Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38954519

ABSTRACT

The transition period is a critical metabolic phase for dairy ruminants, especially those with high production levels. In spite of this, little is still known about dairy water buffalo. The aim of this study was to evaluate the effect of a commercial feed additive based on diatomaceous earth and hydrolyzed yeasts on health status, milk quality, and immune response of buffalo cows during the transition period. Eighty healthy Water buffaloes (Bubalus bubalis) of Italian Mediterranean breed were included in the trial. They were subdivided into two groups: one group received the additive (n = 40) while the control group (n = 40) received a placebo. The trial lasted 120 d, from 60 d before calving to 60 d in milk. Blood samples were collected from each buffalo at -60 (60 d from the expected calving), -30, 0 (calving), +15, +30, and +60 d (respectively, i.e., 15, 30, and 60 d in milking). The biochemical as well as the oxidative profile, and the antioxidant power and enzymatic activity were evaluated in the samples obtained. Moreover, acute phase proteins, reactive proteins, and interleukin plasma levels were determined. Peripheral blood mononuclear cells (PBMCs) and monocytes were isolated and viability, reactive oxygen species (ROS), and reactive nitrogen species were measured on PBMC and monocytes. The introduction of additives enhanced the total antioxidant capacity and enzyme activity, while no differences were observed in oxidation products throughout the trial. Additionally, it significantly reduced the synthesis of ROS in polymorphonuclear cells, supporting a potential positive response in animals experiencing inflammation. The impact of oxidation on the products was not evident. Despite higher enzyme levels in plasma, this did not necessarily correspond to significantly increased enzymatic activity but rather indicated a higher potential. From these results, it was evident that the transition period in buffaloes differs notably from what reported in the literature for cows, probably due to the absence of common postpartum production diseases in dairy cows and lower metabolic challenges linked to lower milk production in buffaloes. Few parameters exhibited notable changes during the transition period in buffaloes, notably certain antioxidant enzymes, PBMC viability, PBMC ROS production, and Hp levels.


The findings of this paper on the use of diatomaceous earth and yeast products during the transition period in buffaloes reveal that their inclusion does not significantly affect milk production, both qualitatively and quantitatively, or the overall health status of the animals. However, intriguingly, results pertaining to oxidative status and peripheral blood cells, stimulated ex vivo, indicate that even in the absence of pronounced stress during the peripartum period, the animals exhibit increased potential antioxidant response. These insights suggest a potential for enhancing physiological responses in transition period buffaloes, opening avenues for further research on the nuanced impacts of these additives and their implications for animal well-being.


Subject(s)
Animal Feed , Buffaloes , Diatomaceous Earth , Diet , Dietary Supplements , Peripartum Period , Animals , Buffaloes/immunology , Animal Feed/analysis , Female , Dietary Supplements/analysis , Diet/veterinary , Peripartum Period/immunology , Diatomaceous Earth/pharmacology , Milk/chemistry , Oxidative Stress , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Antioxidants/metabolism
2.
Animals (Basel) ; 12(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35049761

ABSTRACT

The aim of this study was to assess the effects of dietary anthocyanin addition on volatile compounds of meat from goat kids during ageing. For this work, 60 male and female kids were divided into two groups: red orange and lemon extract (RLE group; n = 30), which received an RLE extract (90 mg/kg of live weight); and control (CON group; n = 30). The phytoextract in dry powder form was rich in bioflavonoids such as flavanones (about 16%) and anthocyanins (about 3%). After slaughtering, the longissimus thoracis et lumborum muscle was aged at 4 °C. The volatile organic compound (VOC) and sensorial analyses were carried out at 1, 3 and 7 days. A total of 10 chemical families were identified during the ageing process. Aldehydes were the most abundant VOC, followed by ketones and alcohols. Their contents increased during the process, showing after 7 days of ageing mean values of 20,498, 2193 and 1879 ng/g of meat, respectively. Regarding dietary effects, carboxylic acids, hydrocarbons and thiols presented significant differences between treatments, with higher carboxylic acid contents observed in RLE samples (437 vs. 467 ng/g of meat for CON and RLE batches, respectively; p < 0.05). On the contrary, hydrocarbons (436 vs. 254 ng/g of meat for CON and RLE batches, respectively) and thiols (160 vs. 103 ng/g of meat for CON and RLE batches, respectively) displayed significantly (p < 0.01) higher amounts in CON compared to the RLE group. Regarding ageing time, the tenderness, juiciness, odour and overall assessment parameters showed significantly higher scores at the end of the whole process (p < 0.05). On the other hand, only odour displayed significant differences between treatments, reaching higher scores in CON samples (p < 0.05). Therefore, ageing time improved the sensorial properties (tenderness, juiciness, odour and overall assessment) and the VOC content, whereas the inclusion of anthocyanins in the kids' diet did not have a great impact on the properties of aged meat.

3.
Foods ; 10(5)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068173

ABSTRACT

Flavor is one of the main factors involved in consumer meat-purchasing decision and use of natural antioxidants in animal feeding had a great appeal for consumers. The aim of this trial is to evaluate the effect of Pinus taeda hydrolyzed lignin (PTHL) feed addition on oxidative stability, volatile compounds characteristics, and sensory attributes of 35 days dry-aged beef steaks. Forty steer six months old were randomly divided into a control group (CON; n = 20) and an experimental group (PTHL; n = 20). Both groups were fed ad libitum for 120 days with the same TMR and only the PTHL group received PTHL supplement. Samples of LT muscle were removed from carcasses and dry aged for 35 days at 2 °C, 82% of humidity, and 0.4 m/s of ventilation and then analyzed. Meat of CON group showed lower yellowness (p < 0.01) and higher TBARS (p < 0.01) values. Moreover, CON meat showed higher volatile aldehydes and lower sulfur compounds (p < 0.01), with higher unpleasant odor (p < 0.05) and meaty odor (p < 0.01) score revealed by sensory assessors. PTHL inclusion in beef diet delayed the oxidative mechanisms in 35 days dry-aged steaks, resulting in an improved colorimetric, volatolomic, and sensory profile.

SELECTION OF CITATIONS
SEARCH DETAIL