size.


Subject(s)
GTPase-Activating Proteins , Glutamate Dehydrogenase , Neocortex , Neocortex/metabolism , Neocortex/embryology , Neocortex/growth & development , Neocortex/cytology , Humans , Animals , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Ketoglutaric Acids/metabolism , Neuroglia/metabolism , Glutamic Acid/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mice , Citric Acid Cycle/genetics , Female
5.
Nat Metab ; 5(8): 1364-1381, 2023 08.
Article in English | MEDLINE | ID: mdl-37430025

ABSTRACT

Inflammation in the central nervous system can impair the function of neuronal mitochondria and contributes to axon degeneration in the common neuroinflammatory disease multiple sclerosis (MS). Here we combine cell-type-specific mitochondrial proteomics with in vivo biosensor imaging to dissect how inflammation alters the molecular composition and functional capacity of neuronal mitochondria. We show that neuroinflammatory lesions in the mouse spinal cord cause widespread and persisting axonal ATP deficiency, which precedes mitochondrial oxidation and calcium overload. This axonal energy deficiency is associated with impaired electron transport chain function, but also an upstream imbalance of tricarboxylic acid (TCA) cycle enzymes, with several, including key rate-limiting, enzymes being depleted in neuronal mitochondria in experimental models and in MS lesions. Notably, viral overexpression of individual TCA enzymes can ameliorate the axonal energy deficits in neuroinflammatory lesions, suggesting that TCA cycle dysfunction in MS may be amendable to therapy.


Subject(s)
Multiple Sclerosis , Neuroinflammatory Diseases , Animals , Mice , Axons/pathology , Multiple Sclerosis/pathology , Neurons/pathology , Inflammation/pathology
6.
J Cell Biol ; 222(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36716168

ABSTRACT

Hepatocytes grow their apical surfaces anisotropically to generate a 3D network of bile canaliculi (BC). BC elongation is ensured by apical bulkheads, membrane extensions that traverse the lumen and connect juxtaposed hepatocytes. We hypothesize that apical bulkheads are mechanical elements that shape the BC lumen in liver development but also counteract elevated biliary pressure. Here, by resolving their structure using STED microscopy, we found that they are sealed by tight junction loops, connected by adherens junctions, and contain contractile actomyosin, characteristics of mechanical function. Apical bulkheads persist at high pressure upon microinjection of fluid into the BC lumen, and laser ablation demonstrated that they are under tension. A mechanical model based on ablation results revealed that apical bulkheads double the pressure BC can hold. Apical bulkhead frequency anticorrelates with BC connectivity during mouse liver development, consistent with predicted changes in biliary pressure. Our findings demonstrate that apical bulkheads are load-bearing mechanical elements that could protect the BC network against elevated pressure.


Subject(s)
Bile Canaliculi , Bile , Hepatocytes , Animals , Mice , Adherens Junctions , Bile Canaliculi/physiology , Hepatocytes/physiology , Liver , Tight Junctions , Actomyosin , Pressure , Stress, Mechanical
7.
Haematologica ; 108(2): 490-501, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35950533

ABSTRACT

Remodeling of the bone marrow microenvironment in chronic inflammation and in aging reduces hematopoietic stem cell (HSC) function. To assess the mechanisms of this functional decline of HSC and find strategies to counteract it, we established a model in which the Sfrp1 gene was deleted in Osterix+ osteolineage cells (OS1Δ/Δ mice). HSC from these mice showed severely diminished repopulating activity with associated DNA damage, enriched expression of the reactive oxygen species pathway and reduced single-cell proliferation. Interestingly, not only was the protein level of Catenin beta-1 (bcatenin) elevated, but so was its association with the phosphorylated co-activator p300 in the nucleus. Since these two proteins play a key role in promotion of differentiation and senescence, we inhibited in vivo phosphorylation of p300 through PP2A-PR72/130 by administration of IQ-1 in OS1Δ/Δ mice. This treatment not only reduced the b-catenin/phosphop300 association, but also decreased nuclear p300. More importantly, in vivo IQ-1 treatment fully restored HSC repopulating activity of the OS1Δ/Δ mice. Our findings show that the osteoprogenitor Sfrp1 is essential for maintaining HSC function. Furthermore, pharmacological downregulation of the nuclear b-catenin/phospho-p300 association is a new strategy to restore poor HSC function.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Mice , Animals , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Bone Marrow/metabolism , Aging , Reactive Oxygen Species/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
8.
J Pathol ; 259(1): 10-20, 2023 01.
Article in English | MEDLINE | ID: mdl-36210634

ABSTRACT

Chromatin licensing and DNA replication factor 1 (CDT1), a protein of the pre-replicative complex, is essential for loading the minichromosome maintenance complex (MCM) helicases onto the origins of DNA replication. While several studies have shown that dysregulation of CDT1 expression causes re-replication and DNA damage in cell lines, and CDT1 is highly expressed in several human cancers, whether CDT1 deregulation is sufficient to enhance tumorigenesis in vivo is currently unclear. To delineate its role in vivo, we overexpressed Cdt1 in the mouse colon and induced carcinogenesis using azoxymethane/dextran sodium sulfate (AOM/DSS). Here, we show that mice overexpressing Cdt1 develop a significantly higher number of tumors with increased tumor size, and more severe dysplastic changes (high-grade dysplasia), compared with control mice under the same treatment. These tumors exhibited an increased growth rate, while cells overexpressing Cdt1 loaded greater amounts of Mcm2 onto chromatin, demonstrating origin overlicensing. Adenomas overexpressing Cdt1 showed activation of the DNA damage response (DDR), apoptosis, formation of micronuclei, and chromosome segregation errors, indicating that aberrant expression of Cdt1 results in increased genomic and chromosomal instability in vivo, favoring cancer development. In line with these results, high-level expression of CDT1 in human colorectal cancer tissue specimens and colorectal cancer cell lines correlated significantly with increased origin licensing, activation of the DDR, and microsatellite instability (MSI). © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Colorectal Neoplasms , DNA Replication , DNA-Binding Proteins , Animals , Humans , Mice , Carcinogenesis/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , DNA Damage , DNA-Binding Proteins/metabolism
9.
Sci Adv ; 8(30): eabn7702, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35905187

ABSTRACT

Since the ancestors of modern humans separated from those of Neanderthals, around 100 amino acid substitutions spread to essentially all modern humans. The biological significance of these changes is largely unknown. Here, we examine all six such amino acid substitutions in three proteins known to have key roles in kinetochore function and chromosome segregation and to be highly expressed in the stem cells of the developing neocortex. When we introduce these modern human-specific substitutions in mice, three substitutions in two of these proteins, KIF18a and KNL1, cause metaphase prolongation and fewer chromosome segregation errors in apical progenitors of the developing neocortex. Conversely, the ancestral substitutions cause shorter metaphase length and more chromosome segregation errors in human brain organoids, similar to what we find in chimpanzee organoids. These results imply that the fidelity of chromosome segregation during neocortex development improved in modern humans after their divergence from Neanderthals.


Subject(s)
Hominidae , Neanderthals , Animals , Brain , Chromosome Segregation/genetics , Humans , Kinesins , Metaphase , Mice , Neanderthals/genetics
10.
J Endocr Soc ; 6(6): bvac062, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35592511

ABSTRACT

Steroid 21-hydroxylase is an enzyme of the steroid pathway that is involved in the biosynthesis of cortisol and aldosterone by hydroxylation of 17α-hydroxyprogesterone and progesterone at the C21 position. Mutations in CYP21A2, the gene encoding 21-hydroxylase, cause the most frequent form of the autosomal recessive disorder congenital adrenal hyperplasia (CAH). In this study, we generated a humanized 21-hydroxylase mouse model as the first step to the generation of mutant mice with different CAH-causing mutations. We replaced the mouse Cyp21a1 gene with the human CYP21A2 gene using homologous recombination in combination with CRISPR/Cas9 technique. The aim of this study was to characterize the new humanized mouse model. All results described are related to the homozygous animals in comparison with wild-type mice. We show analogous expression patterns of human 21-hydroxylase by the murine promoter and regulatory elements in comparison to murine 21-hydroxylase in wild-type animals. As expected, no Cyp21a1 transcript was detected in homozygous CYP21A2 adrenal glands. Alterations in adrenal gene expression were observed for Cyp11a1, Star, and Cyb11b1. These differences, however, were not pathological. Outward appearance, viability, growth, and fertility were not affected in the humanized CYP21A2 mice. Plasma steroid levels of corticosterone and aldosterone showed no pathological reduction. In addition, adrenal gland morphology and zonation were similar in both the humanized and the wild-type mice. In conclusion, humanized homozygous CYP21A2 mice developed normally and showed no differences in histological analyses, no reduction in adrenal and gonadal gene expression, or in plasma steroids in comparison with wild-type littermates.

12.
Sci Adv ; 7(51): eabl5408, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34919439

ABSTRACT

Existing electronically integrated catheters rely on the manual assembly of separate components to integrate sensing and actuation capabilities. This strongly impedes their miniaturization and further integration. Here, we report an electronically integrated self-assembled microcatheter. Electronic components for sensing and actuation are embedded into the catheter wall through the self-assembly of photolithographically processed polymer thin films. With a diameter of only about 0.1 mm, the catheter integrates actuated digits for manipulation and a magnetic sensor for navigation and is capable of targeted delivery of liquids. Fundamental functionalities are demonstrated and evaluated with artificial model environments and ex vivo tissue. Using the integrated magnetic sensor, we develop a strategy for the magnetic tracking of medical tools that facilitates basic navigation with a high resolution below 0.1 mm. These highly flexible and microsized integrated catheters might expand the boundary of minimally invasive surgery and lead to new biomedical applications.

13.
Sci Immunol ; 6(65): eabh2095, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34767456

ABSTRACT

Balanced control of T cell signaling is critical for adaptive immunity and protection from autoimmunity. By combining genetically engineered mouse models, biochemical analyses and pharmacological interventions, we describe an unexpected dual role of the tumor necrosis factor receptor­associated factor 6 (TRAF6) E3 ligase as both a positive and negative regulator of mucosa-associated lymphoid tissue 1 (MALT1) paracaspase. Although MALT1-TRAF6 recruitment is indispensable for nuclear factor κB signaling in activated T cells, TRAF6 counteracts basal MALT1 protease activity in resting T cells. In mice, loss of TRAF6-mediated homeostatic suppression of MALT1 protease leads to severe autoimmune inflammation, which is completely reverted by genetic or therapeutic inactivation of MALT1 protease function. Thus, TRAF6 functions as a molecular brake for MALT1 protease in resting T cells and a signaling accelerator for MALT1 scaffolding in activated T cells, revealing that TRAF6 controls T cell activation in a switch-like manner. Our findings have important implications for development and treatment of autoimmune diseases.


Subject(s)
Homeostasis/immunology , Inflammation/immunology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/immunology , TNF Receptor-Associated Factor 6/immunology , Animals , Female , Mice , Mice, Inbred C57BL , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , TNF Receptor-Associated Factor 6/genetics
14.
Transl Psychiatry ; 11(1): 494, 2021 09 25.
Article in English | MEDLINE | ID: mdl-34564703

ABSTRACT

The schizophrenia-risk gene Tcf4 has been widely studied in the context of brain development using mouse models of haploinsufficiency, in utero knockdown and embryonic deletion. However, Tcf4 continues to be abundantly expressed in adult brain neurons where its functions remain unknown. Given the importance of Tcf4 in psychiatric diseases, we investigated its role in adult neurons using cell-specific deletion and genetic tracing in adult animals. Acute loss of Tcf4 in adult excitatory neurons in vivo caused hyperexcitability and increased dendritic complexity of neurons, effects that were distinct from previously observed effects in embryonic-deficiency models. Interestingly, transcriptomic analysis of genetically traced adult-deleted FACS-sorted Tcf4-knockout neurons revealed that Tcf4 targets in adult neurons are distinct from those in the embryonic brain. Meta-analysis of the adult-deleted neuronal transcriptome from our study with the existing datasets of embryonic Tcf4 deficiencies revealed plasma membrane and ciliary genes to underlie Tcf4-mediated structure-function regulation specifically in adult neurons. The profound changes both in the structure and excitability of adult neurons upon acute loss of Tcf4 indicates that proactive regulation of membrane-related processes underlies the functional and structural integrity of adult neurons. These findings not only provide insights for the functional relevance of continual expression of a psychiatric disease-risk gene in the adult brain but also identify previously unappreciated gene networks underpinning mature neuronal regulation during the adult lifespan.


Subject(s)
Schizophrenia , Animals , Brain , Disease Models, Animal , Haploinsufficiency , Mice , Neurons , Schizophrenia/genetics
16.
Matrix Biol ; 102: 37-69, 2021 08.
Article in English | MEDLINE | ID: mdl-34508852

ABSTRACT

Dysregulation of proteolytic enzymes has huge impact on epidermal homeostasis, which can result in severe pathological conditions such as fibrosis or Netherton syndrome. The metalloprotease meprin ß was found to be upregulated in hyperproliferative skin diseases. AP-1 transcription factor complex has been reported to induce Mep1b expression. Since AP-1 and its subunit fos-related antigen 2 (fra-2) are associated with the onset and progression of psoriasis, we wanted to investigate if this could partially be attributed to increased meprin ß activity. Here, we demonstrate that fra-2 transgenic mice show increased meprin ß expression and proteolytic activity in the epidermis. To avoid influence by other fra-2 regulated genes, we additionally generated a mouse model that enabled tamoxifen-inducible expression of meprin ß under the Krt5-promotor to mimic the pathological condition. Interestingly, induced meprin ß expression in the epidermis resulted in hyperkeratosis, hair loss and mottled pigmentation of the skin. Employing N-terminomics revealed syndecan-1 as a substrate of meprin ß in skin. Shedding of syndecan-1 at the cell surface caused delayed calcium-induced differentiation and impaired adhesion of keratinocytes, which was blocked by the meprin ß inhibitor fetuin-B.


Subject(s)
Metalloendopeptidases , Syndecan-1 , Animals , Cell Differentiation , Cell Membrane , Keratinocytes , Metalloendopeptidases/genetics , Mice
17.
J Clin Invest ; 131(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34403362

ABSTRACT

The secreted protein developmental endothelial locus 1 (DEL-1) regulates inflammatory cell recruitment and protects against inflammatory pathologies in animal models. Here, we investigated DEL-1 in inflammatory arthritis using collagen-induced arthritis (CIA) and collagen Ab-induced arthritis (CAIA) models. In both models, mice with endothelium-specific overexpression of DEL-1 were protected from arthritis relative to WT controls, whereas arthritis was exacerbated in DEL-1-deficient mice. Compared with WT controls, mice with collagen VI promoter-driven overexpression of DEL-1 in mesenchymal cells were protected against CIA but not CAIA, suggesting a role for DEL-1 in the induction of the arthritogenic Ab response. Indeed, DEL-1 was expressed in perivascular stromal cells of the lymph nodes and inhibited Tfh and germinal center B cell responses. Mechanistically, DEL-1 inhibited DC-dependent induction of Tfh cells by targeting the LFA-1 integrin on T cells. Overall, DEL-1 restrained arthritis through a dual mechanism, one acting locally in the joints and associated with the anti-recruitment function of endothelial cell-derived DEL-1; the other mechanism acting systemically in the lymph nodes and associated with the ability of stromal cell-derived DEL-1 to restrain Tfh responses. DEL-1 may therefore be a promising therapeutic for the treatment of inflammatory arthritis.


Subject(s)
Arthritis, Experimental/prevention & control , Calcium-Binding Proteins/physiology , Cell Adhesion Molecules/physiology , Lymphocyte Activation , T Follicular Helper Cells/immunology , Animals , Cell Differentiation , Female , Germinal Center/immunology , Lymphocyte Function-Associated Antigen-1/physiology , Male , Mice , Mice, Inbred C57BL , Stromal Cells/chemistry , T Follicular Helper Cells/cytology
18.
BMC Genom Data ; 22(1): 23, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193044

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. One of the miRNAs that has been shown to play a role in various pathologies like cancer, neurological disorders and cardiovascular diseases is miRNA-26b. However, these studies only demonstrated rather ambiguous associations without revealing a causal relationship. Therefore, the aim of this study is to establish and validate a mouse model which enables the elucidation of the exact role of miRNA-26b in various pathologies. RESULTS: A miRNA-26b-deficient mouse model was established using homologous recombination and validated using PCR. miRNA-26b-deficient mice did not show any physiological abnormalities and no effects on systemic lipid levels, blood parameters or tissue leukocytes. Using next generation sequencing, the gene expression patterns in miRNA-26b-deficient mice were analyzed and compared to wild type controls. This supported the already suggested role of miRNA-26b in cancer and neurological processes, but also revealed novel associations of miRNA-26b with thermogenesis and allergic reactions. In addition, detailed analysis identified several genes that seem to be highly regulated by miRNA-26b, which are linked to the same pathological conditions, further confirming the role of miRNA-26b in these pathologies and providing a strong validation of our mouse model. CONCLUSIONS: miRNA-26b plays an important role in various pathologies, although causal relationships still have to be established. The described mouse model of miRNA-26b deficiency is a crucial first step towards the identification of the exact role of miRNA-26b in various diseases that could identify miRNA-26b as a promising novel diagnostic or even therapeutic target in a broad range of pathologies.


Subject(s)
MicroRNAs , Neoplasms , Transcriptome , Animals , Disease Models, Animal , High-Throughput Nucleotide Sequencing , Mice , MicroRNAs/genetics , RNA, Messenger
19.
STAR Protoc ; 2(2): 100494, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34189467

ABSTRACT

Interspecies chimerism is a useful tool to study interactions between cells of different genetic makeup in order to elucidate the mechanisms underlying non-cell-autonomous processes, including evolutionary events. However, generating interspecies chimeras with high efficiency and chimerism level remains challenging. Here, we describe a protocol for generating chimeras between mouse and rat. Donor embryonic stem cells of one species are microinjected into early embryos of the other species (recipient), which are implanted into host foster mothers of the recipient species. For complete details on the use and execution of this protocol, please refer to Stepien et al. (2020).


Subject(s)
Chimera , Embryo, Mammalian , Embryonic Stem Cells/cytology , Animals , Blastocyst/cytology , Female , Male , Mice , Microinjections , Rats
20.
Leukemia ; 35(12): 3561-3567, 2021 12.
Article in English | MEDLINE | ID: mdl-33976371

ABSTRACT

Humanized mouse models have become increasingly valuable tools to study human hematopoiesis and infectious diseases. However, human T-cell differentiation remains inefficient. We generated mice expressing human interleukin-7 (IL-7), a critical growth and survival factor for T cells, under the control of murine IL-7 regulatory elements. After transfer of human cord blood-derived hematopoietic stem and progenitor cells, transgenic mice on the NSGW41 background, termed NSGW41hIL7, showed elevated and prolonged human cellularity in the thymus while maintaining physiological ratios of thymocyte subsets. As a consequence, numbers of functional human T cells in the periphery were increased without evidence for pathological lymphoproliferation or aberrant expansion of effector or memory-like T cells. We conclude that the novel NSGW41hIL7 strain represents an optimized mouse model for humanization to better understand human T-cell differentiation in vivo and to generate a human immune system with a better approximation of human lymphocyte ratios.


Subject(s)
Fetal Blood/metabolism , Hematopoietic Stem Cells/metabolism , Interleukin-7/metabolism , T-Lymphocyte Subsets/immunology , Animals , Animals, Genetically Modified , Cell Differentiation/physiology , Fetal Blood/cytology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Humans , Interleukin-7/genetics , Mice , Mice, Transgenic , Organ Specificity , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL