Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Pharm Sci ; 113(6): 1664-1673, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38417790

ABSTRACT

Accounting for variability in plasma protein binding of drugs is an essential input to physiologically-based pharmacokinetic (PBPK) models of special populations. Prediction of fraction unbound in plasma (fu) in such populations typically considers changes in plasma protein concentration while assuming that the binding affinity remains unchanged. A good correlation between predicted vs observed fu data reported for various drugs in a given special population is often used as a justification for such predictive methods. However, none of these analyses evaluated the prediction of the fold-change in fu in special populations relative to the reference population. This would be a more appropriate assessment of the predictivity, analogous to drug-drug interactions. In this study, predictive performance of the single protein binding model was assessed by predicting fu for alpha-1-acid glycoprotein and albumin bound drugs in hepatic impairment, renal impairment, paediatric, elderly, patients with inflammatory disease, and in different ethnic groups for a dataset of >200 drugs. For albumin models, the concordance correlation coefficients for predicted fu were >0.90 for 16 out of 17 populations with sub-groups, indicating strong agreement between predicted and observed values. In contrast, concordance correlation coefficients for predicted fold-change in fu for the same dataset were <0.38 for all populations and sub-groups. Trends were similar for alpha-1-acid glycoprotein models. Accordingly, the predictions of fu solely based on changes in protein concentrations in plasma cannot explain the observed values in some special populations. We recommend further consideration of the impact of changes in special populations to endogenous substances that competitively bind to plasma proteins, and changes in albumin structure due to posttranslational modifications. PBPK models of special populations for highly bound drugs should preferably use measured fu data to ensure reliable prediction of drug exposure or compare predicted unbound drug exposure between populations knowing that these will not be sensitive to changes in fu.


Subject(s)
Blood Proteins , Models, Biological , Protein Binding , Humans , Blood Proteins/metabolism , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/blood , Orosomucoid/metabolism , Aged , Child , Pharmacokinetics
2.
Drug Metab Dispos ; 51(12): 1591-1606, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751998

ABSTRACT

Underestimation of aldehyde oxidase (AO)-mediated clearance by current in vitro assays leads to uncertainty in human dose projections, thereby reducing the likelihood of success in drug development. In the present study we first evaluated the current drug development practices for AO substrates. Next, the overall predictive performance of in vitro-in vivo extrapolation of unbound hepatic intrinsic clearance (CLint,u) and unbound hepatic intrinsic clearance by AO (CLint,u,AO) was assessed using a comprehensive literature database of in vitro (human cytosol/S9/hepatocytes) and in vivo (intravenous/oral) data collated for 22 AO substrates (total of 100 datapoints from multiple studies). Correction for unbound fraction in the incubation was done by experimental data or in silico predictions. The fraction metabolized by AO (fmAO) determined via in vitro/in vivo approaches was found to be highly variable. The geometric mean fold errors (gmfe) for scaled CLint,u (mL/min/kg) were 10.4 for human hepatocytes, 5.6 for human liver cytosols, and 5.0 for human liver S9, respectively. Application of these gmfe's as empirical scaling factors improved predictions (45%-57% within twofold of observed) compared with no correction (11%-27% within twofold), with the scaling factors qualified by leave-one-out cross-validation. A road map for quantitative translation was then proposed following a critical evaluation on the in vitro and clinical methodology to estimate in vivo fmAO In conclusion, the study provides the most robust system-specific empirical scaling factors to date as a pragmatic approach for the prediction of in vivo CLint,u,AO in the early stages of drug development. SIGNIFICANCE STATEMENT: Confidence remains low when predicting in vivo clearance of AO substrates using in vitro systems, leading to de-prioritization of AO substrates from the drug development pipeline to mitigate risk of unexpected and costly in vivo impact. The current study establishes a set of empirical scaling factors as a pragmatic tool to improve predictability of in vivo AO clearance. Developing clinical pharmacology strategies for AO substrates by utilizing mass balance/clinical drug-drug interaction data will help build confidence in fmAO.


Subject(s)
Aldehyde Oxidase , Liver , Humans , Aldehyde Oxidase/metabolism , Metabolic Clearance Rate , Liver/metabolism , Hepatocytes/metabolism , Microsomes, Liver/metabolism
3.
Clin Pharmacol Ther ; 114(6): 1243-1253, 2023 12.
Article in English | MEDLINE | ID: mdl-37620246

ABSTRACT

Monitoring endogenous biomarkers is increasingly used to evaluate transporter-mediated drug-drug interactions (DDIs) in early drug development and may be applied to elucidate changes in transporter activity in disease. 4-pyridoxic acid (PDA) has been identified as the most sensitive plasma endogenous biomarker of renal organic anion transporters (OAT1/3). Increase in PDA baseline concentrations was observed after administration of probenecid, a strong clinical inhibitor of OAT1/3 and also in patients with chronic kidney disease (CKD). The aim of this study was to develop and verify a physiologically-based pharmacokinetic (PBPK) model of PDA, to predict the magnitude of probenecid DDI and predict the CKD-related changes in PDA baseline. The PBPK model for PDA was first developed in healthy population, building on from previous population pharmacokinetic modeling, and incorporating a mechanistic kidney model to consider OAT1/3-mediated renal secretion. Probenecid PBPK model was adapted from the Simcyp database and re-verified to capture its dose-dependent pharmacokinetics (n = 9 studies). The PBPK model successfully predicted the PDA plasma concentrations, area under the curve, and renal clearance in healthy subjects at baseline and after single/multiple probenecid doses. Prospective simulations in severe CKD predicted successfully the increase in PDA plasma concentration relative to healthy (within 2-fold of observed data) after accounting for 60% increase in fraction unbound in plasma and additional 50% decline in OAT1/3 activity beyond the decrease in glomerular filtration rate. The verified PDA PBPK model supports future robust evaluation of OAT1/3 DDI in drug development and increases our confidence in predicting exposure and renal secretion in patients with CKD.


Subject(s)
Pyridoxic Acid , Renal Insufficiency, Chronic , Humans , Probenecid/pharmacology , Renal Insufficiency, Chronic/drug therapy , Kidney , Drug Interactions , Biomarkers , Models, Biological
4.
Ther Drug Monit ; 45(6): 743-753, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37315152

ABSTRACT

BACKGROUND: Routine therapeutic drug monitoring (TDM) relies heavily on measuring trough drug concentrations. Trough concentrations are affected not only by drug bioavailability and clearance, but also by various patient and disease factors and the volume of distribution. This often makes interpreting differences in drug exposure from trough data challenging. This study aimed to combine the advantages of top-down analysis of therapeutic drug monitoring data with bottom-up physiologically-based pharmacokinetic (PBPK) modeling to investigate the effect of declining renal function in chronic kidney disease (CKD) on the nonrenal intrinsic metabolic clearance ( CLint ) of tacrolimus as a case example. METHODS: Data on biochemistry, demographics, and kidney function, along with 1167 tacrolimus trough concentrations for 40 renal transplant patients, were collected from the Salford Royal Hospital's database. A reduced PBPK model was developed to estimate CLint for each patient. Personalized unbound fractions, blood-to-plasma ratios, and drug affinities for various tissues were used as priors to estimate the apparent volume of distribution. Kidney function based on the estimated glomerular filtration rate ( eGFR ) was assessed as a covariate for CLint using the stochastic approximation of expectation and maximization method. RESULTS: At baseline, the median (interquartile range) eGFR was 45 (34.5-55.5) mL/min/1.73 m 2 . A significant but weak correlation was observed between tacrolimus CLint and eGFR (r = 0.2, P < 0.001). The CLint declined gradually (up to 36%) with CKD progression. Tacrolimus CLint did not differ significantly between stable and failing transplant patients. CONCLUSIONS: Kidney function deterioration in CKD can affect nonrenal CLint for drugs that undergo extensive hepatic metabolism, such as tacrolimus, with critical implications in clinical practice. This study demonstrates the advantages of combining prior system information (via PBPK) to investigate covariate effects in sparse real-world datasets.


Subject(s)
Kidney Transplantation , Renal Insufficiency, Chronic , Humans , Tacrolimus/therapeutic use , Tacrolimus/pharmacokinetics , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/pharmacokinetics , Renal Insufficiency, Chronic/drug therapy , Glomerular Filtration Rate
5.
Pharmaceutics ; 15(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986758

ABSTRACT

Gadoxetate, a magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 and multidrug resistance-associated protein 2. Six drugs, with varying degrees of transporter inhibition, were used to assess gadoxetate dynamic contrast enhanced MRI biomarkers for transporter inhibition in rats. Prospective prediction of changes in gadoxetate systemic and liver AUC (AUCR), resulting from transporter modulation, were performed by physiologically-based pharmacokinetic (PBPK) modelling. A tracer-kinetic model was used to estimate rate constants for hepatic uptake (khe), and biliary excretion (kbh). The observed median fold-decreases in gadoxetate liver AUC were 3.8- and 1.5-fold for ciclosporin and rifampicin, respectively. Ketoconazole unexpectedly decreased systemic and liver gadoxetate AUCs; the remaining drugs investigated (asunaprevir, bosentan, and pioglitazone) caused marginal changes. Ciclosporin decreased gadoxetate khe and kbh by 3.78 and 0.09 mL/min/mL, while decreases for rifampicin were 7.20 and 0.07 mL/min/mL, respectively. The relative decrease in khe (e.g., 96% for ciclosporin) was similar to PBPK-predicted inhibition of uptake (97-98%). PBPK modelling correctly predicted changes in gadoxetate systemic AUCR, whereas underprediction of decreases in liver AUCs was evident. The current study illustrates the modelling framework and integration of liver imaging data, PBPK, and tracer-kinetic models for prospective quantification of hepatic transporter-mediated DDI in humans.

6.
Eur J Pharm Sci ; 182: 106375, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36626943

ABSTRACT

Biologics are a fast-growing therapeutic class, with intertwined pharmacokinetics and pharmacodynamics, affected by the abundance and function of the FcRn receptor. While many investigators assume adequacy of classical models, such as allometry, for pharmacokinetic characterization of biologics, advocates of physiologically-based pharmacokinetics (PBPK) propose consideration of known systems parameters that affect the fate of biologics to enable a priori predictions, which go beyond allometry. The aim of this study was to deploy a systems-informed modelling approach to predict the disposition of Fc-containing biologics. We used global proteomics to quantify the FcRn receptor [p51 and ß2-microglobulin (B2M) subunits] in 167 samples of human tissue (liver, intestine, kidney and skin) and assessed covariates of its expression. FcRn p51 subunit was highest in liver relative to other tissues, and B2M was 1-2 orders of magnitude more abundant than FcRn p51 across all sets. There were no sex-related differences, while higher expression was confirmed in neonate liver compared with adult liver. Trends of expression in liver and kidney indicated a moderate effect of body mass index, which should be confirmed in a larger sample size. Expression of FcRn p51 subunit was approximately 2-fold lower in histologically normal liver tissue adjacent to cancer compared with healthy liver. FcRn mRNA in plasma-derived exosomes correlated moderately with protein abundance in matching liver tissue, opening the possibility of use as a potential clinical tool. Predicted effects of trends in FcRn abundance in healthy and disease (cancer and psoriasis) populations using trastuzumab and efalizumab PBPK models were in line with clinical observations, and global sensitivity analysis revealed endogenous IgG plasma concentration and tissue FcRn abundance as key systems parameters influencing exposure to Fc-conjugated biologics.


Subject(s)
Biological Products , Adult , Infant, Newborn , Humans , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/analysis , Histocompatibility Antigens Class I/metabolism , Receptors, Fc/genetics , Receptors, Fc/metabolism , Liver/metabolism
7.
Clin Pharmacol Ther ; 112(3): 615-626, 2022 09.
Article in English | MEDLINE | ID: mdl-35652251

ABSTRACT

Coproporphyrin I (CPI) is an endogenous biomarker of organic anion transporting polypeptide 1B transporter (OATP1B). CPI plasma baseline was reported to increase with severity of chronic kidney disease (CKD). Further, ratio of CPI area under the plasma concentration-time curve (AUCR) in the presence/absence of OATP1B inhibitor rifampin was higher in patients with CKD compared with healthy participants, in contrast to pitavastatin (a clinical OATP1B probe). This study investigated mechanism(s) contributing to altered CPI baseline in patients with CKD by extending a previously developed physiologically-based pharmacokinetic (PBPK) model to this patient population. CKD-related covariates were evaluated in a stepwise manner on CPI fraction unbound in plasma (fu,p ), OATP1B-mediated hepatic uptake clearance (CLactive ), renal clearance (CLR ), and endogenous synthesis (ksyn ). The CPI model successfully recovered increased baseline and rifampin-mediated AUCR in patients with CKD by accounting for the following disease-related changes: 13% increase in fu,p , 29% and 39% decrease in CLactive in mild and moderate to severe CKD, respectively, decrease in CLR proportional to decline in glomerular filtration rate, and 27% decrease in ksyn in severe CKD. Almost complete decline in CPI renal elimination in severe CKD increased its fraction transported by OATP1B, rationalizing differences in the CPI-rifampin interaction observed between healthy participants and patients with CKD. In conclusion, mechanistic modeling performed here supports CKD-related decrease in OATP1B function to inform prospective PBPK modeling of OATP1B-mediated drug-drug interaction in these patients. Monitoring of CPI allows detection of CKD-drug interaction risk for OATP1B drugs with combined hepatic and renal elimination which may be underestimated by extrapolating the interaction risk based on pitavastatin data in healthy participants.


Subject(s)
Coproporphyrins , Organic Anion Transporters , Renal Insufficiency, Chronic , Biomarkers , Coproporphyrins/analysis , Drug Interactions , Humans , Liver-Specific Organic Anion Transporter 1 , Organic Anion Transporters/metabolism , Prospective Studies , Renal Insufficiency, Chronic/diagnosis , Rifampin/pharmacology
8.
Clin Pharmacol Ther ; 112(3): 643-652, 2022 09.
Article in English | MEDLINE | ID: mdl-35569107

ABSTRACT

There is growing evidence that active tubular secretory clearance (CLs ) may not decline proportionally with the glomerular filtration rate (GFR) in chronic kidney disease (CKD), leading to the overestimation of renal clearance (CLr ) when using solely GFR to approximate disease effect on renal elimination. The clinical pharmacokinetic data of 33 renally secreted OAT1/3 substrates were collated to investigate the impact of mild, moderate, and severe CKD on CLr , tubular secretion and protein binding (fu,p ). The fu,p of the collated substrates ranged from 0.0026 to 1.0 in healthy populations; observed CKD-related increase in the fu,p (up to 2.7-fold) of 8 highly bound substrates (fu,p ≤ 0.2) was accounted for in the analysis. Use of prediction equation based on disease-related changes in albumin resulted in underprediction of the CKD-related increase in fu,p of highly bound substrates, highlighting the necessity to measure protein binding in severe CKD. The critical analysis of clinical data for 33 OAT1/3 probes established that decrease in OAT1/3 activity proportional to the changes in GFR was insufficient to recapitulate effects of severe CKD on unbound tubular secretion clearance. OAT1/3-mediated CLs was estimated to decline by an additional 50% relative to the GFR decline in severe CKD, whereas change in active secretion in mild and moderate CKD was proportional to GFR. Consideration of this additional 50% decline in OAT1/3-mediated CLs is recommended for physiologically-based pharmacokinetic models and dose adjustment of OAT1/3 substrates in severe CKD, especially for substrates with high contribution of the active secretion to CLr .


Subject(s)
Organic Anion Transporters , Renal Insufficiency, Chronic , Glomerular Filtration Rate , Humans , Kidney/metabolism , Organic Anion Transporters/metabolism , Renal Elimination , Renal Insufficiency, Chronic/metabolism
10.
AAPS J ; 24(1): 13, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907479

ABSTRACT

Dosing guidance is often lacking for chronic kidney disease (CKD) due to exclusion of such patients from pivotal clinical trials. Physiologically based pharmacokinetic (PBPK) modelling supports model-informed dosing when clinical data are lacking, but application of these approaches to patients with impaired renal function is not yet at full maturity. In the current study, a ganciclovir PBPK model was developed for patients with normal renal function and extended to CKD population. CKD-related changes in tubular secretion were explored in the mechanistic kidney model and implemented either as proportional or non-proportional decline relative to GFR. Crystalluria risk was evaluated in different clinical settings (old age, severe CKD and low fluid intake) by simulating ganciclovir medullary collecting duct (MCD) concentrations. The ganciclovir PBPK model captured observed changes in systemic pharmacokinetic endpoints in mild-to-severe CKD; these trends were evident irrespective of assumed pathophysiological mechanism of altered active tubular secretion in the model. Minimal difference in simulated ganciclovir MCD concentrations was noted between young adult and geriatric populations with normal renal function and urine flow (1 mL/min), with lower concentrations predicted for severe CKD patients. High crystalluria risk was identified at reduced urine flow (0.1 mL/min) as simulated ganciclovir MCD concentrations exceeded its solubility (2.6-6 mg/mL), irrespective of underlying renal function. The analysis highlighted the importance of appropriate distribution of virtual subjects' systems data in CKD populations. The ganciclovir PBPK model illustrates the ability of this translational tool to explore individual and combined effects of age, urine flow, and renal impairment on local drug renal exposure.


Subject(s)
Ganciclovir , Renal Insufficiency , Aged , Computer Simulation , Humans , Kidney , Models, Biological , Young Adult
11.
Clin Pharmacol Ther ; 110(5): 1389-1400, 2021 11.
Article in English | MEDLINE | ID: mdl-34390491

ABSTRACT

The applications of translational modeling of local drug concentrations in various organs had a sharp increase over the last decade. These are part of the model-informed drug development initiative, adopted by the pharmaceutical industry and promoted by drug regulatory agencies. With respect to the kidney, the models serve as a bridge for understanding animal vs. human observations related to renal drug disposition and any consequential adverse effects. However, quantitative data on key drug-metabolizing enzymes and transporters relevant for predicting renal drug disposition are limited. Using targeted and global quantitative proteomics, we determined the abundance of multiple enzymes and transporters in 20 human kidney cortex samples. Nine enzymes and 22 transporters were quantified (8 for the first time in the kidneys). In addition, > 4,000 proteins were identified and used to form an open database. CYP2B6, CYP3A5, and CYP4F2 showed comparable, but generally low expression, whereas UGT1A9 and UGT2B7 levels were the highest. Significant correlation between abundance and activity (measured by mycophenolic acid clearance) was observed for UGT1A9 (Rs = 0.65, P = 0.004) and UGT2B7 (Rs = 0.70, P = 0.023). Expression of P-gp ≈ MATE-1 and OATP4C1 transporters were high. Strong intercorrelations were observed between several transporters (P-gp/MRP4, MRP2/OAT3, and OAT3/OAT4); no correlation in expression was apparent for functionally related transporters (OCT2/MATEs). This study extends our knowledge of pharmacologically relevant proteins in the kidney cortex, with implications on more prudent use of mechanistic kidney models under the general framework of quantitative systems pharmacology and toxicology.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Kidney Cortex/metabolism , Membrane Transport Proteins/metabolism , Models, Biological , Proteomics/methods , Cytochrome P-450 Enzyme System/genetics , Databases, Factual , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Humans , Kidney/metabolism , Kinetics , Membrane Transport Proteins/genetics , UDP-Glucuronosyltransferase 1A9
12.
Mol Pharm ; 18(8): 2997-3009, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34283621

ABSTRACT

Physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development to simulate changes in both systemic and tissue exposures that arise as a result of changes in enzyme and/or transporter activity. Verification of these model-based simulations of tissue exposure is challenging in the case of transporter-mediated drug-drug interactions (tDDI), in particular as these may lead to differential effects on substrate exposure in plasma and tissues/organs of interest. Gadoxetate, a promising magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2). In this study, we developed a gadoxetate PBPK model and explored the use of liver-imaging data to achieve and refine in vitro-in vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic data. In addition, PBPK modeling was used to investigate gadoxetate hepatic tDDI with rifampicin i.v. 10 mg/kg. In vivo dynamic contrast-enhanced (DCE) MRI data of gadoxetate in rat blood, spleen, and liver were used in this analysis. Gadoxetate in vitro uptake kinetic data were generated in plated rat hepatocytes. Mean (%CV) in vitro hepatocyte uptake unbound Michaelis-Menten constant (Km,u) of gadoxetate was 106 µM (17%) (n = 4 rats), and active saturable uptake accounted for 94% of total uptake into hepatocytes. PBPK-IVIVE of these data (bottom-up approach) captured reasonably systemic exposure, but underestimated the in vivo gadoxetate DCE-MRI profiles and elimination from the liver. Therefore, in vivo rat DCE-MRI liver data were subsequently used to refine gadoxetate transporter kinetic parameters in the PBPK model (top-down approach). Active uptake into the hepatocytes refined by the liver-imaging data was one order of magnitude higher than the one predicted by the IVIVE approach. Finally, the PBPK model was fitted to the gadoxetate DCE-MRI data (blood, spleen, and liver) obtained with and without coadministered rifampicin. Rifampicin was estimated to inhibit active uptake transport of gadoxetate into the liver by 96%. The current analysis highlighted the importance of gadoxetate liver data for PBPK model refinement, which was not feasible when using the blood data alone, as is common in PBPK modeling applications. The results of our study demonstrate the utility of organ-imaging data in evaluating and refining PBPK transporter IVIVE to support the subsequent model use for quantitative evaluation of hepatic tDDI.


Subject(s)
Contrast Media/pharmacokinetics , Gadolinium DTPA/pharmacokinetics , Liver/diagnostic imaging , Liver/metabolism , Magnetic Resonance Imaging/methods , Rifampin/pharmacokinetics , Animals , Biological Transport, Active/drug effects , Biomarkers/metabolism , Cells, Cultured , Contrast Media/administration & dosage , Contrast Media/metabolism , Drug Interactions , Gadolinium DTPA/administration & dosage , Gadolinium DTPA/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Male , Models, Animal , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Rats , Rifampin/administration & dosage , Rifampin/metabolism
13.
Drug Metab Dispos ; 49(7): 563-571, 2021 07.
Article in English | MEDLINE | ID: mdl-33980603

ABSTRACT

In vitro-in vivo extrapolation (IVIVE) linked with physiologically based pharmacokinetics (PBPK) modeling is used to predict the fates of drugs in patients. Ideally, the IVIVE-PBPK models should incorporate systems information accounting for characteristics of the specific target population. There is a paucity of such scaling factors in cancer, particularly microsomal protein per gram of liver (MPPGL) and cytosolic protein per gram of liver (CPPGL). In this study, cancerous and histologically normal liver tissue from 16 patients with colorectal liver metastasis were fractionated to microsomes and cytosol. Protein content was measured in homogenates, microsomes, and cytosol. The loss of microsomal protein during fractionation was accounted for using corrections based on NADPH cytochrome P450 reductase activity in different matrices. MPPGL was significantly lower in cancerous tissue (24.8 ± 9.8 mg/g) than histologically normal tissue (39.0 ± 13.8 mg/g). CPPGL in cancerous tissue was 42.1 ± 12.9 mg/g compared with 56.2 ± 16.9 mg/g in normal tissue. No correlations between demographics (sex, age, and body mass index) and MPPGL or CPPGL were apparent in the data. The generated scaling factors together with assumptions regarding the relative volumes of cancerous versus noncancerous tissue were used to simulate plasma exposure of drugs with different extraction ratios. The PBPK simulations revealed a substantial difference in drug exposure (area under the curve), up to 3.3-fold, when using typical scaling factors (healthy population) instead of disease-related parameters in cancer population. These indicate the importance of using population-specific scalars in IVIVE-PBPK for different disease states. SIGNIFICANCE STATEMENT: Accuracy in predicting the fate of drugs from in vitro data using IVIVE-PBPK depends on using correct scaling factors. The values for two of such scalars, namely microsomal and cytosolic protein per gram of liver, is not known in patients with cancer. This study presents, for the first time, scaling factors from cancerous and matched histologically normal livers. PBPK simulations of various metabolically cleared drugs demonstrate the necessity of population-specific scaling for model-informed precision dosing in oncology.


Subject(s)
Antinematodal Agents/pharmacokinetics , Colorectal Neoplasms/pathology , Liver Neoplasms/physiopathology , Liver/metabolism , Models, Biological , Adult , Aged , Aged, 80 and over , Antinematodal Agents/administration & dosage , Colorectal Neoplasms/drug therapy , Dose-Response Relationship, Drug , Female , Hepatectomy , Hepatobiliary Elimination , Humans , Liver/pathology , Liver/surgery , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Male , Metabolic Clearance Rate , Microsomes, Liver/metabolism , Middle Aged
14.
Clin Pharmacokinet ; 60(9): 1187-1199, 2021 09.
Article in English | MEDLINE | ID: mdl-33840062

ABSTRACT

BACKGROUND: Endogenous biomarkers are promising tools to assess transporter-mediated drug-drug interactions early in humans. METHODS: We evaluated on a common and validated in vitro system the selectivity of 4-pyridoxic acid (PDA), homovanillic acid (HVA), glycochenodeoxycholate-3-sulphate (GCDCA-S) and taurine towards different renal transporters, including multidrug resistance-associated protein, and assessed the in vivo biomarker sensitivity towards the strong organic anion transporter (OAT) inhibitor probenecid at 500 mg every 6 h to reach close to complete OAT inhibition. RESULTS: PDA and HVA were substrates of the OAT1/2/3, OAT4 (PDA only) and multidrug resistance-associated protein 4; GCDCA-S was more selective, having affinity only towards OAT3 and multidrug resistance-associated protein 2. Taurine was not a substrate of any of the investigated transporters under the in vitro conditions tested. Plasma exposure of PDA and HVA significantly increased and the renal clearance of GCDCA-S, PDA and HVA decreased; the magnitude of these changes was comparable to those of known clinical OAT probe substrates. PDA and GCDCA-S were the most promising endogenous biomarkers of the OAT pathway activity: PDA plasma exposure was the most sensitive to probenecid inhibition, and, in contrast, GCDCA-S was the most sensitive OAT biomarker based on renal clearance, with higher selectivity towards the OAT3 transporter. CONCLUSIONS: The current findings illustrate a clear benefit of measuring PDA plasma exposure during phase I studies when a clinical drug candidate is suspected to be an OAT inhibitor based on in vitro data. Subsequently, combined monitoring of PDA and GCDCA-S in both urine and plasma is recommended to tease out the involvement of OAT1/3 in the inhibition interaction. CLINICAL TRIAL REGISTRATION: EudraCT number: 2016-003923-49.


Subject(s)
Organic Anion Transport Protein 1 , Pharmaceutical Preparations , Biomarkers , Drug Interactions , HEK293 Cells , Humans , Kidney , Organic Anion Transporters, Sodium-Independent
15.
FEBS Lett ; 594(23): 4134-4150, 2020 12.
Article in English | MEDLINE | ID: mdl-33128234

ABSTRACT

ABC transporters (ATP-binding cassette transporter) traffic drugs and their metabolites across membranes, making ABC transporter expression levels a key factor regulating local drug concentrations in different tissues and individuals. Yet, quantification of ABC transporters remains challenging because they are large and low-abundance transmembrane proteins. Here, we analysed 200 samples of crude and membrane-enriched fractions from human liver, kidney, intestine, brain microvessels and skin, by label-free quantitative mass spectrometry. We identified 32 (out of 48) ABC transporters: ABCD3 was the most abundant in liver, whereas ABCA8, ABCB2/TAP1 and ABCE1 were detected in all tissues. Interestingly, this atlas unveiled that ABCB2/TAP1 may have TAP2-independent functions in the brain and that biliary atresia (BA) and control livers have quite different ABC transporter profiles. We propose that meaningful biological information can be derived from a direct comparison of these data sets.


Subject(s)
ATP-Binding Cassette Transporters/analysis , ATP-Binding Cassette Transporters/chemistry , Brain/metabolism , Intestinal Mucosa/metabolism , Kidney/metabolism , Liver/metabolism , Skin/metabolism , ATP-Binding Cassette Transporters/metabolism , Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Male , Mass Spectrometry , Organ Specificity
16.
CPT Pharmacometrics Syst Pharmacol ; 9(12): 695-706, 2020 12.
Article in English | MEDLINE | ID: mdl-33049120

ABSTRACT

Elevated serum creatinine (SCr ) caused by the inhibition of renal transporter(s) may be misinterpreted as kidney injury. The interpretation is more complicated in patients with chronic kidney disease (CKD) due to altered disposition of creatinine and renal transporter inhibitors. A clinical study was conducted in 17 patients with CKD (estimated glomerular filtration rate 15-59 mL/min/1.73 m2 ); changes in SCr were monitored during trimethoprim treatment (100-200 mg/day), administered to prevent recurrent urinary infection, relative to the baseline level. Additional SCr -interaction data with trimethoprim, cimetidine, and famotidine in patients with CKD were collated from the literature. Our published physiologically-based creatinine model was extended to predict the effect of the CKD on SCr and creatinine-drug interaction. The creatinine-CKD model incorporated age/sex-related differences in creatinine synthesis, CKD-related glomerular filtration deterioration; change in transporter activity either proportional or disproportional to glomerular filtration rate (GFR) decline were explored. Optimized models successfully recovered baseline SCr from 64 patients with CKD (geometric mean fold-error of 1.1). Combined with pharmacokinetic models of inhibitors, the creatinine model was used to simulate transporter-mediated creatinine-drug interactions. Use of inhibitor unbound plasma concentrations resulted in 66% of simulated SCr interaction data within the prediction limits, with cimetidine interaction significantly underestimated. Assuming that transporter activity deteriorates disproportional to GFR decline resulted in higher predicted sensitivity to transporter inhibition in patients with CKD relative to healthy patients, consistent with sparse clinical data. For the first time, this novel modelling approach enables quantitative prediction of SCr in CKD and delineation of the effect of disease and renal transporter inhibition in this patient population.


Subject(s)
Creatinine/blood , Cytochrome P-450 CYP2C8 Inhibitors/pharmacokinetics , Renal Insufficiency, Chronic/blood , Trimethoprim/pharmacokinetics , Adult , Aged , Aged, 80 and over , Cimetidine/pharmacokinetics , Computer Simulation , Cytochrome P-450 CYP1A2 Inhibitors/pharmacokinetics , Cytochrome P-450 CYP2C8 Inhibitors/administration & dosage , Cytochrome P-450 CYP2C8 Inhibitors/therapeutic use , Drug Interactions , Famotidine/pharmacokinetics , Female , Glomerular Filtration Rate/physiology , Histamine H2 Antagonists/pharmacokinetics , Humans , Longitudinal Studies , Male , Middle Aged , Trimethoprim/administration & dosage , Trimethoprim/therapeutic use , Urinary Tract Infections/drug therapy , Urinary Tract Infections/prevention & control
17.
Drug Metab Dispos ; 48(12): 1271-1282, 2020 12.
Article in English | MEDLINE | ID: mdl-32978222

ABSTRACT

In vitro to in vivo extrapolation (IVIVE) enables prediction of in vivo clinical outcomes related to drug exposure in various populations from in vitro data. Prudent IVIVE requires scalars specific to the biologic characteristics of the system in each population. This study determined experimentally for the first time scalars in liver samples from patients with varying degrees of cirrhosis. Microsomal and cytosolic fractions were extracted from 13 noncirrhotic and 32 cirrhotic livers (six mild, 13 moderate, and 13 severe, based on Child-Pugh score). Fractional protein content was determined, and cytochrome P450 reductase activity was used to correct for microsomal protein loss. Although the median microsomal protein per gram liver (MPPGL) in mild, moderate, and severe cirrhosis (26.2, 32.4, and 30.8 mg⋅g-1, respectively) seemed lower than control livers (36.6 mg⋅g-1), differences were not statistically significant (Kruskal-Wallis test, P > 0.05). Corresponding values for cytosolic protein per gram liver were 88.2, 67.9, 62.2, and 75.4 (mg⋅g-1) for mild, moderate, and severe cirrhosis and control livers, respectively, with statistically lower values for severe versus controls (Mann-Whitney P = 0.006). Cirrhosis associated with cancer showed lower MPPGL (24.8 mg⋅g-1) than cirrhosis associated with cholestasis (38.3 mg⋅g-1, P = 0.003). Physiologically based pharmacokinetic simulations with disease-specific scalars captured cirrhosis impact on exposure to alfentanil, metoprolol, midazolam, and ethinylestradiol. These experimentally-determined scalars should alleviate the need for indirect scaling using functional liver volume. Scaling factors in cirrhosis might be a reflection of the etiology rather than the disease severity. Hence, bundling various cirrhotic conditions under the same umbrella when predicting hepatic impairment impact should be revisited. SIGNIFICANCE STATEMENT: Cirrhosis-specific scalars required for extrapolation from microsomal or cytosolic in vitro systems to liver tissue are lacking. These scalars can help in predicting drug clearance and selection of dosage regimens for cirrhosis populations. Attempts to consider potential changes have been empirical and ignored the potential impact of the cause of cirrhosis. We obtained experimental values for these scalars for the first time and assessed their impact on predicted exposure to various substrate drugs using physiologically-based pharmacokinetics simulations.


Subject(s)
Hepatobiliary Elimination/physiology , Liver Cirrhosis/physiopathology , Liver/metabolism , Administration, Intravenous , Administration, Oral , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cytochrome P-450 Enzyme System/metabolism , Female , Healthy Volunteers , Humans , Liver/physiopathology , Liver Cirrhosis/diagnosis , Male , Microsomes, Liver , Middle Aged , Severity of Illness Index , Young Adult
18.
CPT Pharmacometrics Syst Pharmacol ; 9(5): 282-293, 2020 05.
Article in English | MEDLINE | ID: mdl-32410382

ABSTRACT

Creatinine is widely used as a biomarker of glomerular filtration, and, hence, renal function. However, transporter-mediated secretion also contributes to its renal clearance, albeit to a lesser degree. Inhibition of these transporters causes transient serum creatinine elevation, which can be mistaken as impaired renal function. The current study developed mechanistic models of creatinine kinetics within physiologically based framework accounting for multiple transporters involved in creatinine renal elimination, assuming either unidirectional or bidirectional-OCT2 transport (driven by electrochemical gradient). Robustness of creatinine models was assessed by predicting creatinine-drug interactions with 10 perpetrators; performance evaluation accounted for 5% intra-individual variability in serum creatinine. Models showed comparable predictive performances of the maximum steady-state effect regardless of OCT2 directionality assumptions. However, only the bidirectional-OCT2 model successfully predicted the minimal effect of ranitidine. The dynamic nature of models provides clear advantage to static approaches and most advanced framework for evaluating interplay between multiple processes in creatinine renal disposition.


Subject(s)
Biomarkers/metabolism , Creatinine/blood , Models, Biological , Pharmaceutical Preparations/metabolism , Biological Transport/physiology , Glomerular Filtration Rate/drug effects , Humans , Kidney Function Tests , Organic Cation Transporter 2/metabolism , Pharmaceutical Preparations/administration & dosage
19.
CPT Pharmacometrics Syst Pharmacol ; 9(6): 310-321, 2020 06.
Article in English | MEDLINE | ID: mdl-32441889

ABSTRACT

Creatinine is the most common clinical biomarker of renal function. As a substrate for renal transporters, its secretion is susceptible to inhibition by drugs, resulting in transient increase in serum creatinine and false impression of damage to kidney. Novel physiologically based models for creatinine were developed here and (dis)qualified in a stepwise manner until consistency with clinical data. Data from a matrix of studies were integrated, including systems data (common to all models), proteomics-informed in vitro-in vivo extrapolation of all relevant transporter clearances, exogenous administration of creatinine (to estimate endogenous synthesis rate), and inhibition of different renal transporters (11 perpetrator drugs considered for qualification during creatinine model development and verification on independent data sets). The proteomics-informed bottom-up approach resulted in the underprediction of creatinine renal secretion. Subsequently, creatinine-trimethoprim clinical data were used to inform key model parameters in a reverse translation manner, highlighting best practices and challenges for middle-out optimization of mechanistic models.


Subject(s)
Creatinine/blood , Kidney Tubules, Proximal/metabolism , Models, Biological , Organic Cation Transporter 2/metabolism , Pharmaceutical Preparations/blood , Renal Elimination , Biomarkers/blood , Drug Monitoring , Glomerular Filtration Rate , HEK293 Cells , Humans , Kidney Tubules, Proximal/drug effects , Organic Cation Transporter 2/antagonists & inhibitors , Organic Cation Transporter 2/genetics , Permeability , Pharmacokinetics , Proteome , Renal Elimination/drug effects
20.
Mol Pharm ; 16(11): 4551-4562, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31525064

ABSTRACT

Indoxyl sulfate (IxS), a highly albumin-bound uremic solute, accumulates in chronic kidney disease (CKD) due to reduced renal clearance. This study was designed to specifically investigate the role of human serum albumin (HSA) in IxS renal secretion via organic anion transporter 1 (OAT1) in a microfluidic system and subsequently apply quantitative translation of in vitro data to predict extent of change in IxS renal clearance in CKD stage IV relative to healthy. Conditionally immortalized human proximal tubule epithelial cells overexpressing OAT1 were incubated with IxS (5-200 µM) in the HSA-free medium or in the presence of either HSA or CKD-modified HSA. IxS uptake in the presence of HSA resulted in more than 20-fold decrease in OAT1 affinity (Km,u) and 37-fold greater in vitro unbound intrinsic clearance (CLint,u) versus albumin-free condition. In the presence of CKD-modified albumin, Km,u increased four-fold and IxS CLint,u decreased almost seven-fold relative to HSA. Fold-change in parameters exceeded differences in IxS binding between albumin conditions, indicating additional mechanism and facilitating role of albumin in IxS OAT1-mediated uptake. Quantitative translation of IxS in vitro OAT1-mediated CLint,u predicted a 60% decrease in IxS renal elimination as a result of CKD, in agreement with the observed data (80%). The findings of the current study emphasize the role of albumin in IxS transport via OAT1 and explored the impact of modifications in albumin on renal excretion via active secretion in CKD. For the first time, this study performed quantitative translation of transporter kinetic data generated in a novel microfluidic in vitro system to a clinically relevant setting. Knowledge gaps and future directions in quantitative translation of renal drug disposition from microphysiological systems are discussed.


Subject(s)
Biological Transport/physiology , Indican/metabolism , Renal Insufficiency, Chronic/metabolism , Serum Albumin, Human/metabolism , Cell Line , Humans , Kidney Tubules, Proximal/metabolism , Kinetics , Membrane Transport Proteins/metabolism , Microfluidics , Organic Anion Transport Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...