Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.363
Filter
1.
Front Immunol ; 15: 1423764, 2024.
Article in English | MEDLINE | ID: mdl-39091502

ABSTRACT

Background: Sputum immunoglobulin G (Sp-IgG) has been discovered to induce cytolytic extracellular trap cell death in eosinophils, suggesting a potential autoimmune mechanism contributing to asthma. This study aimed to explore the potential origin of Sp-IgG and identify clinically relevant subtypes of Sp-IgG that may indicate autoimmune events in asthma. Methods: This study included 165 asthmatic patients and 38 healthy volunteers. We measured Sp-IgG and its five subtypes against eosinophil inflammatory proteins (Sp-IgGEPs), including eosinophil peroxidase, eosinophil major basic protein, eosinophil-derived neurotoxin, eosinophil cationic protein, and Charcot-Leyden Crystal protein in varying asthma severity. Clinical and Mendelian randomization (MR) analyses were conducted. A positive Sp-IgGEPs signature (Sp-IgGEPs+) was defined when any of the five Sp-IgGEPs values exceeded the predefined cutoff thresholds, calculated as the mean values of healthy controls plus twice the standard deviation. Results: The levels of Sp-IgG and Sp-IgGEPs were significantly elevated in moderate/severe asthma than those in mild asthma/healthy groups (all p < 0.05). Sp-IgG levels were positively correlated with airway eosinophil and Sp-IgGEPs. MR analysis showed causality between eosinophil and IgG (OR = 1.02, 95%CI = 1.00-1.04, p = 0.020), and elevated IgG was a risk factor for asthma (OR = 2.05, 95%CI = 1.00-4.17, p = 0.049). Subjects with Sp-IgGEPs+ exhibited worse disease severity and served as an independent risk factor contributing to severe asthma (adjusted-OR = 5.818, adjusted-95% CI = 2.193-15.431, adjusted-p < 0.001). Receiver operating characteristic curve analysis demonstrated that the combination of Sp-IgGEPs+ with non-allergic status, an ACT score < 15, and age ≥ 45 years, effectively predicted severe asthma (AUC = 0.84, sensitivity = 86.20%, specificity = 67.80%). Conclusion: This study identifies a significant association between airway eosinophilic inflammation, Sp-IgG, and asthma severity. The Sp-IgGEPs panel potentially serves as the specific biomarker reflecting airway autoimmune events in asthma.


Subject(s)
Asthma , Eosinophils , Immunoglobulin G , Sputum , Humans , Asthma/immunology , Asthma/diagnosis , Female , Male , Immunoglobulin G/immunology , Middle Aged , Sputum/immunology , Adult , Eosinophils/immunology , Biomarkers , Severity of Illness Index , Eosinophil Peroxidase/metabolism , Eosinophil Peroxidase/immunology , Case-Control Studies
2.
Sci Rep ; 14(1): 17975, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095525

ABSTRACT

This paper investigated the global attractive set for quaternion-valued neural networks (QVNNs) with leakage delay, time-varying delay, and neutral items. Based on various basic conditions of activation function, the global attractive set and global exponential attractive set of QVNNs are given combined with novel analytical techniques and Lyapunov theory. The QVNNs are studied by a direct method, without any decomposition. The time delay can be non-differential, which makes the results more pragmatic. Restrictions on the activation function of the neutral item are relaxed. The neutral activation function can be bounded or unbounded, which makes the results more practical. Two simulation examples are given to verify the validity of the theory results.

3.
JACS Au ; 4(7): 2564-2577, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39055140

ABSTRACT

As an emerging therapeutic modality, proteolysis targeting chimeras (PROTACs) indiscriminately degrade proteins in both healthy and diseased cells, posing a risk of on-target off-site toxicity in normal tissues. Herein, we present the modular development of enzyme-activatable PROTACs, which utilize enzyme-recognition moieties to block protein degradation activities and can be specifically activated by elevated enzymes in cancer cells to enable cell-selective protein degradation and cancer targeting. We identified the methylene alkoxy carbamate (MAC) unit as an optimal self-immolative linker, possessing high stability and release efficiency for conjugating enzyme-recognition moieties with PROTACs. Leveraging the MAC linker, we developed a series of enzyme-activatable PROTACs, harnessing distinct enzymes for cancer-cell-selective protein degradation. Significantly, we introduced the first dual-enzyme-activatable PROTAC that requires the presence of two cancer-associated enzymes for activation, demonstrating highly selective protein degradation in cancer cells over nonmalignant cells, potent in vivo antitumor efficacy, and no off-tumor toxicity to normal tissues. The broad applicability of enzyme-activatable PROTACs was further demonstrated by caging other PROTACs via the MAC linker to target different proteins and E3 ligases. Our work underscores the substantial potential of enzyme-activatable PROTACs in overcoming the off-site toxicity associated with conventional PROTACs and offers new opportunities for targeted cancer treatment.

4.
Anal Bioanal Chem ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38981912

ABSTRACT

Biomarkers screening is a benefit approach for early diagnosis of major diseases. In this study, magnetic nanoparticles (MNPs) have been utilized as labels to establish a multi-line immunochromatography (MNP-MLIC) for simultaneous detection of carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA 19-9), and alpha-fetoprotein (AFP) in a single serum sample. Under the optimal parameters, the three biomarkers can be rapidly and simultaneously qualitative screening within 15 min by naked eye. As for quantitative detection, the MNP-MLIC test strips were precisely positioned and captured by a smartphone, and signals on the test and control lines were extracted by ImageJ software. The signal ratio of test and control lines has been calculated and used to plot quantitative standard curves with the logarithmic concentration, of which the correlation coefficients are more than 0.99, and the limit of detection for CEA, CA 19-9, and AFP were 0.60 ng/mL, 1.21 U/mL, and 0.93 ng/mL, respectively. The recoveries of blank serum were 75.0 ~ 112.5% with the relative standard deviation ranging from 2.5 to 15.3%, and the specificity investigation demonstrated that the MNP-MLIC is highly specific to the three biomarkers. In conclusion, the developed MNP-MLIC offers a rapid, simple, accurate, and highly specific method for simultaneously detecting multiple biomarkers in serum samples, which provides an efficient and accurate approach for the early diagnosis of diseases.

5.
Article in English | MEDLINE | ID: mdl-39023228

ABSTRACT

The iontronic tactile sensing modality has garnered significant attention due to its exceptional sensitivity, immunity to noise, and versatility in materials. Recently, various formats of iontronic tactile sensors have been developed, including droplets, polymer films, paper, ionic gels, and fabrics. However, the stretchability of the current iontronic pressure sensing fabric is inadequate, hindered by the limited stretchiness of the ionic functional fabric. Incorporating a stretchable tactile sensing implement could enhance the wear comfortability by preventing relative movement and ensuring intimate contact between the sensor and the skin. The research focuses on the development of a stretchable iontronic pressure sensing (SIPS) fabric for monitoring diverse aspects of body health and movement in wearable applications. The tactile sensing structure is generated at the iontronic interface between highly stretchable ionic and conductive fabrics. In particular, the ionic fabric is prepared by coating a layer of polyurethane/ionic liquid gel onto a Spandex fabric. To showcase its remarkable sensitivity, stretchability, and ability to detect diverse body information, several application scenarios have been demonstrated including an elastic wristband for precise pulse wave detection, a flexible belt with multitactile sensing channels for respiration and motion tracking purposes, and a stretchable fabric cuff equipped with a high-resolution sensing array comprising 32 × 32 units for accurate gesture recognition.

6.
Colloids Surf B Biointerfaces ; 242: 114076, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39003848

ABSTRACT

Hollow CuS nanoparticles can achieve photothermal and photodynamic therapy (PDT) in tumor treatment. However, excessive GSH in the tumor cells will consume the reactive oxygen species produced by PDT and reduce the PDT effect. Cisplatin is a broad-spectrum antineoplastic drug that can be used in a variety of tumor treatments. However, cisplatin is cytotoxic to normal cells while it kills tumor cells. Therefore, we construct Pt(IV) complexes loaded hollow CuS nanoparticles to attenuate the toxicity of cisplatin and enhance the PDT effect of the hollow CuS nanoparticles. The nanoparticles were proved to be able to accumulate around the tumor site through the enhanced permeability and retention (EPR) effect to achieve a synergistic chemo/photothermal/photodynamic therapy.

7.
J Cancer ; 15(14): 4668-4685, 2024.
Article in English | MEDLINE | ID: mdl-39006087

ABSTRACT

Background: Double plant homeodomain finger 2 (DPF2), belonging to the d4 family of structural domains, has been associated with various human malignancies. However, its impact on hepatocellular carcinoma (HCC) remains unclear. The objective of this study is to elucidate the role of DPF2 in the diagnosis and prognosis of HCC. Methods: DPF2 gene expression in HCC and adjacent tissues was analyzed using Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, validated by immunohistochemical staining of Guangxi specimens and data from the Human Protein Atlas (HPA). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to identify DPF2's potential pathways and functions in HCC. DPF2's mutation and methylation statuses were assessed via cBioPortal and MethSurv. The association between DPF2 and immune infiltration was investigated by TIMER. The prognostic value of DPF2 in HCC was established through Kaplan-Meier and Cox regression analyses. Results: DPF2 levels were significantly higher in HCC than normal tissues (p<0.001), correlating with more severe HCC features (p<0.05). Higher DPF2 expression predicted poorer overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). DPF2 involvement was noted in critical signaling pathways including the cell cycle and Wnt. It also correlated with T helper cells, Th2 cells, and immune checkpoints like CTLA-4, PD-1, and PD-L1. Conclusion: High DPF2 expression, associated with poor HCC prognosis, may disrupt tumor immune balance and promote immune evasion. DPF2 could potentially be utilized as a biomarker for diagnosing and prognosticating hepatocellular carcinoma.

8.
Front Endocrinol (Lausanne) ; 15: 1302436, 2024.
Article in English | MEDLINE | ID: mdl-39036051

ABSTRACT

Background: Pancreatic cancer (PC) is a prevalent malignancy within the digestive system, with diabetes recognized as one of its well-established risk factors. Methods: Data on PC mortality attributed to high fasting blood sugar were retrieved from the Global Burden of Disease (GBD) study 2019 online database. To assess the temporal trends of PC burden attributable to high fasting plasma glucose (HFPG), estimated annual percentage changes (EAPCs) for age-standardized death rates (ASDRs) between 1990 and 2019 were determined using a generalized linear model. Furthermore, a Bayesian age-period-cohort (BAPC) model using the integrated nested Laplacian approximation algorithm was employed to project the disease burden over the next 20 years. Results: Globally, the crude death number of PC attributable to HFPG almost tripled (from 13,065.7 in 1990 to 48,358.5 in 2019) from 1990 to 2019, and the ASDR increased from 0.36/100,000 to 0.61/100,000 with an EAPC of 2.04 (95% CI 1.91-2.16). The population aged ≥70 years accounted for nearly 60% of total deaths in 2019 and experienced a more significant increase, with the death number increasing approximately fourfold and the ASDR increasing annually by 2.65%. In regions with different sociodemographic indexes (SDIs), the highest disease burden was observed in the high-SDI region, whereas more pronounced increasing trends in ASDR were observed in the low to middle-SDI, low-SDI, and middle-SDI regions. Additionally, a significantly negative association was found between EAPCs and ASDRs of PC attributable to HFPG from 1990 to 2019. Moreover, the BAPC model predicts that ASDR and age-standardized disability-adjusted life-years (DALYs) rate for PC attributed to HFPG was projected to increase obviously for men and women from 2019 to 2040. Conclusions: The burden of PC attributed to HFPG has increased globally over the past three decades, with the elderly population and high-SDI regions carrying a relatively greater disease burden, but more adverse trends observed in low-SDI areas. Furthermore, the burden is projected to continue increasing over the next 20 years. Hence, more tailored prevention methodologies should be established to mitigate this increasing trend.


