Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Bioorg Med Chem Lett ; 38: 127872, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33636307

ABSTRACT

A series of novel (R)-6,6a,7,8,9,10-hexahydro-5H-pyrazino[1,2-a][1,n]naphthyridines were identified as potent and selective agonists of the 5-HT2C receptor. Optimizations performed on a previously reported series of racemic tetrahydroquinoline-based tricyclic amines, delivered an advanced drug lead, (R)-4-(3,3,3-trifluoropropyl)-6,6a,7,8,9,10-hexahydro-5H-pyrazino[1,2-a][1,8]naphthyridine, which displayed excellent in vitro and in vivo pharmacological profiles.


Subject(s)
Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Rats , Serotonin 5-HT2 Receptor Agonists/chemical synthesis , Serotonin 5-HT2 Receptor Agonists/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 30(5): 126929, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31952960

ABSTRACT

A series of potential new 5-HT2 receptor scaffolds based on a simplification of the clinically studied, 5-HT2CR agonist vabicaserin, were designed. An in vivo feeding assay early in our screening process played an instrumental part in the lead identification process, leading us to focus on a 6,5,7-tricyclic scaffold. A subsequent early SAR investigation provided potent agonists of the 5-HT2C receptor that were highly selective in both functional and binding assays, had good rat PK properties and that significantly reduced acute food intake in the rat.


Subject(s)
Benzodiazepines/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Animals , Benzodiazepines/chemical synthesis , Benzodiazepines/metabolism , Benzodiazepines/pharmacokinetics , Dogs , Drug Discovery , Drug Stability , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/metabolism , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Macaca fascicularis , Male , Mice , Microsomes/metabolism , Molecular Structure , Rats, Sprague-Dawley , Serotonin 5-HT2 Receptor Agonists/chemical synthesis , Serotonin 5-HT2 Receptor Agonists/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacokinetics , Structure-Activity Relationship
3.
Cell Signal ; 50: 9-24, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29928987

ABSTRACT

Angiotensin (1-7) has been reported to be a ligand for the GPCR MAS1. Small molecule MAS1 modulators have also been recently characterized. Aside from convincing evidence for MAS1 activation of Gq signaling, little is known about MAS1 mediated signaling pathways initiated by these ligands, especially Ang (1-7). We performed a comprehensive characterization of recombinant MAS1 signaling induced by Ang (1-7) and small molecule ligands through numerous G protein-dependent and independent pathways, and in a signaling pathway agnostic approach. We find that small molecule ligands modulate numerous G protein-dependent and independent pathways through MAS1, including Gq and Gi pathways, GTPγS binding, ß-arrestin recruitment, Erk1/2 and Akt phosphorylation, arachidonic acid release, and receptor internalization. Moreover, in dynamic mass redistribution (DMR) assays that provide a pathway-agnostic readout of cellular responses, small molecule agonists produced robust responses. In contrast, Ang (1-7) failed to induce or block signaling in any of these assay platforms. We detected specific binding of radiolabeled Ang (1-7) to rat aortic endothelial cell (RAEC) membranes, but not to recombinant MAS1. Biphasic, concentration-dependent biased signaling responses to Ang II were detected in RAEC. These phases were associated with vastly different DMR characteristics and this likely provides a molecular basis for previously observed concentration-dependent divergent physiological actions of Ang II. Both phases of Ang II signaling in RAECs were potently inhibited by Ang (1-7), providing a plausible molecular mechanism for Ang (1-7) as counter regulator of the Ang II- AT1 axis, responsible at least in part for Ang (1-7) physiological activities.


Subject(s)
Angiotensin I/metabolism , Peptide Fragments/metabolism , Proto-Oncogene Proteins/metabolism , Receptor, Angiotensin, Type 1/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Angiotensin II/metabolism , Animals , Arrestins/metabolism , CHO Cells , Cell Line , Cricetulus , Endothelial Cells/metabolism , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation/physiology , Proto-Oncogene Mas , Rats , beta-Arrestins/metabolism
4.
Pharmacol Res ; 131: 185-198, 2018 05.
Article in English | MEDLINE | ID: mdl-29471103

ABSTRACT

GPR84 is an orphan G-protein coupled receptor, expressed on monocytes, macrophages and neutrophils and is significantly upregulated by inflammatory stimuli. The physiological role of GPR84 remains largely unknown. Medium chain fatty acids (MCFA) activate the receptor and have been proposed to be its endogenous ligands, although the high concentrations of MCFAs required for receptor activation generally exceed normal physiological levels. We identified the natural product embelin as a highly potent and selective surrogate GPR84 agonist (originally disclosed in patent application WO2007027661A2, 2007) and synthesized close structural analogs with widely varying receptor activities. These tools were used to perform a comprehensive study of GPR84 signaling and function in recombinant cells and in primary human macrophages and neutrophils. Activation of recombinant GPR84 by embelin in HEK293 cells results in Gi/o as well as G12/13-Rho signaling. In human macrophages, GPR84 initiates PTX sensitive Erk1/2 and Akt phosphorylation, PI-3 kinase activation, calcium flux, and release of prostaglandin E2. In addition, GPR84 signaling in macrophages elicits Gi Gßγ-mediated augmentation of intracellular cAMP, rather than the decrease expected from Giα engagement. GPR84 activation drives human neutrophil chemotaxis and primes them for amplification of oxidative burst induced by FMLP and C5A. Loss of GPR84 is associated with attenuated LPS-induced release of proinflammatory mediators IL-6, KC-GROα, VEGF, MIP-2 and NGAL from peritoneal exudates. While initiating numerous proinflammatory activities in macrophages and neutrophils, GPR84 also possesses GPR109A-like antiatherosclerotic properties in macrophages. Macrophage receptor activation leads to upregulation of cholesterol transporters ABCA1 and ABCG1 and stimulates reverse cholesterol transport. These data suggest that GPR84 may be a target of therapeutic value and that distinct modes of receptor modulation (inhibition vs. stimulation) may be required for inflammatory and atherosclerotic indications.


Subject(s)
Benzoquinones/chemistry , Benzoquinones/pharmacology , Macrophages/drug effects , Neutrophils/drug effects , Receptors, Cell Surface/agonists , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HEK293 Cells , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Inflammation Mediators/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects
5.
ACS Med Chem Lett ; 8(12): 1309-1313, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29259753

ABSTRACT

The discovery of a novel, selective and fully efficacious CB2 agonist with satisfactory pharmacokinetic and pharmaceutical properties is described. Compound 6 was efficacious in a rat model of osteoarthritis pain following oral administration and, in contrast to morphine, maintained its analgesic effect throughout a 5-day subchronic treatment paradigm. These data were consistent with our hypothesis that full agonist efficacy is required for efficient internalization and recycling of the CB2 receptor to avoid tachyphylaxis. Based on its overall favorable preclinical profile, 6 (APD371) was selected for further development for the treatment of pain.

6.
J Med Chem ; 60(3): 913-927, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28072531

ABSTRACT

The design and synthesis of a new series of potent non-prostanoid IP receptor agonists that showed oral efficacy in the rat monocrotaline model of pulmonary arterial hypertension (PAH) are described. Detailed profiling of a number of analogues resulted in the identification of 5c (ralinepag) that has good selectivity in both binding and functional assays with respect to most members of the prostanoid receptor family and a more modest 30- to 50-fold selectivity over the EP3 receptor. In our hands, its potency and efficacy are comparable or superior to MRE269 (the active metabolite of the clinical compound NS-304) with respect to in vitro IP receptor dependent cAMP accumulation assays. 5c had an excellent PK profile across species. Enterohepatic recirculation most probably contributes to a concentration-time profile after oral administration in the cynomolgus monkey that showed a very low peak-to-trough ratio. Following the identification of an acceptable solid form, 5c was selected for further development for the treatment of PAH.


Subject(s)
Acetates/therapeutic use , Carbamates/therapeutic use , Hypertension, Pulmonary/drug therapy , Receptors, Prostaglandin/agonists , Acetates/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Carbamates/pharmacokinetics , Drug Discovery , Rats , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 26(24): 5877-5882, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27864071

ABSTRACT

The syntheses, structure-activity relationships (SARs), and biological activities of tetrahydroquinoline-based tricyclic amines as 5-HT2C receptor agonists are reported. An early lead containing a highly unique 6,6,7-ring system was optimized for both in vitro potency and selectivity at the related 5-HT2B receptor. Orally bioactive, potent, and selective 6,6,6-tricyclic 5-HT2C agonists were identified.


Subject(s)
Amines/pharmacology , Quinolines/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Administration, Oral , Amines/administration & dosage , Amines/chemistry , Animals , Dose-Response Relationship, Drug , Male , Molecular Structure , Quinolines/administration & dosage , Quinolines/chemistry , Rats , Rats, Sprague-Dawley , Serotonin 5-HT2 Receptor Agonists/administration & dosage , Serotonin 5-HT2 Receptor Agonists/chemistry , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 25(15): 3034-8, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26048791

ABSTRACT

The design and optimization of a novel trans-1,4-dioxycyclohexane GPR119 agonist series is described. A lead compound 21 was found to be a potent and efficacious GPR119 agonist across species, and possessed overall favorable pharmaceutical properties. Compound 21 demonstrated robust acute and chronic regulatory effects on glycemic parameters in the diabetic or non-diabetic rodent models.


Subject(s)
Cyclohexanes/chemistry , Cyclohexanes/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Receptors, G-Protein-Coupled/agonists , Administration, Oral , Animals , Blood Glucose/analysis , Cyclohexanes/administration & dosage , Cyclohexanes/pharmacokinetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Male , Mice , Rats, Sprague-Dawley , Rats, Zucker , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 25(5): 1030-5, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25666818

ABSTRACT

The design and synthesis of two closely related series of prostacyclin receptor agonist compounds that showed excellent human IP receptor potency and efficacy is described. Compounds from this series showed in vivo activity after SC dosing in the monocrotaline model of PAH in rat.


Subject(s)
Drug Discovery , Hypertension, Pulmonary/drug therapy , Receptors, Prostaglandin/agonists , Animals , Humans , Hypertension, Pulmonary/chemically induced , Monocrotaline , Platelet Aggregation/drug effects , Rats , Receptors, Prostaglandin/metabolism
10.
Bioorg Med Chem Lett ; 25(2): 322-6, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25488844

ABSTRACT

The design and synthesis of novel 1a,2,5,5a-tetrahydro-1H-2,3-diaza-cyclopropa[a]pentalen-4-carboxamide CB2 selective ligands for the potential treatment of pain is described. Compound (R,R)-25 has good balance between CB2 agonist potency and selectivity over CB1, and possesses overall favorable pharmaceutical properties. It also demonstrated robust in vivo efficacy mediated via CB2 activation in the rodent models of inflammatory and osteoarthritis pain after oral administration.


Subject(s)
Analgesics, Non-Narcotic/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Inflammation/drug therapy , Microsomes, Liver/drug effects , Osteoarthritis/drug therapy , Pain/drug therapy , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB2/agonists , Administration, Oral , Analgesics, Non-Narcotic/administration & dosage , Analgesics, Non-Narcotic/chemistry , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/chemistry , Humans , Inflammation/metabolism , Male , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Osteoarthritis/metabolism , Pain/metabolism , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/agonists , Stereoisomerism , Structure-Activity Relationship
11.
ACS Med Chem Lett ; 5(12): 1313-7, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25516790

ABSTRACT

APD334 was discovered as part of our internal effort to identify potent, centrally available, functional antagonists of the S1P1 receptor for use as next generation therapeutics for treating multiple sclerosis (MS) and other autoimmune diseases. APD334 is a potent functional antagonist of S1P1 and has a favorable PK/PD profile, producing robust lymphocyte lowering at relatively low plasma concentrations in several preclinical species. This new agent was efficacious in a mouse experimental autoimmune encephalomyelitis (EAE) model of MS and a rat collagen induced arthritis (CIA) model and was found to have appreciable central exposure.

12.
ACS Med Chem Lett ; 5(12): 1334-9, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25516794

ABSTRACT

S1P1 is a validated target for treatment of autoimmune disease, and functional antagonists with superior safety and pharmacokinetic properties are being sought as second generation therapeutics. We describe the discovery and optimization of (7-benzyloxy-2,3-dihydro-1H-pyrrolo[1,2-a]indol-1-yl)acetic acids as potent, centrally available, direct acting S1P1 functional antagonists, with favorable pharmacokinetic and safety properties.

13.
Sci Transl Med ; 4(148): 148ra115, 2012 Aug 22.
Article in English | MEDLINE | ID: mdl-22914621

ABSTRACT

Nicotinic acid (niacin) induces beneficial changes in serum lipoproteins and has been associated with beneficial cardiovascular effects. Niacin reduces low-density lipoprotein, increases high-density lipoprotein, and decreases triglycerides. It is well established that activation of the seven-transmembrane G(i)-coupled receptor GPR109A on Langerhans cells results in release of prostaglandin D2, which mediates the well-known flushing side effect of niacin. Niacin activation of GPR109A on adipocytes also mediates the transient reduction of plasma free fatty acid (FFA) levels characteristic of niacin, which has been long hypothesized to be the mechanism underlying the changes in the serum lipid profile. We tested this "FFA hypothesis" and the hypothesis that niacin lipid efficacy is mediated via GPR109A by dosing mice lacking GPR109A with niacin and testing two novel, full GPR109A agonists, MK-1903 and SCH900271, in three human clinical trials. In mice, the absence of GPR109A had no effect on niacin's lipid efficacy despite complete abrogation of the anti-lipolytic effect. Both MK-1903 and SCH900271 lowered FFAs acutely in humans; however, neither had the expected effects on serum lipids. Chronic FFA suppression was not sustainable via GPR109A agonism with niacin, MK-1903, or SCH900271. We conclude that the GPR109A receptor does not mediate niacin's lipid efficacy, challenging the long-standing FFA hypothesis.


Subject(s)
Fatty Acids/metabolism , Niacin/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, Nicotinic/metabolism , Animals , Dose-Response Relationship, Drug , Fatty Acids/blood , Humans , Lipolysis/drug effects , Lipoproteins/blood , Male , Mice , Mice, Inbred C57BL , Niacin/administration & dosage , Pyrazoles/pharmacology , Receptors, G-Protein-Coupled/agonists
14.
J Med Chem ; 55(8): 3644-66, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22435740

ABSTRACT

G-protein coupled receptor (GPCR) GPR109a is a molecular target for nicotinic acid and is expressed in adipocytes, spleen, and immune cells. Nicotinic acid has long been used for the treatment of dyslipidemia due to its capacity to positively affect serum lipids to a greater extent than other currently marketed drugs. We report a series of tricyclic pyrazole carboxylic acids that are potent and selective agonists of GPR109a. Compound R,R-19a (MK-1903) was advanced through preclinical studies, was well tolerated, and presented no apparent safety concerns. Compound R,R-19a was advanced into a phase 1 clinical trial and produced a robust decrease in plasma free fatty acids. On the basis of these results, R,R-19a was evaluated in a phase 2 study in humans. Because R,R-19a produced only a weak effect on serum lipids as compared with niacin, we conclude that the beneficial effects of niacin are most likely the result of an undefined GPR109a independent pathway.


Subject(s)
Fatty Acids, Nonesterified/blood , Pyrazoles/therapeutic use , Receptors, G-Protein-Coupled/agonists , Animals , Humans , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/therapeutic use , Male , Niacin/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Rats , Receptors, G-Protein-Coupled/drug effects , Receptors, Nicotinic/drug effects , Stereoisomerism , Vasodilator Agents/pharmacology
16.
Bioorg Med Chem Lett ; 22(4): 1750-5, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22264481

ABSTRACT

The design and synthesis of a second generation GPR119-agonist clinical candidate for the treatment of diabetes is described. Compound 16 (APD597, JNJ-38431055) was selected for preclinical development based on a good balance between agonist potency, intrinsic activity and in particular on its good solubility and reduced drug-drug interaction potential. In addition, extensive in vivo studies showed a more favorable metabolic profile that may avoid the generation of long lasting metabolites with the potential to accumulate in clinical studies.


Subject(s)
Drug Discovery , Hypoglycemic Agents/chemistry , Piperidines/chemistry , Piperidines/pharmacokinetics , Pyridines/chemistry , Pyridines/pharmacokinetics , Receptors, G-Protein-Coupled/agonists , Animals , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Humans , Hypoglycemic Agents/pharmacokinetics , Mice , Mice, Inbred C57BL , Molecular Structure , Rats , Rats, Sprague-Dawley
17.
Bioorg Med Chem Lett ; 22(1): 71-5, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22172695

ABSTRACT

The design of a new clinical candidate histamine-H(3) receptor antagonist for the potential treatment of excessive daytime sleepiness (EDS) is described. Phenethyl-R-2-methylpyrrolidine containing biphenylsulfonamide compounds were modified by replacement of the sulfonamide linkage with a sulfone. One compound from this series, 2j (APD916) increased wakefulness in rodents as measured by polysomnography with a duration of effect consistent with its pharmacokinetic properties. The identification of a suitable salt form of 2j allowed it to be selected for further development.


Subject(s)
Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Histamine Antagonists/chemistry , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Receptors, Histamine H3/chemistry , Sulfones/chemistry , Animals , Area Under Curve , Brain/metabolism , Central Nervous System/drug effects , Chemistry, Pharmaceutical/methods , Drug Design , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/chemistry , Histamine Antagonists/pharmacokinetics , Humans , Inhibitory Concentration 50 , Mice , Models, Chemical , Pyrrolidines/antagonists & inhibitors , Rats , Sleep/drug effects , Temperature , Wakefulness/drug effects
18.
Pharmacol Rev ; 63(2): 269-90, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21454438

ABSTRACT

The G-protein-coupled receptors GPR81, GPR109A, and GPR109B share significant sequence homology and form a small group of receptors, each of which is encoded by clustered genes. In recent years, endogenous ligands for all three receptors have been described. These endogenous ligands have in common that they are hydroxy-carboxylic acid metabolites, and we therefore have proposed that this receptor family be named hydroxy-carboxylic acid (HCA) receptors. The HCA(1) receptor (GPR81) is activated by 2-hydroxy-propanoic acid (lactate), the HCA(2) receptor (GPR109A) is a receptor for the ketone body 3-hydroxy-butyric acid, and the HCA(3) receptor (GPR109B) is activated by the ß-oxidation intermediate 3-hydroxy-octanoic acid. HCA(1) and HCA(2) receptors are found in most mammalian species, whereas the HCA(3) receptor is present only in higher primates. The three receptors have in common that they are expressed in adipocytes and are coupled to G(i)-type G-proteins mediating antilipolytic effects in fat cells. HCA(2) and HCA(3) receptors are also expressed in a variety of immune cells. HCA(2) is a receptor for the antidyslipidemic drug nicotinic acid (niacin) and related compounds, and there is an increasing number of synthetic ligands mainly targeted at HCA(2) and HCA(3) receptors. The aim of this article is to give an overview on the discovery and pharmacological characterization of HCAs, and to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature. We will also discuss open questions regarding this receptor family as well as their physiological role and therapeutic potential.


Subject(s)
Receptors, G-Protein-Coupled/classification , Receptors, Nicotinic/classification , Terminology as Topic , Animals , Cloning, Molecular , Humans , International Agencies , Models, Molecular , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism
19.
Bioorg Med Chem Lett ; 21(10): 3134-41, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21444206

ABSTRACT

We herein outline the design of a new series of agonists of the pancreatic and GI-expressed orphan G-protein coupled receptor GPR119, a target that has been of significant recent interest in the field of metabolism, starting from our prototypical agonist AR231453. A number of key parameters were improved first by incorporation of a pyrazolopyrimidine core to create a new structural series and secondly by the introduction of a piperidine ether group capped with a carbamate. Chronic treatment with one compound from the series, 3k, showed for the first time that blood glucose and glycated hemoglobin (HbA1c) levels could be significantly reduced in Zucker Diabetic Fatty (ZDF) rats over several weeks of dosing. As a result of these and other data described here, 3k (APD668, JNJ-28630368) was the first compound with this mechanism of action to be progressed into clinical development for the treatment of diabetes.


Subject(s)
Blood Glucose/drug effects , Drug Discovery , Hypoglycemic Agents/pharmacology , Receptors, G-Protein-Coupled/agonists , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Disease Models, Animal , Glucose/metabolism , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Molecular Structure , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Rats, Zucker
20.
J Med Chem ; 53(15): 5696-706, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20684606

ABSTRACT

Recent developments in sleep research suggest that antagonism of the serotonin 5-HT(2A) receptor may improve sleep maintenance insomnia. We herein report the discovery of a series of potent and selective serotonin 5-HT(2A) receptor antagonists based on a phenethylpiperazine amide core structure. When tested in a rat sleep pharmacology model, these compounds increased both sleep consolidation and deep sleep. Within this series of compounds, an improvement in the metabolic stability of early leads was achieved by introducing a carbonyl group into the phenethylpiperazine linker. Of note, compounds 14 and 27 exhibited potent 5-HT(2A) receptor binding affinity, high selectivity over the 5-HT(2C) receptor, favorable CNS partitioning, and good pharmacokinetic and early safety profiles. In vivo, these two compounds showed dose-dependent, statistically significant improvements on deep sleep (delta power) and sleep consolidation at doses as low as 0.1 mg/kg.


Subject(s)
Amides/chemical synthesis , Piperazines/chemical synthesis , Pyrazoles/chemical synthesis , Serotonin 5-HT2 Receptor Antagonists , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep/drug effects , Administration, Oral , Amides/pharmacokinetics , Amides/pharmacology , Animals , Biological Availability , Blood Proteins/metabolism , Brain/metabolism , Dogs , Drug Inverse Agonism , Haplorhini , Humans , Male , Microsomes, Liver/metabolism , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Binding , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL