Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
2.
Blood Adv ; 7(15): 3846-3861, 2023 08 08.
Article in English | MEDLINE | ID: mdl-36322827

ABSTRACT

Regulation of gene expression at the RNA level is an important regulatory mechanism in cancer. However, posttranscriptional molecular pathways underlying tumorigenesis remain largely unexplored. In this study, we uncovered a functional axis consisting of microRNA (miR)-148a-3p, RNA helicase DDX6, and its downstream target thioredoxin-interacting protein (TXNIP) in acute myeloid leukemia (AML). Using a DROSHA-knockout cell system to evaluate miR-mediated gene expression control, we comprehensively profiled putative transcripts regulated by miR-148a-3p and identified DDX6 as a direct target of miR-148a-3p in AML cells. DDX6 depletion induced cell cycle arrest, apoptosis, and differentiation, although delaying leukemia development in vivo. Genome-wide assessment of DDX6-binding transcripts and gene expression profiling of DDX6-depleted cells revealed TXNIP, a tumor suppressor, as the functional downstream target of DDX6. Overall, our study identified DDX6 as a posttranscriptional regulator that is required for AML survival. We proposed the regulatory link between miR-148a-3p and DDX6 as a potential therapeutic target in leukemia.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Genes, Tumor Suppressor , Leukemia, Myeloid, Acute/genetics , Cell Differentiation/physiology , Proto-Oncogene Proteins/genetics , DEAD-box RNA Helicases/genetics
3.
Leukemia ; 36(8): 1980-1989, 2022 08.
Article in English | MEDLINE | ID: mdl-35624144

ABSTRACT

Myeloid ecotropic virus insertion site 1 (MEIS1) is essential for normal hematopoiesis and is a critical factor in the pathogenesis of a large subset of acute myeloid leukemia (AML). Despite the clinical relevance of MEIS1, its regulation is largely unknown. To understand the transcriptional regulatory mechanisms contributing to human MEIS1 expression, we created a knock-in green florescent protein (GFP) reporter system at the endogenous MEIS1 locus in a human AML cell line. Using this model, we have delineated and dissected a critical enhancer region of the MEIS1 locus for transcription factor (TF) binding through in silico prediction in combination with oligo pull-down, mass-spectrometry and knockout analysis leading to the identification of FLI1, an E-twenty-six (ETS) transcription factor, as an important regulator of MEIS1 transcription. We further show direct binding of FLI1 to the MEIS1 locus in human AML cell lines as well as enrichment of histone acetylation in MEIS1-high healthy and leukemic cells. We also observe a positive correlation between high FLI1 transcript levels and worse overall survival in AML patients. Our study expands the role of ETS factors in AML and our model constitutes a feasible tool for a more detailed understanding of transcriptional regulatory elements and their interactome.


Subject(s)
Homeodomain Proteins , Leukemia, Myeloid, Acute , Myeloid Ecotropic Viral Integration Site 1 Protein , Homeodomain Proteins/chemistry , Humans , Leukemia, Myeloid, Acute/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Neoplasm Proteins/metabolism , Transcription Factors/metabolism
4.
Haematologica ; 107(8): 1758-1772, 2022 08 01.
Article in English | MEDLINE | ID: mdl-34854277

ABSTRACT

Aberrant expression of Ecotropic Viral Integration Site 1 (EVI1) is a hallmark of acute myeloid leukemia (AML) with inv(3) or t(3;3), which is a disease subtype with especially poor outcome. In studying transcriptomes from AML patients with chromosome 3q rearrangements, we identified a significant upregulation of the Nuclear Receptor Interacting Protein 1 (NRIP1) as well as its adjacent non-coding RNA LOC101927745. Utilizing transcriptomic and epigenomic data from over 900 primary samples from patients as well as genetic and transcriptional engineering approaches, we have identified several mechanisms that can lead to upregulation of NRIP1 in AML. We hypothesize that the LOC101927745 transcription start site harbors a context-dependent enhancer that is bound by EVI1, causing upregulation of NRIP1 in AML with chromosome 3 abnormalities. Furthermore, we showed that NRIP1 knockdown negatively affects the proliferation and survival of 3qrearranged AML cells and increases their sensitivity to all-trans retinoic acid, suggesting that NRIP1 is relevant for the pathogenesis of inv(3)/t(3;3) AML and could serve as a novel therapeutic target in myeloid malignancies with 3q abnormalities.


Subject(s)
Leukemia, Myeloid, Acute , Nuclear Receptor Interacting Protein 1 , Chromosome Aberrations , Chromosomes/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , MDS1 and EVI1 Complex Locus Protein/genetics , Nuclear Receptor Interacting Protein 1/genetics , Nuclear Receptor Interacting Protein 1/metabolism , Receptors, Retinoic Acid/genetics
5.
Leuk Lymphoma ; 62(10): 2331-2341, 2021 10.
Article in English | MEDLINE | ID: mdl-34060970

ABSTRACT

There has been an explosion of knowledge about the role of metabolism and the mitochondria in acute myeloid leukemia (AML). We have also recently seen several waves of novel therapies change the treatment landscape for AML, such as the selective B-cell lymphoma 2 (BCL-2) inhibitor venetoclax. In this new context, we review the rapidly advancing literature on the role of metabolism and the mitochondria in AML pathogenesis, and how these are interwoven with the mechanisms of action for novel therapeutics in AML. We also review the role of oxidative phosphorylation (OxPhos) in maintaining leukemia stem cells (LSCs), how recurrent genomic alterations in AML alter downstream metabolism, and focus on how the BCL-2 pathway and the mitochondria are inextricably linked in AML. Thus, we provide an overview of the mitochondria and metabolism in the context of our new therapeutic world for AML and outline how targeting these vulnerabilities may produce novel therapeutic strategies.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Antineoplastic Agents/therapeutic use , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation
6.
Blood ; 137(26): 3641-3655, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33786587

ABSTRACT

The abundance of genetic abnormalities and phenotypic heterogeneities in acute myeloid leukemia (AML) poses significant challenges to the development of improved treatments. Here, we demonstrated that a key growth arrest-specific gene 6/AXL axis is highly activated in cells from patients with AML, particularly in stem/progenitor cells. We developed a potent selective AXL inhibitor that has favorable pharmaceutical properties and efficacy against preclinical patient-derived xenotransplantation (PDX) models of AML. Importantly, inhibition of AXL sensitized AML stem/progenitor cells to venetoclax treatment, with strong synergistic effects in vitro and in PDX models. Mechanistically, single-cell RNA-sequencing and functional validation studies uncovered that AXL inhibition, alone or in combination with venetoclax, potentially targets intrinsic metabolic vulnerabilities of AML stem/progenitor cells and shows a distinct transcriptomic profile and inhibits mitochondrial oxidative phosphorylation. Inhibition of AXL or BCL-2 also differentially targets key signaling proteins to synergize in leukemic cell killing. These findings have a direct translational impact on the treatment of AML and other cancers with high AXL activity.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Delivery Systems , Leukemia, Myeloid, Acute , Neoplastic Stem Cells/enzymology , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Sulfonamides/pharmacology , Animals , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
8.
Carcinogenesis ; 41(10): 1421-1431, 2020 10 15.
Article in English | MEDLINE | ID: mdl-31917403

ABSTRACT

The repurposing of existing drugs has emerged as an attractive additional strategy to the development of novel compounds in the fight against cancerous diseases. Inhibition of phosphodiesterase 5 (PDE5) has been claimed as a potential approach to target various cancer subtypes in recent years. However, data on the treatment of tumors with PDE5 inhibitors as well as the underlying mechanisms are as yet very scarce. Here, we report that treatment of tumor cells with low concentrations of Sildenafil was associated with decreased cancer cell proliferation and augmented apoptosis in vitro and resulted in impaired tumor growth in vivo. Notably, incubation of cancer cells with Sildenafil was associated with altered expression of HSP90 chaperone followed by degradation of protein kinase D2, a client protein previously reported to be involved in tumor growth. Furthermore, the involvement of low doses of PU-H71, an HSP90 inhibitor currently under clinical evaluation, in combination with low concentrations of Sildenafil, synergistically and negatively impacted on the viability of cancer cells in vivo. Taken together, our study suggests that repurposing of already approved drugs, alone or in combination with oncology-dedicated compounds, may represent a novel cancer therapeutic strategy.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Neoplasms/pathology , Phosphodiesterase 5 Inhibitors/pharmacology , Proteolysis , Sildenafil Citrate/pharmacology , TRPP Cation Channels/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Humans , Neoplasms/metabolism
9.
Leukemia ; 34(5): 1253-1265, 2020 05.
Article in English | MEDLINE | ID: mdl-31768018

ABSTRACT

MicroRNAs (miRNAs) are commonly deregulated in acute myeloid leukemia (AML), affecting critical genes not only through direct targeting, but also through modulation of downstream effectors. Homeobox (Hox) genes balance self-renewal, proliferation, cell death, and differentiation in many tissues and aberrant Hox gene expression can create a predisposition to leukemogenesis in hematopoietic cells. However, possible linkages between the regulatory pathways of Hox genes and miRNAs are not yet fully resolved. We identified miR-708 to be upregulated in Hoxa9/Meis1 AML inducing cell lines as well as in AML patients. We further showed Meis1 directly targeting miR-708 and modulating its expression through epigenetic transcriptional regulation. CRISPR/Cas9 mediated knockout of miR-708 in Hoxa9/Meis1 cells delayed disease onset in vivo, demonstrating for the first time a pro-leukemic contribution of miR-708 in this context. Overexpression of miR-708 however strongly impeded Hoxa9 mediated transformation and homing capacity in vivo through modulation of adhesion factors and induction of myeloid differentiation. Taken together, we reveal miR-708, a putative tumor suppressor miRNA and direct target of Meis1, as a potent antagonist of the Hoxa9 phenotype but an effector of transformation in Hoxa9/Meis1. This unexpected finding highlights the yet unexplored role of miRNAs as indirect regulators of the Hox program during normal and aberrant hematopoiesis.


Subject(s)
Gene Expression Regulation, Leukemic , Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/pathology , MicroRNAs/genetics , Myeloid Cells/pathology , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Animals , Apoptosis , CRISPR-Cas Systems , Cell Differentiation , Cell Proliferation , Female , Hematopoiesis , Homeodomain Proteins/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Myeloid Cells/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Tumor Cells, Cultured
11.
Leuk Res ; 75: 61-68, 2018 12.
Article in English | MEDLINE | ID: mdl-30384975

ABSTRACT

Endothelin receptor type A (EDNRA) is known as a mediator of cell proliferation and survival. Aberrant regulation of EDNRA has been shown to play a role in tumor growth and metastasis. Using a global gene expression screen, we found that expression of Ednra was upregulated in murine leukemia inducing cells co-expressing Hoxa9 and Meis1 compared to cells only expressing Hoxa9. The aim of this study was to explore the role of Ednra in leukemogenesis further. In a murine bone marrow transplantation model, mice transplanted with cells overexpressing Ednra and Hoxa9 succumbed to leukemia significantly earlier than mice transplanted with cells overexpressing Hoxa9 only. Furthermore, overexpression of Ednra led to increased proliferation and resistance to apoptosis of bone marrow cells in vitro. We could also show that Meis1 binds to the Ednra promoter region, suggesting a regulatory role for Meis1 in Ednra expression. Taken together, our results suggest a role for Ednra in Hoxa9/Meis1-driven leukemogenesis.


Subject(s)
Gene Expression Regulation, Leukemic/physiology , Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Receptor, Endothelin A/metabolism , Animals , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL
12.
J Clin Oncol ; 36(10): 1007-1016, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29432078

ABSTRACT

Purpose Dysregulated microRNAs are implicated in the pathogenesis and aggressiveness of acute myeloid leukemia (AML). We describe the effect of the hematopoietic stem-cell self-renewal regulating miR-193b on progression and prognosis of AML. Methods We profiled miR-193b-5p/3p expression in cytogenetically and clinically characterized de novo pediatric AML (n = 161) via quantitative real-time polymerase chain reaction and validated our findings in an independent cohort of 187 adult patients. We investigated the tumor suppressive function of miR-193b in human AML blasts, patient-derived xenografts, and miR-193b knockout mice in vitro and in vivo. Results miR-193b exerted important, endogenous, tumor-suppressive functions on the hematopoietic system. miR-193b-3p was downregulated in several cytogenetically defined subgroups of pediatric and adult AML, and low expression served as an independent indicator for poor prognosis in pediatric AML (risk ratio ± standard error, -0.56 ± 0.23; P = .016). miR-193b-3p expression improved the prognostic value of the European LeukemiaNet risk-group stratification or a 17-gene leukemic stemness score. In knockout mice, loss of miR-193b cooperated with Hoxa9/Meis1 during leukemogenesis, whereas restoring miR-193b expression impaired leukemic engraftment. Similarly, expression of miR-193b in AML blasts from patients diminished leukemic growth in vitro and in mouse xenografts. Mechanistically, miR-193b induced apoptosis and a G1/S-phase block in various human AML subgroups by targeting multiple factors of the KIT-RAS-RAF-MEK-ERK (MAPK) signaling cascade and the downstream cell cycle regulator CCND1. Conclusion The tumor-suppressive function is independent of patient age or genetics; therefore, restoring miR-193b would assure high antileukemic efficacy by blocking the entire MAPK signaling cascade while preventing the emergence of resistance mechanisms.


Subject(s)
Leukemia, Myeloid, Acute/genetics , MicroRNAs/biosynthesis , Animals , Cell Growth Processes/genetics , Down-Regulation , Genes, Tumor Suppressor , Heterografts , Homeodomain Proteins/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , MicroRNAs/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Prognosis
13.
Int J Cancer ; 142(2): 322-333, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28921505

ABSTRACT

B cell receptor (BCR) signaling is a key for survival of chronic lymphocytic leukemia (CLL) cells, and BCR signaling inhibitors are clinically active. However, relapse and resistance to treatment require novel treatment options. To detect novel candidate therapeutic targets, we performed a genome-wide DNA methylation screen with custom arrays and identified aberrant promoter DNA methylation in 2,192 genes. The transcription factor NFATC1 that is a downstream effector of BCR signaling was among the top hypomethylated genes and was concomitantly transcriptionally upregulated in CLL. Intriguingly, NFATC1 promoter DNA hypomethylation levels were significantly variant in clinical trial cohorts from different disease progression stages and furthermore correlated with Binet disease staging and thymidine kinase levels, strongly suggesting a central role of NFATC1 in CLL development. Functionally, DNA hypomethylation at NFATC1 promoter inversely correlated with RNA levels of NFATC1 and dysregulation correlated with expression of target genes BCL-2, CCND1 and CCR7. The inhibition of the NFAT regulator calcineurin with tacrolimus and cyclosporin A and the BCR signaling inhibitor ibrutinib significantly reduced NFAT activity in leukemic cell lines, and NFAT inhibition resulted in increased apoptosis of primary CLL cells. In summary, our results indicate that the aberrant activation of NFATC1 by DNA hypomethylation and BCR signaling plays a major role in the pathomechanism of CLL.


Subject(s)
DNA Methylation , Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , NFATC Transcription Factors/genetics , Neoplasm Recurrence, Local/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Adenine/analogs & derivatives , Aged , Biomarkers, Tumor , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , NFATC Transcription Factors/antagonists & inhibitors , NFATC Transcription Factors/metabolism , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Piperidines , Promoter Regions, Genetic , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Tumor Cells, Cultured
14.
Haematologica ; 103(2): 246-255, 2018 02.
Article in English | MEDLINE | ID: mdl-29217774

ABSTRACT

Micro-ribonucleic acid-155 (miR-155) is one of the first described oncogenic miRNAs. Although multiple direct targets of miR-155 have been identified, it is not clear how it contributes to the pathogenesis of acute myeloid leukemia. We found miR-155 to be a direct target of Meis1 in murine Hoxa9/Meis1 induced acute myeloid leukemia. The additional overexpression of miR-155 accelerated the formation of acute myeloid leukemia in Hoxa9 as well as in Hoxa9/Meis1 cells in vivo However, in the absence or following the removal of miR-155, leukemia onset and progression were unaffected. Although miR-155 accelerated growth and homing in addition to impairing differentiation, our data underscore the pathophysiological relevance of miR-155 as an accelerator rather than a driver of leukemogenesis. This further highlights the complexity of the oncogenic program of Meis1 to compensate for the loss of a potent oncogene such as miR-155. These findings are highly relevant to current and developing approaches for targeting miR-155 in acute myeloid leukemia.


Subject(s)
Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/etiology , MicroRNAs/antagonists & inhibitors , Myeloid Ecotropic Viral Integration Site 1 Protein/pharmacology , Animals , Carcinogenesis/genetics , Gene Expression Regulation, Leukemic , Humans , Leukemia, Myeloid, Acute/genetics , Mice , MicroRNAs/metabolism
15.
Dev Biol ; 433(1): 84-93, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29155043

ABSTRACT

Spermiogenesis is the final phase during sperm cell development in which round spermatids undergo dramatic morphological changes to generate spermatozoa. Here we report that the serine/threonine kinase Stk33 is essential for the differentiation of round spermatids into functional sperm cells and male fertility. Constitutive Stk33 deletion in mice results in severely malformed and immotile spermatozoa that are particularly characterized by disordered structural tail elements. Stk33 expression first appears in primary spermatocytes, and targeted deletion of Stk33 in these cells recapitulates the defects observed in constitutive knockout mice, confirming a germ cell-intrinsic function. Stk33 protein resides in the cytoplasm and partially co-localizes with the caudal end of the manchette, a transient structure that guides tail elongation, in elongating spermatids, and loss of Stk33 leads to the appearance of a tight, straight and elongated manchette. Together, these results identify Stk33 as an essential regulator of spermatid differentiation and male fertility.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , Spermatids/enzymology , Animals , Cell Differentiation/physiology , Fertility/physiology , Male , Mice , Mice, Knockout , Microtubules/metabolism , Protein Serine-Threonine Kinases/genetics , Spermatocytes/cytology , Spermatocytes/enzymology , Spermatogenesis/physiology , Spermatozoa/enzymology , Testis/enzymology
16.
Oncotarget ; 8(44): 77474-77488, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100402

ABSTRACT

Lately, the HSP90 client serine/threonine kinase STK33 emerged to be required by cancer cells for their viability and proliferation. However, its mechanistic contribution to carcinogenesis is not clearly understood. Here we report that elevated STK33 expression correlates with advanced stages of human pancreatic and colorectal carcinomas. Impaired proliferation and augmented apoptosis associated with genetic abrogation of STK33 were paralleled by decreased vascularization in tumor xenografts. In line with this, ectopic STK33 not only promoted tumor growth after pharmacologic inhibition of HSP90 using structurally divergent small molecules currently in clinical development, but also restored blood vessel formation in vivo. Mechanistic studies demonstrated that HSP90-stabilized STK33 interacts with and regulates hypoxia-driven accumulation and activation of HIF-1α as well as secretion of VEGF-A in hypoxic cancer cells. In addition, our study reveals a putative cooperation between STK33 and other HSP90 client protein kinases involved in molecular and cellular events through which cancer cells ensure their survival by securing the oxygen and nutrient supply. Altogether, our findings indicate that STK33 interferes with signals from hypoxia and HSP90 to promote tumor angiogenesis and tumor growth.

17.
Haematologica ; 102(12): 2039-2047, 2017 12.
Article in English | MEDLINE | ID: mdl-28971903

ABSTRACT

In acute myeloid leukemia, there is growing evidence for splicing pattern deregulation, including differential expression of linear splice isoforms of the commonly mutated gene nucleophosmin (NPM1). In this study, we detect circular RNAs of NPM1 and quantify circRNA hsa_circ_0075001 in a cohort of NPM1 wild-type and mutated acute myeloid leukemia (n=46). Hsa_circ_0075001 expression correlates positively with total NPM1 expression, but is independent of the NPM1 mutational status. High versus low hsa_circ_0075001 expression defines patient subgroups characterized by distinct gene expression patterns, such as lower expression of components of the Toll-like receptor signaling pathway in high hsa_circ_0075001 expression cases. Global evaluation of circRNA expression in sorted healthy hematopoietic controls (n=10) and acute myeloid leukemia (n=10) reveals circRNA transcripts for 47.9% of all highly expressed genes. While circRNA expression correlates globally with parental gene expression, we identify hematopoietic differentiation-associated as well as acute myeloid leukemia subgroup-specific circRNA signatures.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , RNA/analysis , Case-Control Studies , Gene Expression , Humans , Nucleophosmin , RNA Splicing , RNA, Circular
18.
Biol Blood Marrow Transplant ; 23(12): 2172-2177, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28860002

ABSTRACT

We report the results of a single-center analysis of a cohort of 39 patients treated between 1997 and 2016 for transplantion-associated thrombotic microangiopathy. We evaluated 2 subgroups of patients: 24 patients treated between 1997 and 2014 who received conventional therapy and 15 patients treated with the complement-inhibiting monoclonal antibody eculizumab between 2014 and 2016. The conventional therapy group was treated predominantly with defibrotide alone or in combination with plasmapheresis or rituximab. Despite an initial response rate of 61%, only 4 patients (16%) were long-term survivors, 2 of whom had a low-risk thrombotic microangiopathy without multiorgan damage. Progression of thrombotic micorangiopathy and bacterial/fungal infections contributed equally to treatment failure. The overall response rate in the eculizumab group was significantly higher, at 93%. In addition, we were able to stop eculizumab treatment in 5 patients (33%), all of whom had high-risk thrombotic microangiopathy, due to sustained recovery. Despite the very good response in the eculizumab-treated group, we did not observe a significant improved overall survival, due primarily to a high rate of infection-related mortality (70%). Therefore, further studies are needed to identify the optimal therapeutic management approach for transplantation-associated thrombotic microangiopathy to improve its dismal outcome.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Polydeoxyribonucleotides/therapeutic use , Stem Cell Transplantation/adverse effects , Thrombotic Microangiopathies/etiology , Adult , Aged , Humans , Infections/etiology , Middle Aged , Survival Analysis , Transplantation, Homologous , Treatment Outcome , Young Adult
19.
Blood ; 129(18): 2459-2460, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28473410
20.
Cancer Cell ; 31(4): 549-562.e11, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28399410

ABSTRACT

The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.


Subject(s)
Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/metabolism , MicroRNAs/genetics , Neoplasm Proteins/metabolism , Syk Kinase/metabolism , Animals , Gene Expression Regulation, Leukemic , Homeodomain Proteins/genetics , Humans , Integrin beta3/metabolism , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Mice, Inbred C57BL , Myeloid Ecotropic Viral Integration Site 1 Protein , Neoplasm Proteins/genetics , Signal Transduction , Syk Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...