Subject(s)
Blood Glucose , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/epidemiology , Male , Female , Aged , Middle Aged , Blood Glucose/analysis , Fasting/blood , Adult , Risk Factors , Aged, 80 and over , Global Burden of Disease/trends , Mortality/trends
9.
Dalton Trans ; 53(29): 12291-12300, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38984478

ABSTRACT

Photocatalytic ammonia production holds immense promise as an environmentally sustainable approach to nitrogen fixation. In this study, In2O3/In2S3-ZnCdS ternary heterostructures were successfully constructed through an innovative in situ anion exchange process, coupled with a low-temperature hydrothermal method for ZnCdS (ZCS) incorporation. The resulting In2O3/In2S3-ZCS photocatalyst was proved to be highly efficient in converting N2 to NH3 under mild conditions, eliminating the need for sacrificial agents or precious metal catalysts. Notably, the NH4+ yield of In2O3/In2S3-0.5ZCS reached a significant level of 71.2 µmol g-1 h-1, which was 10.47 times higher than that of In2O3 (6.8 µmol g-1 h-1) and 3.22 times higher than that of In2O3/In2S3 (22.1 µmol g-1 h-1). This outstanding performance can be attributed to the ternary heterojunction configuration, which significantly extends the lifetime of photogenerated carriers and enhances the spatial separation of electrons and holes. The synergistic interplay between CdZnS, In2S3, and In2O3 in the heterojunction facilitates electron transport, thereby boosting the rate of the photocatalytic nitrogen fixation reaction. Our study not only validates the efficacy of ternary heterojunctions in photocatalytic nitrogen fixation but also offers valuable insights for the design and construction of such catalysts for future applications.

10.
Water Res ; 261: 122044, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972237

ABSTRACT

Mercury (Hg) in runoff water poses significant ecological risks to aquatic ecosystems that can affect organisms. However, accurately identifying the sources and transformation processes of Hg in runoff water is challenging due to complex natural conditions. This study provides a comprehensive investigation of Hg dynamics in water from rainfall to runoff. The Hg isotope fractionation in water was characterized, which allows accurate quantification of Hg sources, transport, and transformations in rainfall-runoff processes. Δ200Hg and corrected Δ199Hg values can serve as reliable tracers for identifying Hg sources in the runoff water and the variation of δ202Hg can be explained by Hg transformation processes. During runoff migration processes, Hg from rainfall is rapidly absorbed on the land surface, while terrestrial Hg entering the water by the dissolution process becomes the primary component of dissolved mercury (DHg). Besides the dissolution and adsorption, microbial Hg(II) reduction and demethylation of MeHg were dominant processes for DHg in the runoff water that flows through the rice paddies, while photochemical Hg(II) reduction was the dominant process for DHg in the runoff water with low water exchange rates. Particulate Hg (PHg) in runoff water is dominantly originated by the terrestrial material and derived from the dissolution and adsorption process. Tracking sources and transformations of Hg in runoff water during the rainfall-runoff process provides a basis for studying Hg pollution in larger water bodies under complex environmental factors.

11.
Ecotoxicol Environ Saf ; 281: 116661, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38954907

ABSTRACT

OBJECTIVE: Baicalin has antioxidative, antiviral, and anti-inflammatory properties. However, its ability to alleviate oxidative stress (OS) and DNA damage in liver cells exposed to aflatoxin B1 (AFB1), a highly hepatotoxic compound, remains uncertain. In this study, the protective effects of baicalin on AFB1-induced hepatocyte injury and the mechanisms underlying those effects were investigated. METHODS: Stable cell lines expressing CYP3A4 were established using lentiviral vectors to assess oxidative stress levels by conducting assays to determine the content of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Additionally, DNA damage was evaluated by 8-hydroxy-2-deoxyguanosine (8-OHdG) and comet assays. Transcriptome sequencing, molecular docking, and in vitro experiments were conducted to determine the mechanisms underlying the effects of baicalin on AFB1-induced hepatocyte injury. In vivo, a rat model of hepatocyte injury induced by AFB1 was used to evaluate the effects of baicalin. RESULTS: In vitro, baicalin significantly attenuated AFB1-induced injury caused due to OS, as determined by a decrease in ROS, MDA, and SOD levels. Baicalin also considerably decreased AFB1-induced DNA damage in hepatocytes. This protective effect of baicalin was found to be closely associated with the TP53-mediated ferroptosis pathway. To elaborate, baicalin physically interacts with P53, leading to the suppression of the expression of GPX4 and SLC7A11, which in turn inhibits ferroptosis. In vivo findings showed that baicalin decreased DNA damage and ferroptosis in AFB1-treated rat liver tissues, as determined by a decrease in the expression of γ-H2AX and an increase in GPX4 and SLC7A11 levels. Overexpression of TP53 weakened the protective effects of baicalin. CONCLUSIONS: Baicalin can alleviate AFB1-induced OS and DNA damage in liver cells via the TP53-mediated ferroptosis pathway. In this study, a theoretical foundation was established for the use of baicalin in protecting the liver from the toxic effects of AFB1.


Subject(s)
Aflatoxin B1 , Ferroptosis , Flavonoids , Hepatocytes , Tumor Suppressor Protein p53 , Flavonoids/pharmacology , Aflatoxin B1/toxicity , Ferroptosis/drug effects , Hepatocytes/drug effects , Animals , Tumor Suppressor Protein p53/metabolism , Rats , Oxidative Stress/drug effects , DNA Damage/drug effects , Male , Protective Agents/pharmacology , Rats, Sprague-Dawley , Humans , Reactive Oxygen Species/metabolism
12.
J Colloid Interface Sci ; 675: 52-63, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38964124

ABSTRACT

Construction of hierarchical architecture with suitable band alignment for graphitic carbon nitride (g-C3N4) played a pivotal role in enhancing the efficiency of photocatalysts. In this study, a novel attapulgite-intercalated g-C3N4/ZnIn2S4 nanocomposite material (ZIS/CN/ATP, abbreviated as ZCA) was successfully synthesized using the freeze-drying technique, thermal polymerization, and a simple low-temperature hydrothermal method. Attapulgite (ATP) was intercalated into g-C3N4 to effectively regulate its interlayer structure. The results reveal a substantial enlargement of its internal space, thereby facilitating the provision of additional active sites for improved dispersibility of ZnIn2S4. Notably, the optimized photocatalyst, comprising a mass ratio of ATP, g-C3N4, and ZnIn2S4 at 1:1:2.5 respectively, achieves an outstanding hydrogen evolution rate of 3906.15 µmol g-1h-1, without the need for a Pt co-catalyst. This rate surpasses that of pristine g-C3N4 by a factor of 475 and ZnIn2S4 by a factor of 5, representing a significant improvement in performance. This significant enhancement can be primarily attributed to the higher specific surface area, richer active sites, broadened light response range, and efficient interfacial charge transfer channels of the ZCA composite photocatalyst. Furthermore, the Z-scheme photocatalytic mechanism for the sandwich-like layered structure heterojunction was thoroughly investigated using diverse characterization techniques. This work offers new insights for enhancing photocatalytic performance through the expanded utilization of natural minerals, paving the way for future advancements in this field.

13.
iScience ; 27(8): 110412, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39081291

ABSTRACT

Long-lived individuals have been extensively studied as a model to investigate the role of the gut microbiota in aging, but their gut fungi remain almost unexplored. Here, we recruited a community-dwelling cohort of 251 participants (24-108 years, including 47 centenarians) from Guangxi in China to characterize the gut mycobiome signatures. We found gut mycobiome markedly varied during aging and determined aging as a predominant factor driving these variations. For long-lived individuals, core taxa, including Penicillium and Aspergillus, were maintained and Candida enterotype was enriched when compared with old counterparts. Individuals with this enterotype were more likely to possess Bacteroides enterotype enriched in young and centenarians. Moreover, the drivers from Candida enterotype were positively linked with the bacteria components dominated in Bacteroides enterotype. We also identified potentially beneficial yeasts-enriched features to differentiate long-lived individuals from others. Our findings suggest that the gut mycobiome develops with aging, and long-lived individuals possess unique fungal signatures.

14.
Front Pharmacol ; 15: 1414675, 2024.
Article in English | MEDLINE | ID: mdl-38846095

ABSTRACT

Introduction: Ephedra sinica polysaccharide (ESP) exerts substantial therapeutic effects on rheumatoid arthritis (RA). However, the mechanism through which ESP intervenes in RA remains unclear. A close correlation has been observed between enzymes and derivatives in the gut microbiota and the inflammatory immune response in RA. Methods: A type II collagen-induced arthritis (CIA) mice model was treated with Ephedra sinica polysaccharide. The therapeutic effect of ESP on collagen-induced arthritis mice was evaluated. The anti-inflammatory and cartilage-protective effects of ESP were also evaluated. Additionally, metagenomic sequencing was performed to identify changes in carbohydrate-active enzymes and resistance genes in the gut microbiota of the ESP-treated CIA mice. Liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry were performed to observe the levels of serum metabolites and short-chain fatty acids in the gut. Spearman's correlational analysis revealed a correlation among the gut microbiota, antibiotic-resistance genes, and microbiota-derived metabolites. Results: ESP treatment significantly reduced inflammation levels and cartilage damage in the CIA mice. It also decreased the levels of pro-inflammatory cytokines interleukin (IL)-6, and IL-1-ß and protected the intestinal mucosal epithelial barrier, inhibiting inflammatory cell infiltration and mucosal damage. Here, ESP reduced the TLR4, MyD88, and TRAF6 levels in the synovium, inhibited the p65 expression and pp65 phosphorylation in the NF-κB signaling pathway, and blocked histone deacetylase (HDAC1 and HDAC2) signals. ESP influenced the gut microbiota structure, microbial carbohydrate-active enzymes, and microbial resistance related to resistance genes. ESP increased the serum levels of L-tyrosine, sn-glycero-3-phosphocholine, octadecanoic acid, N-oleoyl taurine, and decreased N-palmitoyl taurine in the CIA mice. Conclusion: ESP exhibited an inhibitory effect on RA. Its action mechanism may be related to the ability of ESP to effectively reduce pro-inflammatory cytokines levels, protect the intestinal barrier, and regulate the interaction between mucosal immune systems and abnormal local microbiota. Accordingly, immune homeostasis was maintained and the inhibition of fibroblast-like synoviocyte (FLS) proliferation through the HDAC/TLR4/NF-κB pathway was mediated, thereby contributing to its anti-inflammatory and immune-modulating effects.

15.
China CDC Wkly ; 6(20): 437-441, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38846358

ABSTRACT

What is already known about this topic?: Pertussis has reemerged as a significant public health threat, primarily due to variations in Bordetella pertussis strains, antimicrobial resistance, and vaccine evasion. What is added by this report?: All isolated strains were identified as ptxA1/ptxC2/ptxP3/prn150/fim2-1/fim3-1/fhaB1/tcfA2 type and exhibited resistance to erythromycin. Two strains showed a deficiency in Fha, thirty in Prn, and one strain exhibited multiple immunogen deficiencies. What are the implications for public health practice?: The emergence and spread of immunogen-deficient strains likely result from prolonged vaccine selection pressure, posing challenges to the efficacy of pertussis vaccines. Additionally, the ongoing dissemination of ptxP3 strains with high-level macrolide resistance presents a significant obstacle to clinical treatment strategies.

16.
Vaccine ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834431

ABSTRACT

Globally, influenza poses a substantial threat to public health, serving as a major contributor to both morbidity and mortality. The current vaccines for seasonal influenza are not optimal. A novel recombinant hemagglutinin (rHA) protein-based quadrivalent seasonal influenza vaccine, SCVC101, has been developed. SCVC101-S contains standard dose protein (15µg of rHA per virus strain) and an oil-in-water adjuvant, CD-A, which enhances the immunogenicity and cross-protection of the vaccine. Preclinical studies in mice, rats, and rhesus macaques demonstrate that SCVC101-S induces robust humoral and cellular immune responses, surpassing those induced by commercially available vaccines. Notably, a single injection with SCVC101-S can induce a strong immune response in macaques, suggesting the potential for a standard-dose vaccination with a recombinant protein influenza vaccine. Furthermore, SCVC101-S induces cross-protection immune responses against heterologous viral strains, indicating broader protection than current vaccines. In conclusion, SCVC101-S has demonstrated safety and efficacy in preclinical settings and warrants further investigation in human clinical trials. Its potential as a valuable addition to the vaccines against seasonal influenza, particularly for the elderly population, is promising.

17.
J Immunother Cancer ; 12(6)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908857

ABSTRACT

BACKGROUND: The dynamic interplay between tyrosine kinase inhibitors (TKIs) and the tumor immune microenvironment (TME) plays a crucial role in the therapeutic trajectory of non-small cell lung cancer (NSCLC). Understanding the functional dynamics and resistance mechanisms of TKIs is essential for advancing the treatment of NSCLC. METHODS: This study assessed the effects of short-term and long-term TKI treatments on the TME in NSCLC, particularly targeting epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutations. We analyzed changes in immune cell composition, cytokine profiles, and key proteins involved in immune evasion, such as laminin subunit γ-2 (LAMC2). We also explored the use of aspirin as an adjunct therapy to modulate the TME and counteract TKI resistance. RESULTS: Short-term TKI treatment enhanced T cell-mediated tumor clearance, reduced immunosuppressive M2 macrophage infiltration, and downregulated LAMC2 expression. Conversely, long-term TKI treatment fostered an immunosuppressive TME, contributing to drug resistance and promoting immune escape. Differential responses were observed among various oncogenic mutations, with ALK-targeted therapies eliciting a stronger antitumor immune response compared with EGFR-targeted therapies. Notably, we found that aspirin has potential in overcoming TKI resistance by modulating the TME and enhancing T cell-mediated tumor clearance. CONCLUSIONS: These findings offer new insights into the dynamics of TKI-induced changes in the TME, improving our understanding of NSCLC challenges. The study underscores the critical role of the TME in TKI resistance and suggests that adjunct therapies, like aspirin, may provide new strategies to enhance TKI efficacy and overcome resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein Kinase Inhibitors , Tumor Microenvironment , Tumor Microenvironment/drug effects , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Animals , Mice , Drug Resistance, Neoplasm , Female , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Cell Line, Tumor , Mutation
18.
J Hazard Mater ; 475: 134917, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889472

ABSTRACT

Crystal facet and defect engineering are crucial for designing heterogeneous catalysts. In this study, different solvents were utilized to generate NiO with distinct shapes (hexagonal layers, rods, and spheres) using nickel-based metal-organic frameworks (MOFs) as precursors. It was shown that the exposed crystal facets of NiO with different morphologies differed from each other. Various characterization techniques and density functional theory (DFT) calculations revealed that hexagonal-layered NiO (NiO-L) possessed excellent low-temperature reducibility and oxygen migration ability. The (111) crystal plane of NiO-L contained more lattice defects and oxygen vacancies, resulting in enhanced propane oxidation due to its highest O2 adsorption energy. Furthermore, the higher the surface active oxygen species and surface oxygen vacancy concentrations, the lower the C-H activation energy of the NiO catalyst and hence the better the catalytic activity for the oxidation of propane. Consequently, NiO-L exhibited remarkable catalytic activity and good stability for propane oxidation. This study provided a simple strategy for controlling NiO crystal facets, and demonstrated that the oxygen defects could be more easily formed on NiO(111) facets, thus would be beneficial for the activation of C-H bonds in propane. In addition, the results of this work can be extended to the other fields, such as propane oxidation to propene, fuel cells, and photocatalysis.

19.
bioRxiv ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38895348

ABSTRACT

Dysregulation of the bone marrow (BM) niche in multiple myeloma (MM) alters the composition and state of resident immune cells, potentially impeding anti-tumor immunity. One common mechanism of immune inhibition in solid tumors is the induction of exhaustion in tumor-specific T cells. However, the extent of T cell tumor recognition and exhaustion is not well-characterized in MM. As the specific mechanisms of immune evasion are critical for devising effective therapeutic strategies, we deeply profiled the CD8+ T cell compartment of newly-diagnosed MM (NDMM) patients for evidence of tumor reactivity and T cell exhaustion. We applied single-cell multi-omic sequencing and antigen-specific mass cytometry to longitudinal BM and peripheral blood (PB) samples taken from timepoints spanning from diagnosis through induction therapy, autologous stem cell transplant (ASCT), and maintenance therapy. We identified an exhausted-like population that lacked several canonical exhaustion markers, was not significantly enriched in NDMM patients, and consisted of small, nonpersistent clones. We also observed an activated population with increased frequency in the PB of NDMM patients exhibiting phenotypic and clonal features consistent with homeostatic, antigen-nonspecific activation. However, there was no evidence of "tumor-experienced" T cells displaying hallmarks of terminal exhaustion and/or tumor-specific activation/expansion in NDMM patients at any timepoint.

20.
J Biomed Inform ; 156: 104673, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38862083

ABSTRACT

OBJECTIVE: Pneumothorax is an acute thoracic disease caused by abnormal air collection between the lungs and chest wall. Recently, artificial intelligence (AI), especially deep learning (DL), has been increasingly employed for automating the diagnostic process of pneumothorax. To address the opaqueness often associated with DL models, explainable artificial intelligence (XAI) methods have been introduced to outline regions related to pneumothorax. However, these explanations sometimes diverge from actual lesion areas, highlighting the need for further improvement. METHOD: We propose a template-guided approach to incorporate the clinical knowledge of pneumothorax into model explanations generated by XAI methods, thereby enhancing the quality of the explanations. Utilizing one lesion delineation created by radiologists, our approach first generates a template that represents potential areas of pneumothorax occurrence. This template is then superimposed on model explanations to filter out extraneous explanations that fall outside the template's boundaries. To validate its efficacy, we carried out a comparative analysis of three XAI methods (Saliency Map, Grad-CAM, and Integrated Gradients) with and without our template guidance when explaining two DL models (VGG-19 and ResNet-50) in two real-world datasets (SIIM-ACR and ChestX-Det). RESULTS: The proposed approach consistently improved baseline XAI methods across twelve benchmark scenarios built on three XAI methods, two DL models, and two datasets. The average incremental percentages, calculated by the performance improvements over the baseline performance, were 97.8% in Intersection over Union (IoU) and 94.1% in Dice Similarity Coefficient (DSC) when comparing model explanations and ground-truth lesion areas. We further visualized baseline and template-guided model explanations on radiographs to showcase the performance of our approach. CONCLUSIONS: In the context of pneumothorax diagnoses, we proposed a template-guided approach for improving model explanations. Our approach not only aligns model explanations more closely with clinical insights but also exhibits extensibility to other thoracic diseases. We anticipate that our template guidance will forge a novel approach to elucidating AI models by integrating clinical domain expertise.


Subject(s)
Artificial Intelligence , Deep Learning , Pneumothorax , Humans , Pneumothorax/diagnostic imaging , Algorithms , Tomography, X-Ray Computed/methods , Medical Informatics/methods
SELECTION OF CITATIONS
SEARCH DETAIL