Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Antioxidants (Basel) ; 13(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39061883

ABSTRACT

The in vitro maturation efficiency of porcine oocytes is relatively low, and this limits the production of in vitro porcine embryos. Since melatonin is involved in mammalian reproductive physiology, in this study, we have explored whether endogenously produced melatonin can help in porcine oocyte in vitro maturation. We have found, for the first time in the literature, that mitochondria are the major sites for melatonin biosynthesis in porcine oocytes. This mitochondrially originated melatonin reduces ROS production and increases the activity of the mitochondrial respiratory electron transport chain, mitochondrial biogenesis, mitochondrial membrane potential, and ATP production. Therefore, melatonin improves the quality of oocytes and their in vitro maturation. In contrast, the reduced melatonin level caused by siRNA to knockdown AANAT (siAANAT) is associated with the abnormal distribution of mitochondria, decreasing the ATP level of porcine oocytes and inhibiting their in vitro maturation. These abnormalities can be rescued by melatonin supplementation. In addition, we found that siAANAT switches the mitochondrial oxidative phosphorylation to glycolysis, a Warburg effect. This metabolic alteration can also be corrected by melatonin supplementation. All these activities of melatonin appear to be mediated by its membrane receptors since the non-selective melatonin receptor antagonist Luzindole can blunt the effects of melatonin. Taken together, the mitochondria of porcine oocytes can synthesize melatonin and improve the quality of oocyte maturation. These results provide an insight from a novel aspect to study oocyte maturation under in vitro conditions.

2.
CNS Neurosci Ther ; 30(3): e14633, 2024 03.
Article in English | MEDLINE | ID: mdl-38429921

ABSTRACT

AIMS: Excessive influx of manganese (Mn) into the brain across the blood-brain barrier induces neurodegeneration. CYP1B1 is involved in the metabolism of arachidonic acid (AA) that affects vascular homeostasis. We aimed to investigate the effect of brain CYP1B1 on Mn-induced neurotoxicity. METHOD: Brain Mn concentrations and α-synuclein accumulation were measured in wild-type and CYP1B1 knockout mice treated with MnCl2 (30 mg/kg) and biotin (0.2 g/kg) for 21 continuous days. Tight junctions and oxidative stress were analyzed in hCMEC/D3 and SH-SY5Y cells after the treatment with MnCl2 (200 µM) and CYP1B1-derived AA metabolites (HETEs and EETs). RESULTS: Mn exposure inhibited brain CYP1B1, and CYP1B1 deficiency increased brain Mn concentrations and accelerated α-synuclein deposition in the striatum. CYP1B1 deficiency disrupted the integrity of the blood-brain barrier (BBB) and increased the ratio of 3, 4-dihydroxyphenylacetic acid (DOPAC) to dopamine in the striatum. HETEs attenuated Mn-induced inhibition of tight junctions by activating PPARγ in endothelial cells. Additionally, EETs attenuated Mn-induced up-regulation of the KLF/MAO-B axis and down-regulation of NRF2 in neuronal cells. Biotin up-regulated brain CYP1B1 and reduced Mn-induced neurotoxicity in mice. CONCLUSIONS: Brain CYP1B1 plays a critical role in both cerebrovascular and dopamine homeostasis, which might serve as a novel therapeutic target for the prevention of Mn-induced neurotoxicity.


Subject(s)
Blood-Brain Barrier , Cytochrome P-450 CYP1B1 , Neuroblastoma , Animals , Humans , Mice , alpha-Synuclein/metabolism , Biotin/metabolism , Blood-Brain Barrier/metabolism , Cytochrome P-450 CYP1B1/metabolism , Dopamine/metabolism , Endothelial Cells/metabolism , Manganese/toxicity , Oxidative Stress
3.
Acta Biomater ; 164: 240-252, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37075962

ABSTRACT

Excessive scar formation caused by cutaneous injury leads to pruritus, pain, contracture, dyskinesia, and unpleasant appearance. Functional wound dressings are designed to accelerate wound healing and reduce scar formation. In this study, we fabricated aligned or random polycaprolactone/silk fibroin electrospun nanofiber membranes with or without lovastatin loading, and then evaluated their scar-inhibitory effects on wounds under a specific tension direction. The nanofiber membranes exhibited good controlled-release performance, mechanical properties, hydrophilicity, and biocompatibility. Furthermore, nanofibers' perpendicular placement to the tension direction of the wound most effectively reduced scar formation (the scar area decreased by 66.9%) and promoted skin regeneration in vivo. The mechanism was associated with aligned nanofibers regulated collagen organization in the early stage of wound healing. Moreover, lovastatin-loaded nanofibers inhibited myofibroblast differentiation and migration. Both tension direction-perpendicular topographical cues and lovastatin synergistically inhibited mechanical transduction and fibrosis progression, further reducing scar formation. In summary, our study may provide an effective scar prevention strategy in which individualized dressings can be designed according to the local mechanical force direction of patients' wounds, and the addition of lovastatin can further inhibit scar formation. STATEMENT OF SIGNIFICANCE: In vivo, cells and collagen are always arranged parallel to the tension direction. However, the aligned topographic cues themselves promote myofibroblast differentiation and exacerbate scar formation. Electrospun nanofibers' perpendicular placement to the tension direction of the wound most effectively reduces scar formation and promotes skin regeneration in vivo. The mechanism is associated with tension direction-perpendicular nanofibers reregulate collagen organization in the early stage of wound healing. In addition, tension direction-perpendicular topographical cue and lovastatin could inhibit mechanical transduction and fibrosis progression synergistically, further reducing scar formation. This study proves that combining topographical cues of wound dressing and drugs would be a promising therapy for clinical scar management.


Subject(s)
Cicatrix , Nanofibers , Humans , Cicatrix/drug therapy , Cicatrix/pathology , Collagen/pharmacology , Wound Healing , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL