Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Commun Med (Lond) ; 4(1): 161, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122992

ABSTRACT

BACKGROUND: Highly transmissible viruses including SARS-CoV-2 frequently accumulate novel mutations that are detected via high-throughput sequencing. However, there is a need to develop an alternative rapid and non-expensive approach. Here we developed a novel multiplex DNA detection method Intelli-OVI for analysing existing and novel mutations of SARS-CoV-2. METHODS: We have developed Intelli-OVI that includes the micro-disc-based method IntelliPlex and computational algorithms of objective variant identification (OVI). More than 250 SARS-CoV-2 positive samples including wastewater ones were analysed to verify the efficiency of the method. RESULTS: IntelliPlex uses micro-discs printed with a unique pictorial pattern as a labelling conjugate for DNA probes, and OVI allows simultaneous identification of several variants using multidimensional data obtained by the IntelliPlex method. Importantly, de novo mutations can be identified by decreased signals, which indicates that there is an emergence of de novo variant virus as well as prompts the need to design additional primers and probes. We have upgraded probe panel according to the emergence of new variants and demonstrated that Intelli-OVI efficiently identified more than 20 different SARS-CoV-2 variants by using 35 different probes simultaneously. CONCLUSIONS: Intelli-OVI can be upgraded to keep up with rapidly evolving viruses as we showed in this study using SARS-CoV-2 as an example and may be suitable for other viruses but would need to be validated.


As the COVID-19 pandemic progresses, it is increasingly becoming important to be able to detect emerging new variants of concerns of SARS-CoV-2, the virus that causes COVID-19, for accurate surveillance and timely interventions. We developed a rapid diagnostic method for detecting multiple SARS-CoV-2 variants and tested it using various starting materials such as sputum, nasopharyngeal swabs and wastewater. The method could accurately detect multiple subvariants of Omicron and showed potential for rapid adaptability to detect the virus as it evolves. This technology could enable continuous monitoring of emerging SARS-CoV-2 variants and the opportunity to intercept transmission with timely interventions to prevent viral spread.

2.
J Biol Chem ; : 107701, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173946

ABSTRACT

The introduction of combined antiretroviral therapy (cART) has greatly improved the quality of life of human immunodeficiency virus type 1 (HIV-1)-infected individuals. Nonetheless, the ever-present desire to seek out a full remedy for HIV-1 infections makes the discovery of novel antiviral medication compelling. Owing to this, a new late-stage inhibitor, Lenacapavir/Sunlenca, an HIV multi-phase suppressor, was clinically authorized in 2022. Besides unveiling cutting-edge antivirals inhibiting late-stage proteins or processes, newer therapeutics targeting host restriction factors hold promise for the curative care of HIV-1 infections. Notwithstanding, bone marrow stromal antigen 2 (BST2)/Tetherin/CD317/HM1.24, which entraps progeny virions is an appealing HIV-1 therapeutic candidate. In this study, a novel drug screening system was established, using the Jurkat/Vpr-HiBiT T cells, to identify drugs that could obstruct HIV-1 release; the candidate compounds were selected from the Ono Pharmaceutical compound library. Jurkat T cells expressing Vpr-HiBiT were infected with NL4-3, and the amount of virus release was quantified indirectly by the amount of Vpr-HiBiT incorporated into the progeny virions. Subsequently, the candidate compounds that suppressed viral release were used to synthesize the heterocyclic compound, HT-7, which reduces HIV-1 release with less cellular toxicity. Notably, HT-7 increased cell surface BST2 coupled with HIV-1 release reduction in Jurkat cells but not Jurkat/KO-BST2 cells. Seemingly, HT-7 impeded simian immunodeficiency virus (SIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) release. Concisely, these results suggest that the reduction in viral release, following HT-7 treatment, resulted from the modulation of cell surface expression of BST2 by HT-7.

3.
Nat Immunol ; 25(9): 1555-1564, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39179934

ABSTRACT

Human immunodeficiency virus 1 (HIV-1) infection is characterized by a dynamic and persistent state of viral replication that overwhelms the host immune system in the absence of antiretroviral therapy (ART). The impact of prolonged treatment on the antiviral efficacy of HIV-1-specific CD8+ T cells has nonetheless remained unknown. Here, we used single-cell technologies to address this issue in a cohort of aging individuals infected early during the pandemic and subsequently treated with continuous ART. Our data showed that long-term ART was associated with a process of clonal succession, which effectively rejuvenated HIV-1-specific CD8+ T cell populations in the face of immune senescence. Tracking individual transcriptomes further revealed that initially dominant CD8+ T cell clonotypes displayed signatures of exhaustion and terminal differentiation, whereas newly dominant CD8+ T cell clonotypes displayed signatures of early differentiation and stemness associated with natural control of viral replication. These findings reveal a degree of immune resilience that could inform adjunctive treatments for HIV-1.


Subject(s)
CD8-Positive T-Lymphocytes , HIV Infections , HIV-1 , Virus Replication , CD8-Positive T-Lymphocytes/immunology , HIV-1/immunology , HIV-1/physiology , Humans , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , Virus Replication/drug effects , Male , Middle Aged , Female , Antiretroviral Therapy, Highly Active , Anti-Retroviral Agents/therapeutic use , Single-Cell Analysis , Cell Differentiation/immunology
4.
Viruses ; 16(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39066304

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired multiple mutations since its emergence. Analyses of the SARS-CoV-2 genomes from infected patients exhibit a bias toward C-to-U mutations, which are suggested to be caused by the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) cytosine deaminase proteins. However, the role of A3 enzymes in SARS-CoV-2 replication remains unclear. To address this question, we investigated the effect of A3 family proteins on SARS-CoV-2 replication in the myeloid leukemia cell line THP-1 lacking A3A to A3G genes. The Wuhan, BA.1, and BA.5 variants had comparable viral replication in parent and A3A-to-A3G-null THP-1 cells stably expressing angiotensin-converting enzyme 2 (ACE2) protein. On the other hand, the replication and infectivity of these variants were abolished in A3A-to-A3G-null THP-1-ACE2 cells in a series of passage experiments over 20 days. In contrast to previous reports, we observed no evidence of A3-induced SARS-CoV-2 mutagenesis in the passage experiments. Furthermore, our analysis of a large number of publicly available SARS-CoV-2 genomes did not reveal conclusive evidence for A3-induced mutagenesis. Our studies suggest that A3 family proteins can positively contribute to SARS-CoV-2 replication; however, this effect is deaminase-independent.


Subject(s)
APOBEC Deaminases , COVID-19 , Cytidine Deaminase , SARS-CoV-2 , Virus Replication , Humans , SARS-CoV-2/genetics , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , APOBEC Deaminases/metabolism , APOBEC Deaminases/genetics , COVID-19/virology , COVID-19/metabolism , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , THP-1 Cells , Mutation , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Genome, Viral
5.
Discov Immunol ; 3(1): kyae006, 2024.
Article in English | MEDLINE | ID: mdl-38863793

ABSTRACT

Despite extensive regulatory T cell (Treg) research, fundamental questions on in vivo dynamics remain to be answered. The current study aims to dissect several interwoven concepts in Treg biology, highlighting the 'self-reactivity' of Treg and their counterparts, namely naturally-arising memory-phenotype T-cells, as a key mechanism to be exploited by a human retroviral infection. We propose the novel key concept, Periodic T cell receptor (TCR)-signalled T-cells, capturing self-reactivity in a quantifiable manner using the Nr4a3-Timer-of-cell-kinetics-and-activity (Tocky) technology. Periodic and brief TCR signals in self-reactive T-cells contrast with acute TCR signals during inflammation. Thus, we propose a new two-axis model for T-cell activation by the two types of TCR signals or antigen recognition, elucidating how Foxp3 expression and acute TCR signals actively regulate Periodic TCR-signalled T-cells. Next, we highlight an underappreciated branch of immunological research on Human T-cell Leukemia Virus type 1 (HTLV-1) that precedes Treg studies, illuminating the missing link between the viral infection, CD25, and Foxp3. Based on evidence by single-cell analysis, we show how the viral infection exploits the regulatory mechanisms for T-cell activation and suggests a potential role of periodic TCR signalling in infection and malignant transformation. In conclusion, the new perspectives and models in this study provide a working framework for investigating Treg within the self-reactive T-cell spectrum, expected to advance understanding of HTLV-1 infection, cancer, and immunotherapy strategies for these conditions.

6.
iScience ; 27(3): 109161, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38444610

ABSTRACT

Forkhead box O (FOXO) family proteins are expressed in various cells, and play crucial roles in cellular metabolism, apoptosis, and aging. FOXO1-null mice exhibit embryonic lethality due to impaired endothelial cell (EC) maturation and vascular remodeling. However, FOXO1-mediated genome-wide regulation in ECs remains unclear. Here, we demonstrate that VEGF dynamically regulates FOXO1 cytosol-nucleus translocation. FOXO1 re-localizes to the nucleus via PP2A phosphatase. RNA-seq combined with FOXO1 overexpression/knockdown in ECs demonstrated that FOXO1 governs the VEGF-responsive tip cell-enriched genes, and further inhibits DLL4-NOTCH signaling. Endogenous FOXO1 ChIP-seq revealed that FOXO1 binds to the EC-unique tip-enriched genes with co-enrichment of EC master regulators, and the condensed chromatin region as a pioneer factor. We identified new promoter/enhancer regions of the VEGF-responsive tip cell genes regulated by FOXO1: ESM1 and ANGPT2. This is the first study to identify cell type-specific FOXO1 functions, including VEGF-mediated tip cell definition in primary cultured ECs.

7.
Commun Biol ; 7(1): 344, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509308

ABSTRACT

Determinants of HIV-1 latency establishment are yet to be elucidated. HIV reservoir comprises a rare fraction of infected cells that can survive host and virus-mediated killing. In vitro reporter models so far offered a feasible means to inspect this population, but with limited capabilities to dissect provirus silencing dynamics. Here, we describe a new HIV reporter model, HIV-Timer of cell kinetics and activity (HIV-Tocky) with dual fluorescence spontaneous shifting to reveal provirus silencing and reactivation dynamics. This unique feature allows, for the first time, identifying two latent populations: a directly latent, and a recently silenced subset, with the latter having integration features suggestive of stable latency. Our proposed model can help address the heterogeneous nature of HIV reservoirs and offers new possibilities for evaluating eradication strategies.


Subject(s)
HIV Infections , Proviruses , Humans , Proviruses/genetics , Virus Latency/genetics , HIV Infections/genetics
8.
Cell Rep ; 43(2): 113697, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38294901

ABSTRACT

The pandemic HIV-1, HIV-1 group M, emerged from a single spillover event of its ancestral lentivirus from a chimpanzee. During human-to-human spread worldwide, HIV-1 diversified into multiple subtypes. Here, our interdisciplinary investigation mainly sheds light on the evolutionary scenario of the viral budding system of HIV-1 subtype C (HIV-1C), a most successfully spread subtype. Of the two amino acid motifs for HIV-1 budding, the P(T/S)AP and YPxL motifs, HIV-1C loses the YPxL motif. Our data imply that HIV-1C might lose this motif to evade immune pressure. Additionally, the P(T/S)AP motif is duplicated dependently of the level of HIV-1 spread in the human population, and >20% of HIV-1C harbored the duplicated P(T/S)AP motif. We further show that the duplication of the P(T/S)AP motif is caused by the expansion of the CTG triplet repeat. Altogether, our results suggest that HIV-1 has experienced a two-step evolution of the viral budding process during human-to-human spread worldwide.


Subject(s)
HIV Seropositivity , HIV-1 , Humans , Animals , HIV-1/genetics , Pandemics , Lentivirus , Cell Division , Pan troglodytes
9.
Biomolecules ; 13(10)2023 10 19.
Article in English | MEDLINE | ID: mdl-37892225

ABSTRACT

Human T-cell leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL). HTLV-1 carriers have a lifelong asymptomatic balance between infected cells and host antiviral immunity; however, 5-10% of carriers lose this balance and develop ATL. Coinfection with Strongyloides promotes ATL development, suggesting that the immunological status of infected individuals is a determinant of HTLV-1 pathogenicity. As CD4+ T cells play a central role in host immunity, the deregulation of their function and differentiation via HTLV-1 promotes the immune evasion of infected T cells. During ATL development, the accumulation of genetic and epigenetic alterations in key host immunity-related genes further disturbs the immunological balance. Various approaches are available for treating these abnormalities; however, hematopoietic stem cell transplantation is currently the only treatment with the potential to cure ATL. The patient's immune state may contribute to the treatment outcome. Additionally, the activity of the anti-CC chemokine receptor 4 antibody, mogamulizumab, depends on immune function, including antibody-dependent cytotoxicity. In this comprehensive review, we summarize the immunopathogenesis of HTLV-1 infection in ATL and discuss the clinical findings that should be considered when developing treatment strategies for ATL.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Lymphoma , Adult , Humans , Human T-lymphotropic virus 1/genetics , Leukemia-Lymphoma, Adult T-Cell/pathology , CD4-Positive T-Lymphocytes
10.
STAR Protoc ; 4(4): 102547, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37751354

ABSTRACT

Eradication of HIV-1 latently infected cells is an important issue in HIV treatment. However, there are limited models available to assess therapeutic efficacy in vitro. Here, we present a protocol for establishing a variety of HIV-infected Jurkat cells, including productive and latent status, evaluating the efficacy of antiviral agents, followed by PCR/sequencing-based detection of replication competent HIV provirus. This protocol is useful for optimization of treatment of HIV-1 and provides insights into the mechanisms of clonal selection of heterogeneous HIV-1-infected cells. For complete details on the use and execution of this protocol, please refer to Matsuda et al. (2021).1.


Subject(s)
HIV Infections , Proviruses , Humans , Proviruses/genetics , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , Virus Latency , Jurkat Cells , Cell Culture Techniques , HIV Infections/drug therapy
11.
EJHaem ; 4(3): 733-737, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37601876

ABSTRACT

Viral cell-free DNA (cfDNA) in plasma has been widely evaluated for detecting cancer and monitoring disease in virus-associated tumors. We investigated whether the amount of cfDNA of human T-cell leukemia virus type 1 (HTLV-1) correlates with disease state in adult T-cell leukemia-lymphoma (ATL). HTLV-1 cfDNA in aggressive ATL was significantly higher than that in indolent ATL and asymptomatic carriers. Notably, patients with lymphoma type represented higher HTLV-1 cfDNA amount than chronic and smoldering subtypes, though they had no abnormal lymphocytes in the peripheral blood. HTLV-1 cfDNA can be a universal biomarker that reflects the expansion of ATL clones.

12.
Methods Mol Biol ; 2559: 259-278, 2023.
Article in English | MEDLINE | ID: mdl-36180638

ABSTRACT

Regulatory T-cells (Treg) are considerably heterogeneous. Thymically derived Treg (tTreg) are those, which differentiate in the thymus, while peripherally derived Treg (pTreg) differentiate from peripheral mature CD4+ T-cells. These two populations are often identified using markers such as neuropilin-1 and Helios (for tTreg) and ROR-γt (for pTreg) in intestines (Tanoue et al., Nat Rev Immunol 16:295-309, 2016).


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3 , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Neuropilin-1/genetics
13.
J Virol ; 97(1): e0154222, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36533951

ABSTRACT

Bovine leukemia virus (BLV) infection results in polyclonal expansion of infected B lymphocytes, and ~5% of infected cattle develop enzootic bovine leukosis (EBL). Since BLV is a retrovirus, each individual clone can be identified by using viral integration sites. To investigate the distribution of tumor cells in EBL cattle, we performed viral integration site analysis by using a viral DNA capture-sequencing method. We found that the same tumor clones existed in peripheral blood, with a dominance similar to that in lymphoma tissue. Additionally, we observed that multiple tumor tissues from different sites harbored the identical clones, indicating that tumor cells can circulate and distribute systematically in EBL cattle. To investigate clonal expansion of BLV-infected cells during a long latent period, we collected peripheral blood samples from asymptomatic cattle every 2 years, among which several cattle developed EBL. We found that no detectable EBL clone existed before the diagnosis of EBL in some cases; in the other cases, clones that were later detected as malignant clones at the EBL stage were present several months or even years before the disease onset. To establish a feasible clonality-based method for the diagnosis of EBL, we simplified a quick and cost-effective method, namely, rapid amplification of integration sites for BLV infection (BLV-RAIS). We found that the clonality values (Cvs) were well correlated between the BLV-RAIS and viral DNA capture-sequencing methods. Furthermore, receiver operating characteristic (ROC) curve analysis identified an optimal Cv cutoff value of 0.4 for EBL diagnosis, with excellent diagnostic sensitivity (94%) and specificity (100%). These results indicated that the RAIS method efficiently and reliably detected expanded clones not only in lymphoma tissue but also in peripheral blood. Overall, our findings elucidated the clonal dynamics of BLV- infected cells during EBL development. In addition, Cvs of BLV-infected cells in blood can be used to establish a valid and noninvasive diagnostic test for potential EBL onset. IMPORTANCE Although BLV has been eradicated in some European countries, BLV is still endemic in other countries, including Japan and the United States. EBL causes huge economic damage to the cattle industry. However, there are no effective drugs or vaccines to control BLV infection and related diseases. The strategy of eradication of infected cattle is not practical due to the high endemicity of BLV. Furthermore, how BLV-infected B cell clones proliferate during oncogenesis and their distribution in EBL cattle have yet to be elucidated. Here, we provided evidence that tumor cells are circulating in the blood of diseased cattle. Thus, the Cv of virus-infected cells in blood is useful information for the evaluation of the disease status. The BLV-RAIS method provides quantitative and accurate clonality information and therefore is a promising method for the diagnosis of EBL.


Subject(s)
Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Animals , Cattle , Enzootic Bovine Leukosis/diagnosis , Enzootic Bovine Leukosis/pathology , DNA, Viral/genetics , B-Lymphocytes/pathology , Leukemia Virus, Bovine/genetics , Clone Cells/pathology
14.
Cancer Res ; 83(5): 753-770, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36543251

ABSTRACT

Excess stroma and cancer-associated fibroblasts (CAF) enhance cancer progression and facilitate immune evasion. Insights into the mechanisms by which the stroma manipulates the immune microenvironment could help improve cancer treatment. Here, we aimed to elucidate potential approaches for stromal reprogramming and improved cancer immunotherapy. Platelet-derived growth factor C (PDGFC) and D expression were significantly associated with a poor prognosis in patients with gastric cancer, and PDGF receptor beta (PDGFRß) was predominantly expressed in diffuse-type gastric cancer stroma. CAFs stimulated with PDGFs exhibited markedly increased expression of CXCL1, CXCL3, CXCL5, and CXCL8, which are involved in polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) recruitment. Fibrotic gastric cancer xenograft tumors exhibited increased PMN-MDSC accumulation and decreased lymphocyte infiltration, as well as resistance to anti-PD-1. Single-cell RNA sequencing and spatial transcriptomics revealed that PDGFRα/ß blockade reversed the immunosuppressive microenvironment through stromal modification. Finally, combining PDGFRα/ß blockade and anti-PD-1 treatment synergistically suppressed the growth of fibrotic tumors. These findings highlight the impact of stromal reprogramming on immune reactivation and the potential for combined immunotherapy for patients with fibrotic cancer. SIGNIFICANCE: Stromal targeting with PDGFRα/ß dual blockade reverses the immunosuppressive microenvironment and enhances the efficacy of immune checkpoint inhibitors in fibrotic cancer. See related commentary by Tauriello, p. 655.


Subject(s)
Receptor, Platelet-Derived Growth Factor alpha , Stomach Neoplasms , Humans , Receptor, Platelet-Derived Growth Factor alpha/genetics , Fibrosis , Immunotherapy , Tumor Microenvironment
15.
Cancers (Basel) ; 16(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38201474

ABSTRACT

The gut microbiota has emerged as a key regulator of immune checkpoint inhibitor (ICI) efficacy. Therapeutic approaches aimed at manipulating the microbiota through targeted reconstitution to enhance cancer treatment outcomes have garnered considerable attention. A single live microbial biotherapeutic bacterium, Clostridium butyricum MIYAIRI 588 strain (CBM588), has been shown to enhance the effects of ICI monotherapy in patients with advanced lung cancer. However, whether CBM588 affects the outcomes of chemoimmunotherapy combinations in lung cancer remains unknown. We hypothesized that CBM588 augments the effect of chemoimmunotherapy combinations and restores diminished effectiveness in patients with non-small cell lung cancer (NSCLC) receiving dysbiosis-inducing drugs. To validate this hypothesis, we retrospectively analyzed 106 patients with stage IV or recurrent metastatic NSCLC consecutively treated with chemoimmunotherapy combinations. A survival analysis was performed employing univariate and multivariate Cox proportional hazard models with inverse probability of treatment weighting (IPTW) using propensity scores. Forty-five percent of patients received Clostridium butyricum therapy. CBM588 significantly extended overall survival in patients with NSCLC receiving chemoimmunotherapy. The favorable impact of CBM588 on the efficacy of chemoimmunotherapy combinations varied based on tumor-programmed cell death ligand 1 (PD-L1) expression. The survival benefit of CBM588 in the PD-L1 <1% cohort was higher than that in the PD-L1 1-49% and PD-L1 ≥ 50% cohorts. Furthermore, CBM588 was associated with improved overall survival in patients receiving proton pump inhibitors and/or antibiotics. CBM588-induced manipulation of the commensal microbiota holds the potential to enhance the efficacy of chemoimmunotherapy combinations, warranting further exploration of the synergy between CBM588 and immunotherapy.

16.
Front Immunol ; 13: 991928, 2022.
Article in English | MEDLINE | ID: mdl-36300109

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus which mainly infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATL), is primarily transmitted via direct cell-to-cell transmission. This feature generates a wide variety of infected clones in hosts, which are maintained via clonal proliferation, resulting in the persistence and survival of the virus. The maintenance of the pool of infected cells is achieved by sculpting the immunophenotype of infected cells and modulating host immune responses to avoid immune surveillance. Here, we review the processes undertaken by HTLV-1 to modulate and subvert host immune responses which contributes to viral persistence and development of ATL.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Adult , Humans , Carcinogenesis , Immunophenotyping , T-Lymphocytes
17.
Front Immunol ; 13: 954077, 2022.
Article in English | MEDLINE | ID: mdl-35958554

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is the causative infectious agent of adult T-cell leukemia/lymphoma (ATL) and chronic neurological disease. The disparity between silenced sense transcription versus constitutively active antisense (Hbz) transcription from the integrated provirus is not fully understood. The presence of an internal viral enhancer has recently been discovered in the Tax gene near the 3' long terminal repeat (LTR) of HTLV-1. In vitro, this enhancer has been shown to bind SRF and ELK-1 host transcription factors, maintain chromatin openness and viral gene transcription, and induce aberrant host gene transcription near viral integration sites. However, the function of the viral enhancer in the context of early HTLV-1 infection events remains unknown. In this study, we generated a mutant Enhancer virus (mEnhancer) and evaluated its effects on HTLV-1-mediated in vitro immortalization, establishment of persistent infection with an in vivo rabbit model, and disease development in a humanized immune system (HIS) mouse model. The mEnhancer virus was able to establish persistent infection in rabbits, and there were no significant differences in proviral load or HTLV-1-specific antibody responses over a 25-week study. However, rabbits infected with the mEnhancer virus had significantly decreased sense and antisense viral gene expression at 12-weeks post-infection. HIS mice infected with wt or mEnhancer virus showed similar disease progression, proviral load, and viral gene expression. While mEnhancer virus was able to sufficiently immortalize primary T-lymphocytes in cell culture, the immortalized cells had an altered phenotype (CD8+ T-cells), decreased proviral load, decreased sense and anti-sense gene expression, and altered cell cycle progression compared to HTLV-1.wt immortalized cells (CD4+ T-cells). These results suggest that the HTLV-1 enhancer element alone does not determine persistence or disease development but plays a pivotal role in regulating viral gene expression.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Animals , CD8-Positive T-Lymphocytes , Human T-lymphotropic virus 1/genetics , Humans , Leukemia-Lymphoma, Adult T-Cell/genetics , Mice , Models, Animal , Phenotype , Proviruses/genetics , Rabbits
18.
Nat Commun ; 13(1): 2405, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35504920

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes adult T-cell leukemia/lymphoma (ATL), a cancer of infected CD4+ T-cells. There is both sense and antisense transcription from the integrated provirus. Sense transcription tends to be suppressed, but antisense transcription is constitutively active. Various efforts have been made to elucidate the regulatory mechanism of HTLV-1 provirus for several decades; however, it remains unknown how HTLV-1 antisense transcription is maintained. Here, using proviral DNA-capture sequencing, we found a previously unidentified viral enhancer in the middle of the HTLV-1 provirus. The transcription factors, SRF and ELK-1, play a pivotal role in the activity of this enhancer. Aberrant transcription of genes in the proximity of integration sites was observed in freshly isolated ATL cells. This finding resolves certain long-standing questions concerning HTLV-1 persistence and pathogenesis. We anticipate that the DNA-capture-seq approach can be applied to analyze the regulatory mechanisms of other oncogenic viruses integrated into the host cellular genome.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , DNA , Human T-lymphotropic virus 1/genetics , Humans , Leukemia-Lymphoma, Adult T-Cell/genetics , Proviruses/genetics , Regulatory Sequences, Nucleic Acid
19.
J Virol ; 96(9): e0035622, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35420440

ABSTRACT

Human endogenous retroviruses (HERVs) occupy approximately 8% of the human genome. HERVs, transcribed in early embryos, are epigenetically silenced in somatic cells, except under pathological conditions. HERV-K is thought to protect embryos from exogenous viral infection. However, uncontrolled HERV-K expression in somatic cells has been implicated in several diseases. Here, we show that SOX2, which plays a key role in maintaining the pluripotency of stem cells, is critical for HERV-K LTR5Hs. HERV-K undergoes retrotransposition within producer cells in the absence of Env expression. Furthermore, we identified new HERV-K integration sites in long-term culture of induced pluripotent stem cells that express SOX2. These results suggest that the strict dependence of HERV-K on SOX2 has allowed HERV-K to protect early embryos during evolution while limiting the potentially harmful effects of HERV-K retrotransposition on host genome integrity in these early embryos. IMPORTANCE Human endogenous retroviruses (HERVs) account for approximately 8% of the human genome; however, the physiological role of HERV-K remains unknown. This study found that HERV-K LTR5Hs and LTR5B were transactivated by SOX2, which is essential for maintaining and reestablishing pluripotency. HERV-K can undergo retrotransposition within producer cells without env expression, and new integration sites may affect cell proliferation. In induced pluripotent stem cells (iPSCs), genomic impairment due to HERV-K retrotransposition has been identified, but it is a rare event. Considering the retention of SOX2-responsive elements in the HERV-K long terminal repeat (LTR) for over 20 million years, we conclude that HERV-K may play important physiological roles in SOX2-expressing cells.


Subject(s)
Endogenous Retroviruses , Induced Pluripotent Stem Cells , SOXB1 Transcription Factors , Endogenous Retroviruses/genetics , Humans , Induced Pluripotent Stem Cells/virology , SOXB1 Transcription Factors/genetics , Terminal Repeat Sequences/genetics , Virus Integration
20.
J Infect Chemother ; 28(5): 669-677, 2022 May.
Article in English | MEDLINE | ID: mdl-35144878

ABSTRACT

INTRODUCTION: A recent pandemic of SARS-CoV-2 infection has caused severe health problems and substantially restricted social and economic activities. RT-qPCR plays a vital role in the diagnosis of SARS-CoV-2 infection. The N protein-coding region is widely analyzed in RT-qPCR to diagnose SARS-CoV-2 infection in Japan. We recently encountered two cases of SARS-CoV-2-positive specimens showing atypical amplification curves in the RT-qPCR. METHODS: We performed whole-genome sequencing of 63 samples (2 showing aberrant RT-qPCR curve and 61 samples infected with SARS-CoV-2 simultaneously in the same area) followed by Phylogenetic tree analysis. RESULTS: We found that the viruses showing abnormal RT-qPCR curves were Delta-type variants of SARS-CoV-2 with a single nucleotide mutation in the probe-binding site. There were no other cases with the same mutation, indicating that the variant had not spread in the area. After searching the database, hundreds of variants were reported globally, and one in Japan contained the same mutation. Phylogenetic analysis showed that the variant was very close to other Delta variants endemic in Japan but quite far from the variants containing the same mutation reported from outside Japan, suggesting sporadic generation of mutant in some domestic areas. CONCLUSIONS: These findings propose two key points: i) mutations in the region used for SARS-CoV-2 RT-qPCR can cause abnormal amplification curves, and ii) various mutations can be generated sporadically and unpredictably; therefore, efficient and robust screening systems are needed to promptly monitor the emergence of de novo variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Japan , Mutation , Phylogeny , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL