Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Glycobiology ; 33(1): 2-16, 2023 01 08.
Article in English | MEDLINE | ID: mdl-36345209

ABSTRACT

A multi-glycomic method for characterizing the glycocalyx was employed to identify the difference between 2-dimensional (2D) and 3-dimensional (3D) culture models with two human colorectal cancer cell lines, HCT116 and HT29. 3D cell cultures are considered more representative of cancer due to their ability to mimic the microenvironment found in tumors. For this reason, they have become an important tool in cancer research. Cell-cell interactions increase in 3D models compared to 2D, indeed significant glycomic changes were observed for each cell line. Analyses included the N-glycome, O-glycome, glycolipidome, glycoproteome, and proteome providing the most extensive characterization of the glycocalyx between 3D and 2D thus far. The different glycoconjugates were affected in different ways. In the N-glycome, the 3D cells increased in high-mannose glycosylation and in core fucosylation. Glycolipids increased in sialylation. Specific glycoproteins were found to increase in the 3D cell, elucidating the pathways that are affected between the two models. The results show large structural and biological changes between the 2 models suggesting that the 2 are indeed very different potentially affecting individual outcomes in the study of diseases.


Subject(s)
Glycocalyx , Glycomics , Humans , Glycocalyx/metabolism , Glycomics/methods , Glycoproteins/metabolism , Glycosylation , Cell Line , Polysaccharides/chemistry
2.
Genes (Basel) ; 13(8)2022 08 08.
Article in English | MEDLINE | ID: mdl-36011319

ABSTRACT

Maternal microbial dysbiosis has been implicated in adverse postnatal health conditions in offspring, such as obesity, cancer, and neurological disorders. We observed that the progeny of mice fed a Westernized diet (WD) with low fiber and extra fat exhibited higher frequencies of stereotypy, hyperactivity, cranial features and lower FMRP protein expression, similar to what is typically observed in Fragile X Syndrome (FXS) in humans. We hypothesized that gut dysbiosis and inflammation during pregnancy influenced the prenatal uterine environment, leading to abnormal phenotypes in offspring. We found that oral in utero supplementation with a beneficial anti-inflammatory probiotic microbe, Lactobacillus reuteri, was sufficient to inhibit FXS-like phenotypes in offspring mice. Cytokine profiles in the pregnant WD females showed that their circulating levels of pro-inflammatory cytokine interleukin (Il)-17 were increased relative to matched gravid mice and to those given supplementary L. reuteri probiotic. To test our hypothesis of prenatal contributions to this neurodevelopmental phenotype, we performed Caesarian (C-section) births using dissimilar foster mothers to eliminate effects of maternal microbiota transferred during vaginal delivery or nursing after birth. We found that foster-reared offspring still displayed a high frequency of these FXS-like features, indicating significant in utero contributions. In contrast, matched foster-reared progeny of L. reuteri-treated mothers did not exhibit the FXS-like typical features, supporting a key role for microbiota during pregnancy. Our findings suggest that diet-induced dysbiosis in the prenatal uterine environment is strongly associated with the incidence of this neurological phenotype in progeny but can be alleviated by addressing gut dysbiosis through probiotic supplementation.


Subject(s)
Fragile X Syndrome , Gastrointestinal Microbiome , Limosilactobacillus reuteri , Microbiota , Animals , Cytokines , Dysbiosis , Female , Humans , Mice , Pregnancy
3.
Nat Commun ; 13(1): 2753, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585145

ABSTRACT

Bacterial binding to host receptors underlies both commensalism and pathogenesis. Many streptococci adhere to protein-attached carbohydrates expressed on cell surfaces using Siglec-like binding regions (SLBRs). The precise glycan repertoire recognized may dictate whether the organism is a strict commensal versus a pathogen. However, it is currently not clear what drives receptor selectivity. Here, we use five representative SLBRs and identify regions of the receptor binding site that are hypervariable in sequence and structure. We show that these regions control the identity of the preferred carbohydrate ligand using chimeragenesis and single amino acid substitutions. We further evaluate how the identity of the preferred ligand affects the interaction with glycoprotein receptors in human saliva and plasma samples. As point mutations can change the preferred human receptor, these studies suggest how streptococci may adapt to changes in the environmental glycan repertoire.


Subject(s)
Adhesins, Bacterial , Sialic Acid Binding Immunoglobulin-like Lectins , Adhesins, Bacterial/chemistry , Humans , Ligands , Polysaccharides/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Streptococcus/metabolism
4.
Mol Cell Proteomics ; 20: 100130, 2021.
Article in English | MEDLINE | ID: mdl-34358619

ABSTRACT

N-glycosylation is a ubiquitous posttranslational modification that affects protein structure and function, including those of the central nervous system. N-glycans attached to cell membrane proteins play crucial roles in all aspects of biology, including embryogenesis, development, cell-cell recognition and adhesion, and cell signaling and communication. Although brain function and behavior are known to be regulated by the N-glycosylation state of numerous cell surface glycoproteins, our current understanding of brain glycosylation is limited, and glycan variations associated with functional brain regions remain largely unknown. In this work, we used a well-established cell surface glycomic nanoLC-Chip-Q-TOF platform developed in our laboratory to characterize the N-glycome of membrane fractions enriched in cell surface glycoproteins obtained from specific functional brain areas. We report the cell membrane N-glycome of two major developmental divisions of mice brain with specific and distinctive functions, namely the forebrain and hindbrain. Region-specific glycan maps were obtained with ∼120 N-glycan compositions in each region, revealing significant differences in "brain-type" glycans involving high mannose, bisecting, and core and antenna fucosylated species. Additionally, the cell membrane N-glycome of three functional regions of the forebrain and hindbrain, the cerebral cortex, hippocampus, and cerebellum, was characterized. In total, 125 N-glycan compositions were identified, and their region-specific expression profiles were characterized. Over 70 N-glycans contributed to the differentiation of the cerebral cortex, hippocampus, and cerebellum N-glycome, including bisecting and branched glycans with varying degrees of core and antenna fucosylation and sialylation. This study presents a comprehensive spatial distribution of the cell-membrane enriched N-glycomes associated with five discrete anatomical and functional brain areas, providing evidence for the presence of a previously unknown brain glyco-architecture. The region-specific molecular glyco fingerprints identified here will enable a better understanding of the critical biological roles that N-glycans play in the specialized functional brain areas in health and disease.


Subject(s)
Brain/metabolism , Cell Membrane/metabolism , Polysaccharides/metabolism , Animals , Chromatography, Liquid , Female , Glycomics , Male , Mass Spectrometry , Mice, Inbred C57BL , Nanotechnology
5.
Glycobiology ; 31(11): 1582-1595, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34459483

ABSTRACT

Streptococcus gordonii and Streptococcus sanguinis are primary colonizers of tooth surfaces and are generally associated with oral health, but can also cause infective endocarditis (IE). These species express "Siglec-like" adhesins that bind sialylated glycans on host glycoproteins, which can aid the formation of infected platelet-fibrin thrombi (vegetations) on cardiac valve surfaces. We previously determined that the ability of S. gordonii to bind sialyl T-antigen (sTa) increased pathogenicity, relative to recognition of sialylated core 2 O-glycan structures, in an animal model of IE. However, it is unclear when and where the sTa structure is displayed, and which sTa-modified host factors promote valve colonization. In this study, we identified sialylated glycoproteins in the aortic valve vegetations and plasma of rat and rabbit models of this disease. Glycoproteins that display sTa vs. core 2 O-glycan structures were identified by using recombinant forms of the streptococcal Siglec-like adhesins for lectin blotting and affinity capture, and the O-linked glycans were profiled by mass spectrometry. Proteoglycan 4 (PRG4), also known as lubricin, was a major carrier of sTa in the infected vegetations. Moreover, plasma PRG4 levels were significantly higher in animals with damaged or infected valves, as compared with healthy animals. The combined results demonstrate that, in addition to platelet GPIbα, PRG4 is a highly sialylated mucin-like glycoprotein found in aortic valve vegetations and may contribute to the persistence of oral streptococci in this protected endovascular niche. Moreover, plasma PRG4 could serve as a biomarker for endocardial injury and infection.


Subject(s)
Disease Models, Animal , Endocarditis, Bacterial/metabolism , Heart Valves/metabolism , Proteoglycans/metabolism , Streptococcus gordonii/isolation & purification , Animals , Endocarditis, Bacterial/microbiology , Endocarditis, Bacterial/pathology , Female , Heart Valves/microbiology , Heart Valves/pathology , Humans , Rabbits , Rats , Rats, Sprague-Dawley
6.
Chem Sci ; 12(25): 8767-8777, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34257876

ABSTRACT

A cross-linking method is developed to elucidate glycan-mediated interactions between membrane proteins through sialic acids. The method provides information on previously unknown extensive glycomic interactions on cell membranes. The vast majority of membrane proteins are glycosylated with complicated glycan structures attached to the polypeptide backbone. Glycan-protein interactions are fundamental elements in many cellular events. Although significant advances have been made to identify protein-protein interactions in living cells, only modest advances have been made on glycan-protein interactions. Mechanistic elucidation of glycan-protein interactions has thus far remained elusive. Therefore, we developed a cross-linking mass spectrometry (XL-MS) workflow to directly identify glycan-protein interactions on the cell membrane using liquid chromatography-mass spectrometry (LC-MS). This method involved incorporating azido groups on cell surface glycans through biosynthetic pathways, followed by treatment of cell cultures with a synthesized reagent, N-hydroxysuccinimide (NHS)-cyclooctyne, which allowed the cross-linking of the sialic acid azides on glycans with primary amines on polypeptide backbones. The coupled peptide-glycan-peptide pairs after cross-linking were identified using the latest techniques in glycoproteomic and glycomic analyses and bioinformatics software. With this approach, information on the site of glycosylation, the glycoform, the source protein, and the target protein of the cross-linked pair were obtained. Glycoprotein-protein interactions involving unique glycoforms on the PNT2 cell surface were identified using the optimized and validated method. We built the GPX network of the PNT2 cell line and further investigated the biological roles of different glycan structures within protein complexes. Furthermore, we were able to build glycoprotein-protein complex models for previously unexplored interactions. The method will advance our future understanding of the roles of glycans in protein complexes on the cell surface.

7.
Anal Bioanal Chem ; 411(17): 3731-3741, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30911798

ABSTRACT

This review summarizes progress in analysis of glycosaminoglycans using mass spectrometry (MS) approaches. The specific areas covered include analytical challenges, disaccharide analysis, top-down and bottom-up techniques, sequence analysis, and future perspectives. A brief outline of the complexity and heterogeneity of these unique saccharides and their analysis is provided along with examples of several recent studies. Unique problems and challenges in the characterization of glycosaminoglycans are discussed along with many of the analytical tools used in particular MS methods and the types of information provided. Advances in MS-related technologies have provided more sensitive and accurate detection and sequence analysis of this complex and chemically unique class of bioconjugates. Effective MS-based methods and automated data handling with bioinformatics tools have been developed for disaccharide analysis, top-down and bottom-up analysis, and sequencing studies of relatively short oligosaccharides. It is envisioned that further improvements in MS technologies along with bioinformatics methods will make sequencing studies of longer glycosaminoglycan chains easier and faster.


Subject(s)
Glycosaminoglycans/analysis , Mass Spectrometry/methods , Carbohydrate Sequence , Computational Biology , Disaccharides/analysis
9.
Electrophoresis ; 35(10): 1469-77, 2014 May.
Article in English | MEDLINE | ID: mdl-24616065

ABSTRACT

The anticoagulant properties of heparin stem in part from high-affinity binding to antithrombin-III (AT-III) inducing a 300-fold increase in its inhibitory activity against the coagulation protease factor Xa. The minimal structural requirements for AT-III binding are contained in the rare heparin pentasaccharide sequence containing a 3,6-O-sulfated N-sulfoglucosamine residue. ACE is used in this work to measure the relative AT-III binding affinities of the low molecular weight heparins (LWMHs) dalteparin, enoxaparin, and tinzaparin and the synthetic pentasaccharide drug fondaparinux (Arixtra). Determination of the AT-III binding affinities of the LWMHs is complicated by their inherent structural heterogeneity and polydispersity. The fractional composition of 3-O-sulfo-N-sulfoglucosamine residues was determined for each drug substance using 2D NMR and used in the interpretation of the ACE results.


Subject(s)
Antithrombin III/metabolism , Electrophoresis, Capillary/methods , Heparin, Low-Molecular-Weight/metabolism , Magnetic Resonance Spectroscopy/methods
10.
FEBS J ; 280(10): 2285-93, 2013 May.
Article in English | MEDLINE | ID: mdl-23402351

ABSTRACT

Keratan sulfate (KS) is an important glycosaminoglycan that is found in cartilage, reproductive tissues, and neural tissues. Corneal KS glycosaminoglycan is found N-linked to lumican, keratocan and mimecan proteoglycans, and has been widely studied by investigators interested in corneal development and diseases. Recently, the availability of corneal KS has become severely limited, owing to restrictions on the shipment of bovine central nervous system byproducts across international borders in an effort to prevent additional cases of mad cow disease. We report a simple method for the purification of multi-milligram quantities of bovine corneal KS, and characterize its structural properties. We also examined its protein-binding properties, and discovered that corneal KS bound with high affinity to fibroblast growth factor-2 and sonic hedgehog, a growth factor and a morphogen involved in corneal development and healing.


Subject(s)
Cornea/chemistry , Hedgehog Proteins/chemistry , Keratan Sulfate/isolation & purification , Protein Interaction Mapping/methods , Animals , Cattle , Chromatography, High Pressure Liquid/methods , Fibroblast Growth Factor 1/chemistry , Fibroblast Growth Factor 2/chemistry , Keratan Sulfate/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Molecular Weight , Protein Binding
11.
J Biol Chem ; 288(13): 9226-37, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23423381

ABSTRACT

Decorin proteoglycan is comprised of a core protein containing a single O-linked dermatan sulfate/chondroitin sulfate glycosaminoglycan (GAG) chain. Although the sequence of the decorin core protein is determined by the gene encoding its structure, the structure of its GAG chain is determined in the Golgi. The recent application of modern MS to bikunin, a far simpler chondroitin sulfate proteoglycans, suggests that it has a single or small number of defined sequences. On this basis, a similar approach to sequence the decorin of porcine skin much larger and more structurally complex dermatan sulfate/chondroitin sulfate GAG chain was undertaken. This approach resulted in information on the consistency/variability of its linkage region at the reducing end of the GAG chain, its iduronic acid-rich domain, glucuronic acid-rich domain, and non-reducing end. A general motif for the porcine skin decorin GAG chain was established. A single small decorin GAG chain was sequenced using MS/MS analysis. The data obtained in the study suggest that the decorin GAG chain has a small or a limited number of sequences.


Subject(s)
Decorin/chemistry , Glycosaminoglycans/chemistry , Amino Acid Motifs , Animals , Chondroitin Sulfates/chemistry , Chromatography/methods , Computational Biology/methods , Dermatan Sulfate/chemistry , Disaccharides/chemistry , Electrophoresis, Polyacrylamide Gel , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Protein Structure, Tertiary , Skin/metabolism , Swine , Tandem Mass Spectrometry/methods
13.
Carbohydr Polym ; 87(1): 822-829, 2012 Jan 04.
Article in English | MEDLINE | ID: mdl-22140285

ABSTRACT

Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, (1)H NMR, (13)C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAcore SA biochips and their interactions with fibroblast growth factors displayed very similar binding kinetics and binding affinities. The current semi-synthesis offers an economical approach for the preparation of the rare chondroitin sulfate-E from the readily available chondroitin sulfate-A.

14.
Anal Bioanal Chem ; 401(9): 2793-803, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21931955

ABSTRACT

Seven commercial heparin active pharmaceutical ingredients and one commercial low molecular weight from different manufacturers were characterized with a view profiling their physicochemical properties. All heparins had similar molecular weight properties as determined by polyacrylamide gel electrophoresis (M(N), 10-11 kDa; M(W), 13-14 kDa; polydispersity (PD), 1.3-1.4) and by size exclusion chromatography (M(N), 14-16 kDa; M (W), 21-25 kDa; PD, 1.4-1.6). one-dimensional (1)H- and (13)C-nuclear magnetic resonance (NMR) evaluation of the heparin samples was performed, and peaks were fully assigned using two-dimensional NMR. The percentage of glucosamine residues with 3-O-sulfo groups and the percentage of N-sulfo groups and N-acetyl groups ranged from 5.8-7.9%, 78-82%, to 13-14%, respectively. There was substantial variability observed in the disaccharide composition, as determined by high performance liquid chromatography (HPLC)-mass spectral analysis of heparin lyase I-III digested heparins. Heparin oligosaccharide mapping was performed using HPLC following separate treatments with heparin lyase I, II, and III. These maps were useful in qualitatively and quantitatively identifying structural differences between these heparins. The binding affinities of these heparins to antithrombin III and thrombin were evaluated by using a surface plasmon resonance competitive binding assay. This study provides the physicochemical and activity characterization necessary for the appropriate design and synthesis of a generic bioengineered heparin.


Subject(s)
Chemistry, Physical/methods , Chromatography, High Pressure Liquid/methods , Heparin/analysis , Magnetic Resonance Spectroscopy/methods , Surface Plasmon Resonance/methods , Animals , Antithrombin III/metabolism , Carbohydrate Sequence , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Glucosamine/analysis , Heparin/chemistry , Heparin Lyase/metabolism , Molecular Sequence Data , Molecular Weight , Protein Binding , Swine , Thrombin/metabolism
15.
Glycobiology ; 21(10): 1331-40, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21610195

ABSTRACT

Glycosaminoglycans (GAGs) are linear hexosamine-containing polysaccharides. These polysaccharides are synthesized by some pathogenic bacteria to form an extracellular coating or capsule. This strategy forms the basis of molecular camouflage since vertebrates possess naturally occurring GAGs that are essential for life. A recent sequence database search identified a putative protein from the opportunistic pathogen Comamonas testosteroni that exhibits similarity with the Pasteurella multocida GAG synthase PmHS1, which is responsible for the synthesis of a heparosan polysaccharide capsule. Initial supportive evidence included glucuronic acid (GlcUA)-containing polysaccharides extracted from C. testosteroni KF-1. We describe here the cloning and analysis of a novel Comamonas GAG synthase, CtTS. The GAG produced by CtTS in vitro consists of the sugars d-GlcUA and N-acetyl-D-glucosamine, but is insensitive to digestion by GAG digesting enzymes, thus has distinct glycosidic linkages from vertebrate GAGs. The backbone structure of the polysaccharide product [-4-D-GlcUA-α1,4-D-GlcNAc-α1-](n) was confirmed by nuclear magnetic resonance. Therefore, this novel GAG, testosteronan, consists of the same sugars as the biomedically relevant GAGs heparosan (N-acetyl-heparosan) and hyaluronan but may have distinct properties useful for future medical applications.


Subject(s)
Comamonas/enzymology , Disaccharides/chemistry , Glycosyltransferases/chemistry , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Comamonas/metabolism , Disaccharides/metabolism , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Glycosyltransferases/metabolism , Magnetic Resonance Spectroscopy , Substrate Specificity
16.
J Pharm Sci ; 100(8): 3396-3404, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21416466

ABSTRACT

The stability of a formulated heparin was examined during its sterilization by autoclaving. A new method to follow loss in heparin binding to the serine protease inhibitor, antithrombin III, and the serine protease, thrombin, was developed using a surface plasmon resonance competitive binding assay. This loss in binding affinity correlated well with loss in antifactor IIa (thrombin) activity as well as antifactor Xa activity as measured using conventional amidolytic assays. Autoclaving also resulted in a modest breakdown of the heparin backbone as confirmed by a slight reduction in number-averaged and weight-averaged molecular weight and an increase in polydispersity. Although no clear changes were observed by nuclear magnetic resonance spectroscopy, disaccharide composition analysis using high-performance liquid chromatography-electrospray ionization-mass spectrometry suggested that loss of selected sulfo groups had taken place. It is this sulfo group loss that probably accounts for a decrease in the binding of autoclaved heparin to antithrombin III and thrombin as well as the observed decrease in its amidolytic activity.


Subject(s)
Anticoagulants/chemistry , Heparin/chemistry , Hot Temperature , Sterilization/methods , Anticoagulants/pharmacology , Antithrombin III/chemistry , Chromatography, High Pressure Liquid , Drug Stability , Electrophoresis, Gel, Two-Dimensional , Factor Xa/chemistry , Heparin/pharmacology , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Surface Plasmon Resonance , Thrombin/chemistry
17.
Anal Bioanal Chem ; 399(2): 541-57, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20853165

ABSTRACT

The elucidation of the structure of glycosaminoglycan has proven to be challenging for analytical chemists. Molecules of glycosaminoglycan have a high negative charge and are polydisperse and microheterogeneous, thus requiring the application of multiple analytical techniques and methods. Heparin and heparan sulfate are the most structurally complex of the glycosaminoglycans and are widely distributed in nature. They play critical roles in physiological and pathophysiological processes through their interaction with heparin-binding proteins. Moreover, heparin and low-molecular weight heparin are currently used as pharmaceutical drugs to control blood coagulation. In 2008, the health crisis resulting from the contamination of pharmaceutical heparin led to considerable attention regarding their analysis and structural characterization. Modern analytical techniques, including high-performance liquid chromatography, capillary electrophoresis, mass spectrometry, and nuclear magnetic resonance spectroscopy, played critical roles in this effort. A successful combination of separation and spectral techniques will clearly provide a critical advantage in the future analysis of heparin and heparan sulfate. This review focuses on recent efforts to develop hyphenated techniques for the analysis of heparin and heparan sulfate.


Subject(s)
Anticoagulants/chemistry , Heparin/chemistry , Heparitin Sulfate/chemistry , Animals , Carbohydrate Sequence , Chromatography, High Pressure Liquid/methods , Electrophoresis, Capillary/methods , Humans , Magnetic Resonance Spectroscopy/methods , Molecular Sequence Data , Tandem Mass Spectrometry/methods
18.
Biochemistry ; 49(45): 9839-47, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20954748

ABSTRACT

Glycosaminoglycans (GAGs) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth. In this paper, we report an initial glycomics study of GAGs from the porcine central nervous system. GAGs of the porcine central nervous system, brain and spinal cord were isolated and purified by defatting, proteolysis, anion-exchange chromatography, and methanol precipitation. The isolated GAG content in brain was 5 times higher than in spinal cord (0.35 mg/g of dry sample, compared to 0.07 mg/g of dry sample). In both tissues, chondroitin sulfate (CS) and heparan sulfate (HS) were the major and the minor GAG, respectively. The average molecular masses of CS from brain and spinal cord were 35.5 and 47.1 kDa, respectively, and those for HS from brain and spinal cord were 56.9 and 34 kDa, respectively. The disaccharide analysis showed that the compositions of CS from brain and spinal cords are similar, with uronic acid (1→3) 4-O-sulfo-N-acetylgalactosamine residue corresponding to the major disaccharide unit (CS type A) along with five minor disaccharide units. The major disaccharides of both brain and spinal cord HS were uronic acid (1→4) N-acetylglucosamine and uronic acid (1→4) 6-O-sulfo-N-sulfoglucosamine, but their composition of minor disaccharides differed. Analysis by (1)H and two-dimensional NMR spectroscopy confirmed these disaccharide analyses and provided the glucuronic/iduronic acid ratio. Finally, both purified CS and HS were biotinylated and immobilized on BIAcore SA biochips. Interactions between these GAGs and fibroblast growth factors (FGF1 and FGF2) and sonic hedgehog (Shh) were investigated by surface plasmon resonance.


Subject(s)
Central Nervous System/chemistry , Glycosaminoglycans/chemistry , Animals , Biotinylation , Cell Movement , Central Nervous System/cytology , Central Nervous System/physiology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/isolation & purification , Disaccharides/chemistry , Disaccharides/isolation & purification , Fibroblast Growth Factor 1/chemistry , Fibroblast Growth Factor 1/isolation & purification , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/isolation & purification , Glycosaminoglycans/isolation & purification , Glycosaminoglycans/metabolism , Heparitin Sulfate/chemistry , Heparitin Sulfate/isolation & purification , Kinetics , Neurites/physiology , Neurites/ultrastructure , Surface Plasmon Resonance , Swine
19.
Methods Enzymol ; 478: 79-108, 2010.
Article in English | MEDLINE | ID: mdl-20816475

ABSTRACT

Electrospray ionization mass spectrometry (ESI MS) is a versatile analytical technique in glycomics of glycosaminoglycans (GAGs). Combined with enzymology, ESI MS is used for assessing changes in disaccharide composition of GAGs biosynthesized under different environmental or physiological conditions. ESI coupled with high-resolution mass analyzers such as a Fourier transform mass spectrometer (FTMS) permits accurate mass measurement of large oligosaccharides and intact GAGs as well as structural characterization of GAG oligosaccharides using information-rich fragmentation methods such as electron detachment dissociation. The first part of this chapter describes methods for disaccharide compositional profiling using ESI MS and the second part is dedicated to FTMS and tandem MS methods of GAG compositional and structural analysis.


Subject(s)
Glycosaminoglycans/chemistry , Spectrometry, Mass, Electrospray Ionization , Spectroscopy, Fourier Transform Infrared , Humans
20.
Biochem J ; 431(2): 199-205, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20707770

ABSTRACT

The structure of the GAG (glycosaminoglycan) chain of recombinantly expressed decorin proteoglycan was examined using a combination of intact-chain analysis and domain compositional analysis. The GAG had a number-average molecular mass of 22 kDa as determined by PAGE. NMR spectroscopic analysis using two-dimensional correlation spectroscopy indicated that the ratio of glucuronic acid to iduronic acid in decorin peptidoglycan was 5 to 1. GAG domains terminated with a specific disaccharide obtained by enzymatic degradation of decorin GAG with highly specific endolytic and exolytic lyases were analysed by PAGE and further depolymerized with the enzymes. The disaccharide compositional profiles of the resulting domains were obtained using LC with mass spectrometric and photometric detection and compared with that of the polysaccharide. The information obtained through the disaccharide compositional profiling was combined with the NMR and PAGE data to construct a map of the decorin GAG sequence motifs.


Subject(s)
Extracellular Matrix Proteins/chemistry , Glycosaminoglycans/chemistry , Proteoglycans/chemistry , Amino Acid Sequence , Chromatography, Liquid , Decorin , Disaccharides/chemistry , Electrophoresis, Polyacrylamide Gel , Extracellular Matrix Proteins/biosynthesis , Glycosaminoglycans/biosynthesis , Humans , Mass Spectrometry , Molecular Sequence Data , Protein Structure, Tertiary , Proteoglycans/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...