Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(14): e2320013121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547060

ABSTRACT

Dephosphorylation of pSer51 of the α subunit of translation initiation factor 2 (eIF2αP) terminates signaling in the integrated stress response (ISR). A trimeric mammalian holophosphatase comprised of a protein phosphatase 1 (PP1) catalytic subunit, the conserved C-terminally located ~70 amino acid core of a substrate-specific regulatory subunit (PPP1R15A/GADD34 or PPP1R15B/CReP) and G-actin (an essential cofactor) efficiently dephosphorylate eIF2αP in vitro. Unlike their viral or invertebrate counterparts, with whom they share the conserved 70 residue core, the mammalian PPP1R15s are large proteins of more than 600 residues. Genetic and cellular observations point to a functional role for regions outside the conserved core of mammalian PPP1R15A in dephosphorylating its natural substrate, the eIF2 trimer. We have combined deep learning technology, all-atom molecular dynamics simulations, X-ray crystallography, and biochemistry to uncover binding of the γ subunit of eIF2 to a short helical peptide repeated four times in the functionally important N terminus of human PPP1R15A that extends past its conserved core. Binding entails insertion of Phe and Trp residues that project from one face of an α-helix formed by the conserved repeats of PPP1R15A into a hydrophobic groove exposed on the surface of eIF2γ in the eIF2 trimer. Replacing these conserved Phe and Trp residues with Ala compromises PPP1R15A function in cells and in vitro. These findings suggest mechanisms by which contacts between a distant subunit of eIF2 and elements of PPP1R15A distant to the holophosphatase active site contribute to dephosphorylation of eIF2αP by the core PPP1R15 holophosphatase and to efficient termination of the ISR in mammals.


Subject(s)
Eukaryotic Initiation Factor-2 , Protein Processing, Post-Translational , Animals , Humans , Actins/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Phosphorylation , Protein Phosphatase 1/metabolism
2.
CNS Neurosci Ther ; 30(2): e14600, 2024 02.
Article in English | MEDLINE | ID: mdl-38357857

ABSTRACT

AIM: Characterize Growth Differentiation Factor 15 (GDF15) as a secreted biomarker of the integrated stress response (ISR) within the central nervous system (CNS). METHODS: We determined GDF15 levels utilizing in vitro and in vivo neuronal systems wherein the ISR was activated. Primarily, we used the murine model of vanishing white matter disease (VWMD), a neurological disease driven by persistent ISR in the CNS, to establish a link between levels of GDF15 in the cerebrospinal fluid (CSF) and ISR gene expression signature in the CNS. GDF15 was also determined in the CSF of VWM patients. RESULTS: GDF15 expression was increased concomitant to ISR activation in stress-induced primary astrocytes as well as in retinal ganglion cells following optic nerve crush, while treatment with 2Bact, a specific eIF2B activator, suppressed both the ISR and GDF15. In the VWMD model, CSF GDF15 levels corresponded with the magnitude of the ISR and were reduced by 2BAct. In VWM patients, mean CSF GDF15 was elevated >20-fold as compared to healthy controls, whereas plasma GDF15 was undifferentiated. CONCLUSIONS: These data suggest that CSF GDF15 is a dynamic marker of ISR activation in the CNS and may serve as a pharmacodynamic biomarker for ISR-modulating therapies.


Subject(s)
Growth Differentiation Factor 15 , Leukoencephalopathies , Humans , Mice , Animals , Growth Differentiation Factor 15/genetics , Leukoencephalopathies/genetics , Central Nervous System/metabolism , Eukaryotic Initiation Factor-2B/genetics , Eukaryotic Initiation Factor-2B/metabolism , Biomarkers
3.
Immunity ; 54(9): 1948-1960.e5, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34343497

ABSTRACT

The RNA deaminase ADAR1 is an essential negative regulator of the RNA sensor MDA5, and loss of ADAR1 function triggers inappropriate activation of MDA5 by self-RNAs. Mutations in ADAR, the gene that encodes ADAR1, cause human immune diseases, including Aicardi-Goutières syndrome (AGS). However, the mechanisms of MDA5-dependent disease pathogenesis in vivo remain unknown. Here we generated mice with a single amino acid change in ADAR1 that models the most common human ADAR AGS mutation. These Adar mutant mice developed lethal disease that required MDA5, the RIG-I-like receptor LGP2, type I interferons, and the eIF2α kinase PKR. A small-molecule inhibitor of the integrated stress response (ISR) that acts downstream of eIF2α phosphorylation prevented immunopathology and rescued the mice from mortality. These findings place PKR and the ISR as central components of immunopathology in vivo and identify therapeutic targets for treatment of human diseases associated with the ADAR1-MDA5 axis.


Subject(s)
Adenosine Deaminase/metabolism , Autoimmune Diseases of the Nervous System/pathology , Nervous System Malformations/pathology , Stress, Physiological/physiology , eIF-2 Kinase/metabolism , A549 Cells , Animals , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/metabolism , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Mutant Strains , Mutation , Nervous System Malformations/genetics , Nervous System Malformations/metabolism
4.
Nat Commun ; 12(1): 3440, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103529

ABSTRACT

The multi-subunit translation initiation factor eIF2B is a control node for protein synthesis. eIF2B activity is canonically modulated through stress-responsive phosphorylation of its substrate eIF2. The eIF2B regulatory subcomplex is evolutionarily related to sugar-metabolizing enzymes, but the biological relevance of this relationship was unknown. To identify natural ligands that might regulate eIF2B, we conduct unbiased binding- and activity-based screens followed by structural studies. We find that sugar phosphates occupy the ancestral catalytic site in the eIF2Bα subunit, promote eIF2B holoenzyme formation and enhance enzymatic activity towards eIF2. A mutant in the eIF2Bα ligand pocket that causes Vanishing White Matter disease fails to engage and is not stimulated by sugar phosphates. These data underscore the importance of allosteric metabolite modulation for proper eIF2B function. We propose that eIF2B evolved to couple nutrient status via sugar phosphate sensing with the rate of protein synthesis, one of the most energetically costly cellular processes.


Subject(s)
Eukaryotic Initiation Factor-2B/metabolism , Stress, Physiological , Sugar Phosphates/metabolism , Allosteric Regulation , Binding Sites , Conserved Sequence , Cryoelectron Microscopy , Eukaryotic Initiation Factor-2B/chemistry , Eukaryotic Initiation Factor-2B/ultrastructure , Evolution, Molecular , Guanosine Diphosphate/metabolism , HEK293 Cells , Humans , Leukoencephalopathies/pathology , Ligands , Metabolome , Models, Molecular , Mutation/genetics , Protein Subunits/chemistry , Protein Subunits/metabolism , Substrate Specificity , Sugar Phosphates/chemistry
5.
Elife ; 82019 01 09.
Article in English | MEDLINE | ID: mdl-30624206

ABSTRACT

The integrated stress response (ISR) attenuates the rate of protein synthesis while inducing expression of stress proteins in cells. Various insults activate kinases that phosphorylate the GTPase eIF2 leading to inhibition of its exchange factor eIF2B. Vanishing White Matter (VWM) is a neurological disease caused by eIF2B mutations that, like phosphorylated eIF2, reduce its activity. We show that introduction of a human VWM mutation into mice leads to persistent ISR induction in the central nervous system. ISR activation precedes myelin loss and development of motor deficits. Remarkably, long-term treatment with a small molecule eIF2B activator, 2BAct, prevents all measures of pathology and normalizes the transcriptome and proteome of VWM mice. 2BAct stimulates the remaining activity of mutant eIF2B complex in vivo, abrogating the maladaptive stress response. Thus, 2BAct-like molecules may provide a promising therapeutic approach for VWM and provide relief from chronic ISR induction in a variety of disease contexts.


Subject(s)
Brain Diseases/etiology , Eukaryotic Initiation Factor-2B/metabolism , Stress, Psychological/complications , White Matter/pathology , Animals , Astrocytes/pathology , Brain Diseases/pathology , Brain Diseases/prevention & control , Chronic Disease , Eukaryotic Initiation Factor-2B/genetics , Humans , Male , Mice , Mutation , Nerve Tissue Proteins/metabolism , Oligodendroglia/pathology , Phosphorylation , Protein Biosynthesis , Proteome , Weight Gain
6.
Elife ; 72018 02 28.
Article in English | MEDLINE | ID: mdl-29489452

ABSTRACT

eIF2B is a dedicated guanine nucleotide exchange factor for eIF2, the GTPase that is essential to initiate mRNA translation. The integrated stress response (ISR) signaling pathway inhibits eIF2B activity, attenuates global protein synthesis and upregulates a set of stress-response proteins. Partial loss-of-function mutations in eIF2B cause a neurodegenerative disorder called Vanishing White Matter Disease (VWMD). Previously, we showed that the small molecule ISRIB is a specific activator of eIF2B (Sidrauski et al., 2015). Here, we report that various VWMD mutations destabilize the decameric eIF2B holoenzyme and impair its enzymatic activity. ISRIB stabilizes VWMD mutant eIF2B in the decameric form and restores the residual catalytic activity to wild-type levels. Moreover, ISRIB blocks activation of the ISR in cells carrying these mutations. As such, ISRIB promises to be an invaluable tool in proof-of-concept studies aiming to ameliorate defects resulting from inappropriate or pathological activation of the ISR.


Subject(s)
Acetamides/metabolism , Cyclohexylamines/metabolism , Enzyme Activators/metabolism , Eukaryotic Initiation Factor-2B/metabolism , Leukoencephalopathies/physiopathology , Mutant Proteins/metabolism , Neuroprotective Agents/metabolism , Cell Line , Eukaryotic Initiation Factor-2B/genetics , Humans , Leukoencephalopathies/genetics , Mutant Proteins/genetics
7.
Elife ; 52016 Mar 01.
Article in English | MEDLINE | ID: mdl-26928076

ABSTRACT

Adolescents are particularly vulnerable to nicotine, the principal addictive component driving tobacco smoking. In a companion study, we found that reduced activity of the translation initiation factor eIF2α underlies the hypersensitivity of adolescent mice to the effects of cocaine. Here we report that nicotine potentiates excitatory synaptic transmission in ventral tegmental area dopaminergic neurons more readily in adolescent mice compared to adults. Adult mice with genetic or pharmacological reduction in p-eIF2α-mediated translation are more susceptible to nicotine's synaptic effects, like adolescents. When we investigated the influence of allelic variability of the Eif2s1 gene (encoding eIF2α) on reward-related neuronal responses in human smokers, we found that a single nucleotide polymorphism in the Eif2s1 gene modulates mesolimbic neuronal reward responses in human smokers. These findings suggest that p-eIF2α regulates synaptic actions of nicotine in both mice and humans, and that reduced p-eIF2α may enhance susceptibility to nicotine (and other drugs of abuse) during adolescence.


Subject(s)
Dopaminergic Neurons/physiology , Eukaryotic Initiation Factor-2/metabolism , Nicotine/metabolism , Protein Biosynthesis , Protein Processing, Post-Translational , Synapses/drug effects , Ventral Tegmental Area/physiology , Animals , Humans , Mice , Phosphorylation , Smoking , Nicotiana
8.
Elife ; 52016 Mar 01.
Article in English | MEDLINE | ID: mdl-26928234

ABSTRACT

Adolescents are especially prone to drug addiction, but the underlying biological basis of their increased vulnerability remains unknown. We reveal that translational control by phosphorylation of the translation initiation factor eIF2α (p-eIF2α) accounts for adolescent hypersensitivity to cocaine. In adolescent (but not adult) mice, a low dose of cocaine reduced p-eIF2α in the ventral tegmental area (VTA), potentiated synaptic inputs to VTA dopaminergic neurons, and induced drug-reinforced behavior. Like adolescents, adult mice with reduced p-eIF2α-mediated translational control were more susceptible to cocaine-induced synaptic potentiation and behavior. Conversely, like adults, adolescent mice with increased p-eIF2α became more resistant to cocaine's effects. Accordingly, metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD)-whose disruption is postulated to increase vulnerability to drug addiction-was impaired in both adolescent mice and adult mice with reduced p-eIF2α mediated translation. Thus, during addiction, cocaine hijacks translational control by p-eIF2α, initiating synaptic potentiation and addiction-related behaviors. These insights may hold promise for new treatments for addiction.


Subject(s)
Behavior/drug effects , Cocaine/metabolism , Eukaryotic Initiation Factor-2/metabolism , Protein Biosynthesis , Protein Processing, Post-Translational , Synapses/drug effects , Ventral Tegmental Area/physiology , Animals , Mice , Phosphorylation
9.
ChemMedChem ; 11(8): 870-80, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26789650

ABSTRACT

The integrated stress response comprises multiple signaling pathways for detecting and responding to cellular stress that converge at a single event-the phosphorylation of Ser51 on the α-subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α-P) results in attenuation of global protein synthesis via the inhibitory effects of eIF2α-P on eIF2B, the guanine exchange factor (GEF) for eIF2. Herein we describe structure-activity relationship (SAR) studies of bis-O-arylglycolamides, first-in-class integrated stress response inhibitors (ISRIB). ISRIB analogues make cells insensitive to the effects of eIF2α-P by activating the GEF activity of eIF2B and allowing global protein synthesis to proceed with residual unphosphorylated eIF2α. The SAR studies described herein support the proposed pharmacology of ISRIB analogues as binding across a symmetrical protein-protein interface formed between protein subunits of the dimeric eIF2B heteropentamer.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Glycolates/pharmacology , Stress, Physiological/drug effects , Dose-Response Relationship, Drug , Eukaryotic Initiation Factor-2/agonists , Eukaryotic Initiation Factor-2/chemistry , Glycolates/chemical synthesis , Glycolates/chemistry , HEK293 Cells , Humans , Molecular Structure , Phosphorylation/drug effects , Protein Binding/drug effects , Structure-Activity Relationship
10.
Elife ; 42015 May 19.
Article in English | MEDLINE | ID: mdl-25986605

ABSTRACT

Two ER membrane-resident transmembrane kinases, IRE1 and PERK, function as stress sensors in the unfolded protein response. IRE1 also has an endoribonuclease activity, which initiates a non-conventional mRNA splicing reaction, while PERK phosphorylates eIF2α. We engineered a potent small molecule, IPA, that binds to IRE1's ATP-binding pocket and predisposes the kinase domain to oligomerization, activating its RNase. IPA also inhibits PERK but, paradoxically, activates it at low concentrations, resulting in a bell-shaped activation profile. We reconstituted IPA-activation of PERK-mediated eIF2α phosphorylation from purified components. We estimate that under conditions of maximal activation less than 15% of PERK molecules in the reaction are occupied by IPA. We propose that IPA binding biases the PERK kinase towards its active conformation, which trans-activates apo-PERK molecules. The mechanism by which partial occupancy with an inhibitor can activate kinases may be wide-spread and carries major implications for design and therapeutic application of kinase inhibitors.


Subject(s)
Adenosine Triphosphate/pharmacology , Endoribonucleases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Unfolded Protein Response/drug effects , eIF-2 Kinase/antagonists & inhibitors , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemical synthesis , Animals , Biological Assay , Cell Line , Cell Survival/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , Endoribonucleases/metabolism , Enzyme Activation , Escherichia coli/genetics , Escherichia coli/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/enzymology , Gene Expression , Genes, Reporter , HEK293 Cells , Humans , Mice , Molecular Mimicry , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Regulatory Factor X Transcription Factors , Sulfur Radioisotopes , Transcription Factors/genetics , Transcription Factors/metabolism , Unfolded Protein Response/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
11.
Elife ; 4: e07314, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25875391

ABSTRACT

The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases.


Subject(s)
Acetamides/chemistry , Cyclohexylamines/chemistry , Eukaryotic Initiation Factor-2B/genetics , Neuroprotective Agents/chemistry , Nootropic Agents/chemistry , Protein Subunits/genetics , Acetamides/chemical synthesis , Acetamides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cyclohexylamines/chemical synthesis , Cyclohexylamines/pharmacology , Endoplasmic Reticulum Stress/drug effects , Eukaryotic Initiation Factor-2B/antagonists & inhibitors , Eukaryotic Initiation Factor-2B/metabolism , Gene Expression , Genes, Reporter , HEK293 Cells , HeLa Cells , High-Throughput Screening Assays , Humans , K562 Cells , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Nootropic Agents/chemical synthesis , Nootropic Agents/pharmacology , Phosphorylation , Protein Binding , Protein Multimerization/drug effects , Protein Subunits/antagonists & inhibitors , Protein Subunits/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Structure-Activity Relationship , Thapsigargin/antagonists & inhibitors , Thapsigargin/pharmacology
12.
Elife ; 42015 Feb 26.
Article in English | MEDLINE | ID: mdl-25719440

ABSTRACT

Previously, we identified ISRIB as a potent inhibitor of the integrated stress response (ISR) and showed that ISRIB makes cells resistant to the effects of eIF2α phosphorylation and enhances long-term memory in rodents (Sidrauski et al., 2013). Here, we show by genome-wide in vivo ribosome profiling that translation of a restricted subset of mRNAs is induced upon ISR activation. ISRIB substantially reversed the translational effects elicited by phosphorylation of eIF2α and induced no major changes in translation or mRNA levels in unstressed cells. eIF2α phosphorylation-induced stress granule (SG) formation was blocked by ISRIB. Strikingly, ISRIB addition to stressed cells with pre-formed SGs induced their rapid disassembly, liberating mRNAs into the actively translating pool. Restoration of mRNA translation and modulation of SG dynamics may be an effective treatment of neurodegenerative diseases characterized by eIF2α phosphorylation, SG formation, and cognitive loss.


Subject(s)
Acetamides/pharmacology , Cyclohexylamines/pharmacology , Cytoplasmic Granules/drug effects , Eukaryotic Initiation Factor-2/drug effects , Protein Biosynthesis/drug effects , Stress, Physiological , Animals , Eukaryotic Initiation Factor-2/metabolism , Phosphorylation , RNA, Messenger/metabolism , Ribosomes/metabolism
13.
Nat Neurosci ; 17(8): 1073-82, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24974795

ABSTRACT

At hippocampal synapses, activation of group I metabotropic glutamate receptors (mGluRs) induces long-term depression (LTD), which requires new protein synthesis. However, the underlying mechanism remains elusive. Here we describe the translational program that underlies mGluR-LTD and identify the translation factor eIF2α as its master effector. Genetically reducing eIF2α phosphorylation, or specifically blocking the translation controlled by eIF2α phosphorylation, prevented mGluR-LTD and the internalization of surface AMPA receptors (AMPARs). Conversely, direct phosphorylation of eIF2α, bypassing mGluR activation, triggered a sustained LTD and removal of surface AMPARs. Combining polysome profiling and RNA sequencing, we identified the mRNAs translationally upregulated during mGluR-LTD. Translation of one of these mRNAs, oligophrenin-1, mediates the LTD induced by eIF2α phosphorylation. Mice deficient in phospho-eIF2α-mediated translation are impaired in object-place learning, a behavioral task that induces hippocampal mGluR-LTD in vivo. Our findings identify a new model of mGluR-LTD, which promises to be of value in the treatment of mGluR-LTD-linked cognitive disorders.


Subject(s)
Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Learning/physiology , Long-Term Synaptic Depression/genetics , Protein Biosynthesis , Receptors, AMPA/physiology , Receptors, Metabotropic Glutamate/metabolism , Animals , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation/genetics , Receptors, AMPA/deficiency , Space Perception/physiology
14.
Elife ; 2: e00498, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23741617

ABSTRACT

Phosphorylation of the α-subunit of initiation factor 2 (eIF2) controls protein synthesis by a conserved mechanism. In metazoa, distinct stress conditions activate different eIF2α kinases (PERK, PKR, GCN2, and HRI) that converge on phosphorylating a unique serine in eIF2α. This collection of signaling pathways is termed the 'integrated stress response' (ISR). eIF2α phosphorylation diminishes protein synthesis, while allowing preferential translation of some mRNAs. Starting with a cell-based screen for inhibitors of PERK signaling, we identified a small molecule, named ISRIB, that potently (IC50 = 5 nM) reverses the effects of eIF2α phosphorylation. ISRIB reduces the viability of cells subjected to PERK-activation by chronic endoplasmic reticulum stress. eIF2α phosphorylation is implicated in memory consolidation. Remarkably, ISRIB-treated mice display significant enhancement in spatial and fear-associated learning. Thus, memory consolidation is inherently limited by the ISR, and ISRIB releases this brake. As such, ISRIB promises to contribute to our understanding and treatment of cognitive disorders. DOI:http://dx.doi.org/10.7554/eLife.00498.001.


Subject(s)
Cognition , Memory , Protein Biosynthesis , RNA, Messenger/genetics , Acetamides/pharmacology , Animals , Cell Line , Cyclohexylamines/pharmacology , Endoplasmic Reticulum/metabolism , Eukaryotic Initiation Factor-1/antagonists & inhibitors , Eukaryotic Initiation Factor-1/metabolism , Humans , Mice , Phosphorylation , Protein Kinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL