Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 706
Filter
1.
Poult Sci ; 103(11): 104178, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39154612

ABSTRACT

Oxidative stress is a frequent concern in the breeding of laying hens, and limit the healthy development of poultry. Dexamethasone (DXM) has been demonstrated to induce oxidative stress. Conversely, betaine is an alkaloid with a potent antioxidant activity. The study was designed to investigate the ameliorative effect of betaine on DXM-induced oxidative stress in laying hens. The results revealed that DXM treatment significantly decreased laying rate, shell strength, albumen height, Haugh unit, egg weight, folk weight and albumen weight, alongside increased malondialdehyde (MDA) and decreased total antioxidant capacity (T-AOC) in serum and liver (P < 0.05). In contrast, dietary betaine addition reversed those parameters mentioned above (P < 0.05). Hepatic RNA-seq analysis showed that there existed 110 up- and 88 down-regulated genes in DXM group when compared with the control. Meanwhile there were 117 upregulation and 169 downregulation genes in BT group when compared with DXM group. Besides, we found that dietary betaine addition significantly down-regulated cell adhesion molecules, glycerolipid metabolism and glycolysis gluconeogenesis pathways. In addition, a total of 44 and 94 differential metabolites were identified respectively from Con vs. DXM and DXM vs BT. More importantly, dietary betaine addition significantly increased the levels of pantothenic acid, gamma-Aminobutyric acid, equol and choline, all of which were related to antioxidant and anti-inflammatory properties. Furthermore, gut microbiota analysis indicated that the Chao and Observed_species indexes were remarkably higher in BT group (P<0.05). Heatmap analysis revealed that Subdoligranulum, Prevotella, Blautia, YRC22, Bacteroides, Ruminococcus and Coprococcus were notably restored in BT group (P<0.05). Taken together, our findings collectively illustrate that dietary betaine addition could attenuate DXM-induced oxidative stress, improve egg quality and gut microbes of laying hens.

2.
Poult Sci ; 103(11): 104171, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39151213

ABSTRACT

The hyperplasia and hypertrophy of preadipocytes were closely related to lipid deposition in animals. Butyric acid was reported to be involved in lipid metabolism. The aim of the current study was to investigate the effect of butyric acid on the proliferation and differentiation of the immortalized chicken preadipocyte 2 (ICP2). ICP2 were treated respectively with 12mM butyric acid for 48h in proliferation trial and 4mM butyric acid plus 200 µM oleic acid for 3 d in differentiation trial. For the proliferation trial, RNA-seq analysis revealed that 2039 genes were significantly up-regulated and 780 genes were significantly down-regulated with 12 mM butyric acid after 48 h treatment. Concurrently, Cell cycle, DNA replication and p53 signaling pathways were down-regulated in Butyric acid group. More importantly, 12 mM butyric acid restrained the expression of cell proliferation genes such as PCNA, CDK1 and CDK2 in Butyric acid group (P < 0.05), and the protein expression levels of PCNA and CDK1 were also significantly decreased (P < 0.05). The Oil red staining revealed a fewer presence of red fat droplets in ICP2 following treatment with 4 mM butyric acid, accompanied by decreased levels of total cholesterol (TC) and triglycerides (TG). RNA-seq analysis shown that the number of up and down-regulated genes were 2095 and 1042 respectively in OAB group (oleic acid+butyric acid) when compared with OA group (oleic acid). Meanwhile the AMPK signaling pathway, FOXO signaling pathway and focal adhesion were significantly enriched in OAB group. Additionally, 4 mM butyric acid inhibited the expression of lipid differentiation genes including FABP4, C/EBPα, PPARγ and LPL in OAB group (P < 0.05), as well as lipogenesis proteins such as FABP4, C/EBP-α and PPARγ (P < 0.05). In conclusion, 12 mM butyric acid effectively inhibited the proliferation of ICP2 by slowing down cell cycle progression, while 4 mM butyric acid alleviated lipid deposition by reducing the production of lipid droplets through inhibiting the expression of lipid differentiation marker genes and proteins.

3.
Acta Pharmacol Sin ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147900

ABSTRACT

The pyroptosis of renal tubular epithelial cells leads to tubular loss and inflammation and then promotes renal fibrosis. The transcription factor Krüppel-like factor 4 (KLF4) can bidirectionally regulate the transcription of target genes. Our previous study revealed that sustained elevation of KLF4 is responsible for the transition of acute kidney injury (AKI) into chronic kidney disease (CKD) and renal fibrosis. In this study, we explored the upstream mechanisms of renal tubular epithelial cell pyroptosis from the perspective of posttranslational regulation and focused on the transcription factor KLF4. Mice were subjected to unilateral ureteral obstruction (UUO) surgery and euthanized on D7 or D14 for renal tissue harvesting. We showed that the pyroptosis of renal tubular epithelial cells mediated by both the Caspase-1/GSDMD and Caspase-3/GSDME pathways was time-dependently increased in UUO mouse kidneys. Furthermore, we found that the expression of the transcription factor KLF4 was also upregulated in a time-dependent manner in UUO mouse kidneys. Tubular epithelial cell-specific Klf4 knockout alleviated UUO-induced pyroptosis and renal fibrosis. In Ang II-treated mouse renal proximal tubular epithelial cells (MTECs), we demonstrated that KLF4 bound to the promoter regions of Caspase-3 and Caspase-1 and directly increased their transcription. In addition, we found that ubiquitin-specific protease 11 (USP11) was increased in UUO mouse kidneys. USP11 deubiquitinated KLF4. Knockout of Usp11 or pretreatment with the USP11 inhibitor mitoxantrone (3 mg/kg, i.p., twice a week for two weeks before UUO surgery) significantly alleviated the increases in KLF4 expression, pyroptosis and renal fibrosis. These results demonstrated that the increased expression of USP11 in renal tubular cells prevents the ubiquitin degradation of KLF4 and that elevated KLF4 promotes inflammation and renal fibrosis by initiating tubular cell pyroptosis.

4.
Parasit Vectors ; 17(1): 353, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169431

ABSTRACT

BACKGROUND: Clonorchiasis has significant socioeconomic importance in endemic areas; however, studies investigating the disease burden in specific sub-regions are lacking. This study aims to address the gap by quantifying the current disease burden caused by clonorchiasis in Guangdong province and assessing its distribution characteristics. METHODS: Comprehensive measures, including prevalence rates, disability-adjusted life years (DALYs), and direct medical costs, were used to assess the disease burden of clonorchiasis. To estimate the prevalence rate, the number of infections was divided by the examined population, based on the annual surveillance data on clonorchiasis cases during 2016-2021. The calculation of DALYs was based on the epidemiological parameters according to the definition issued by the World Health Organization. Cost data of clonorchiasis were utilized to quantify the direct medical costs. The distribution characteristics of disease burden were assessed through comparisons of groups of population defined by geographic area, time, and characteristics of people. RESULTS: In 2021, clonorchiasis posed a significant disease burden in Guangdong Province. The prevalence rate was found to be 4.25% [95% CI (4.02%, 4.49%)], with an associated burden of DALYs of 406,802.29 [95% CI (329,275.33, 49,215,163.78)] person-years. The per-case direct medical costs of patients with clonorchiasis were estimated to be CNY 7907.2 (SD = 5154.4). Notably, while the prevalence rate and DALYs showed a steady decrease from 2016 to 2020, there was a rising trend in 2021. Spatial clustering of clonorchiasis cases and DALYs was also observed, particularly along the Pearl River and Han River. This suggests a concentration of the disease in these regions. Furthermore, significant differences in prevalence rates were found among various demographic groups, including sex, age, occupation, and education level. Additionally, patients with longer hospital stays were more likely to incur higher direct medical costs. CONCLUSIONS: The burden of clonorchiasis in Guangdong Province remains high, despite significant progress achieved through the implementation of the prevention and control programs. It is suggested that measures should be taken based on the distribution characteristics to maximize the effectiveness of prevention and control, with a primary focus on key populations and areas.


Subject(s)
Clonorchiasis , Cost of Illness , Clonorchiasis/epidemiology , Clonorchiasis/parasitology , Humans , China/epidemiology , Prevalence , Male , Middle Aged , Adult , Female , Aged , Adolescent , Child , Young Adult , Child, Preschool , Infant , Disability-Adjusted Life Years , Health Care Costs/statistics & numerical data , Aged, 80 and over , Infant, Newborn
5.
Acta Pharmacol Sin ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187678

ABSTRACT

Chromosome instability (CIN) and subsequent aneuploidy are prevalent in various human malignancies, influencing tumor progression such as metastases and relapses. Extensive studies demonstrate the development of chemoresistance in high-CIN tumors, which poses significant therapeutic challenges. Given the association of CIN with poorer prognosis and suppressed immune microenvironment observed in colorectal carcinoma (CRC), here we aimed to discover chemotherapeutic drugs exhibiting increased inhibition against high-CIN CRC cells. By using machine learning methods, we screened out two BCL-XL inhibitors Navitoclax and WEHI-539 as CIN-sensitive reagents in CRC. Subsequent analyses using a CIN-aneuploidy cell model confirmed the vulnerability of high-CIN CRC cells to these drugs. We further revealed the critical role of BCL-XL in the viability of high-CIN CRC cells. In addition, to ease the evaluation of CIN levels in clinic, we developed a three-gene signature as a CIN surrogate to predict prognosis, chemotherapeutic and immune responses in CRC samples. Our results demonstrate the potential value of CIN as a therapeutic target in CRC treatment and the importance of BCL-XL in regulating survival of high-CIN CRC cells, therefore representing a valuable attempt to translate a common trait of heterogeneous tumor cells into an effective therapeutic target.

7.
Heliyon ; 10(15): e35001, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39144991

ABSTRACT

RNA-binding motif protein 10 (RBM10) has a tumor suppressor role in multiple cancers. Combining Oncomine database results with tissue samples, Western blot analysis showed that RBM10 was significantly lower in lung adenocarcinoma (LUAD) than in adjacent normal tissues. Moreover, KM analysis revealed that the group with higher RBM10 expression in LUAD correlated with better overall survival (OS). Luciferase reporter assay revealed that an important tumor-promotive miRNA, miR-224-5p, was directly bound to the 3'UTR of RBM10, resulting in inhibition of RBM10 expression, and promoted LUAD progression both in vitro and in vivo. Mechanistically, we found that miR-224-5p directly targeted RBM10 to inhibit p53 expression during LUAD progression. Meanwhile, p53 affected RBM10 expression through p53/miR-224-5p axis. Our study identified RBM10 as a key tumor suppressor in the proliferation and metastasis of LUAD. The findings provide a novel mechanism involving a feedback loop of miR-224-5p/RBM10/p53 regulated tumor progression in LUAD, which may help with the design of more effective LUAD treatments.

8.
Plant J ; 119(5): 2484-2499, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39007841

ABSTRACT

Pathogen infection induces massive reprogramming of host primary metabolism. Lipid and fatty acid (FA) metabolism is generally disrupted by pathogens and co-opted for their proliferation. Lipid droplets (LDs) that play important roles in regulating cellular lipid metabolism are utilized by a variety of pathogens in mammalian cells. However, the function of LDs during pathogenic infection in plants remains unknown. We show here that infection by rice black streaked dwarf virus (RBSDV) affects the lipid metabolism of maize, which causes elevated accumulation of C18 polyunsaturated fatty acids (PUFAs) leading to viral proliferation and symptom development. The overexpression of one of the two novel LD-associated proteins (LDAPs) of maize (ZmLDAP1 and ZmLDAP2) induces LD clustering. The core capsid protein P8 of RBSDV interacts with ZmLDAP2 and prevents its degradation through the ubiquitin-proteasome system mediated by a UBX domain-containing protein, PUX10. In addition, silencing of ZmLDAP2 downregulates the expression of FA desaturase genes in maize, leading to a decrease in C18 PUFAs levels and suppression of RBSDV accumulation. Our findings reveal that plant virus may recruit LDAP to regulate cellular FA metabolism to promote viral multiplication and infection. These results expand the knowledge of LD functions and viral infection mechanisms in plants.


Subject(s)
Fatty Acids , Plant Diseases , Plant Proteins , Virus Replication , Zea mays , Zea mays/virology , Zea mays/metabolism , Zea mays/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Diseases/virology , Fatty Acids/metabolism , Lipid Metabolism , Lipid Droplet Associated Proteins/metabolism , Lipid Droplet Associated Proteins/genetics , Lipid Droplets/metabolism , Lipid Droplets/virology , Plant Viruses/physiology , Gene Expression Regulation, Plant , Reoviridae/physiology
9.
Glycoconj J ; 41(3): 201-216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38954268

ABSTRACT

A glucosyl-rich pectin, JMMP-3 (Mw, 2.572 × 104 g/mol, O-methyl % = 3.62%), was isolated and purified from the pericarp of the immature fruit of Juglans mandshurica Maxim. (QingLongYi). The structure of JMMP-3 was studied systematically by infrared spectroscopy, monosaccharide compositions, methylation analysis, partial acid hydrolysis, and 1/2D-NMR. The backbone of JMMP-3 possessed a smooth region (→ 4GalA1 →) and a hairy region (→ 4GalA1 → 2Rha1 →) with a molar ratio of 2: 5. The substitution of four characteristic side chains (R1-R4) occurs at C-4 of → 2,4)-α-Rhap-(1→, where R1 is composed of → 5)-α-Araf-(1→, R2 is composed of → 4)-ß-Galp-(1 → and ß-Galp-(1→, R3 is composed of α-Glcp-(1→, →4)-α-Glcp-(1 → and → 4,6)-α-Glcp-(1→, and R4 is composed of → 5)-α-Araf-(1→, ß-Galp-(1→, → 4)-ß-Galp-(1→, → 3,4)-ß-Galp-(1→, → 4,6)-ß-Galp-(1 → and → 2,4)-ß-Galp-(1 → . In addition, the antitumor activity of JMMP-3 on HepG2 cells was preliminarily investigated.


Subject(s)
Fruit , Juglans , Pectins , Juglans/chemistry , Pectins/chemistry , Pectins/isolation & purification , Humans , Fruit/chemistry , Hep G2 Cells , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification
10.
World J Psychiatry ; 14(6): 884-893, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38984329

ABSTRACT

BACKGROUND: Patients with schizophrenia may have various disease manifestations, most of which gradually tend toward incurable chronic decline, leading to mental disability. The basic symptoms of the disease can impair social function, whereas long-term hospitalization produces hospitalization syndrome, causing serious damage to social function. AIM: To investigate the effects of Computerized Cognitive Remediation Therapy (CCRT) on cognitive and social functioning in patients with chronic schizophrenia. METHODS: A retrospective analysis of 120 patients with chronic schizophrenia in Shanghai Pudong New Area Mental Health Center was performed. They were divided into an intervention group (60 cases treated with CCRT combined with conventional medication) and a control group (60 cases treated with conventional medication). After treatment, effects on cognitive function and social roles were observed in both groups. The Positive and Negative Syndrome Scale (PANSS) was used to assess the patients' psychiatric symptoms. The Wisconsin Card Sorting Test (WCST) was used to assess the patients' cognitive functioning, and the Social Functioning Scale for Psychiatric Inpatients (SSPI) was used to assess the social functioning of the inpatient psychiatric patients. RESULTS: No significant differences were observed in the PANSS, WCST, and SSPI intergroup scores before treatment (P > 0.05). After 2, 4, and 6 wk of therapy, general psychopathological factors, positive symptoms, negative symptoms, and total PANSS scores of PANSS in the intervention group were lower than in the control group (P < 0.05). After 2, 4, and 6 wk of treatment, the number of false responses, number of persistent bugs, and total responses in the WCST were significantly lower in the intervention group than in the control group (P < 0.05), and the amount of completed classification was significantly higher than in the control group (P < 0.05). After 2, 4, and 6 wk of therapy, the SSPI scores were significantly greater than those of the controls (P < 0.05). After 6 wk of treatment, the efficacy rates of the control and intervention groups were 81.67% and 91.67%, respectively. The curative effect in the intervention group was significantly higher than that in the control group (P < 0.05). CONCLUSION: CCRT can significantly improve cognitive function and social abilities in patients with chronic schizophrenia.

11.
Histol Histopathol ; : 18790, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39056107

ABSTRACT

BACKGROUND: RNA-binding motif protein 10 (RBM10) regulates the expression of genes involved in immune responses and is associated with a wide spectrum of cancers. Meanwhile, immunotherapy is the most promising cancer treatment of our time; nevertheless, the pan-cancer role of RBM10 remains to be elucidated. METHODS: Data from multiple online databases, including ONCOMINE, UALCAN, GEPIA2, Kaplan-Meier Plotter, cBioPortal, STRING, and TIMER were analyzed. The protein expression levels of RBM10 in various tumor types were verified by immunohistochemistry (IHC). RESULTS: RBM10 is upregulated in multiple tumors compared with the corresponding normal tissues. In addition, RBM10 is highly mutated in various cancers. We also compared the levels of phosphorylated RBM10 between normal and primary tumor tissues. We found that the expression of RBM10 was positively correlated with Programmed cell death 1 (PD-L1) and Cytotoxic lymphocyte antigen 4 (CTLA4) in most cancers, except Thyroid carcinoma (THCA). Moreover, the expression of RBM10 was significantly related to immune cell infiltration in many cancers, suggesting that it is a promising target for cancer immunotherapy. CONCLUSIONS: RBM10 expression is closely related to tumor prognosis and the immune microenvironment. Our findings provide new insights into the role of RBM10 in cancer diagnosis and treatment.

12.
Sci Total Environ ; 946: 174338, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38944306

ABSTRACT

Promoting soil carbon sequestration is a possible way to mitigate global warming. To investigate the effects of exogenous calcium on soil carbon sequestration during the application of organic matter to improve coastal saline-alkali soil. In this study, a 30-day incubation experiment was based on the application of corn straw biochar + chicken manure (BM) and rice straw + chicken manure (SM). Usages of exogenous calcium in each treatment under each organic matter combination as follow: CK (No exogenous calcium), CaSi1 (1.24 g CaSiO3, i.e. 4.28 g Ca kg-1 soil), CaSi2 (2.48 g CaSiO3, i.e. 8.56 g Ca kg-1 soil), CaOH1 (0.79 g Ca(OH)2, i.e. 4.28 g Ca kg-1 soil), CaOH2 (1.58 g Ca(OH)2, i.e. 8.56 g Ca kg-1 soil), CaSiOH (1.24 g CaSiO3 + 0.79 g Ca(OH)2, i.e. 8.56 g Ca kg-1 soil). Results showed that exogenous calcium significantly reduced CO2 emission. Organic matter addition promoted the loss of SOC, and exogenous did not significantly affect the mineralization of SOC albeit strongly increased SIC, making up for the loss of SOC, increasing soil total carbon and realizing soil carbon fixation. Soil carbon fixation was mainly realized by the reaction of exogenous calcium with CO2 generated by mineralization and converting it into calcium carbonate. pH and soil CO2 emission are the major controlling factors for soil inorganic carbon sequestration. Therefore, applying organic matter with exogenous calcium can realize soil carbon fixation by generation of calcium carbonate.

13.
Adv Sci (Weinh) ; : e2402066, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940381

ABSTRACT

Retention of metabolic end-products in the bodily fluids of patients with chronic kidney disease (CKD) may lead to uremia. The uremic toxin indoxyl sulfate (IS), a tryptophan metabolite, is an endogenous ligand of aryl hydrocarbon receptor (AhR). It is clarified that the upregulation and activation of AhR by IS in tubular epithelial cells (TECs) promote renal senescence and fibrosis. Renal TEC-specific knockout of AhR attenuates renal senescence and fibrosis, as well as the suppression of PGC1α-mediated mitochondrial biogenesis in ischemia reperfusion (IR)- or IS-treated CKD mice kidneys. Overexpression of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) attenuates IS-induced cell senescence and extracellular matrix production in cultured TECs. Mechanistically, AhR is able to interact with PGC1α and promotes the ubiquitin degradation of PGC1α via its E3 ubiquitin ligase activity. In summary, the elevation and activation of AhR by the accumulated uremic toxins in the progression of CKD accelerate renal senescence and fibrosis by suppressing mitochondrial biogenesis via promoting ubiquitination and proteasomal degradation of PGC1α.

15.
Inorg Chem ; 63(24): 11438-11449, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38833708

ABSTRACT

Ethanethiol (EtSH), being highly toxic, flammable, and explosive, poses significant risks to human health and safety and is capable of causing fires and explosions. Room-temperature detection using chemiresistive gas sensors is essential for managing these risks. However, the gas-sensing performance of conventional metal-oxide sensing materials may be limited by their weak interaction with EtSH at room temperature. Herein, SnO2 nanoflowers assembled with non-noble Cu-site-enriched porous nanosheets were designed and prepared by an in situ self-template pyrolysis synthesis strategy to enable highly sensitive and selective room-temperature detection of EtSH. By regulating the number of non-noble Cu sites, these nanoflowers achieved efficient EtSH sensing with a Ra/Rg value of 11.0 at 50 ppb, ensuring high selectivity, reproducibility, and stability at room temperature. Moreover, a comparative analysis of the room-temperature gas-sensing performance of SnO2 nanoflowers with non-noble Fe- or Ni-site-enriched nanosheets highlights the benefits of non-noble Cu sites for EtSH detection. Density functional theory (DFT) analysis reveals that non-noble Cu sites have a unique affinity for EtSH, offering preferential binding over other gases and explaining the outstanding sensing performance of non-noble Cu-site-enriched nanosheet-assembled SnO2 nanoflowers. The structural and interface engineering of the sensing materials presented in this work provides a promising approach for offering efficient and durable gas sensors operable at room temperature.

16.
Dalton Trans ; 53(20): 8843-8849, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38716691

ABSTRACT

Heteroatomic anion doping represents a powerful approach for manipulating the electronic configuration of the active metal locus in electrocatalysts, resulting in enhanced multifunctional electrocatalytic properties in hydrogen/oxygen evolution reactions (HER/OER). Here, fluorine-tailored Ni2P-F3 nanosheets were synthesized and evaluated as a robust multifunctional electrocatalyst for HER, OER, and UOR. Our comprehensive experimental and theoretical investigations reveal that the anionic F effectively tailored the electronic states of the Ni2P-F3 nanosheets, resulting in an elevated d-band center and optimizing the sorption capacity of intermediates. In addition to thermodynamically and kinetically favoured redox reactions, F doping facilitates the reconstruction and generation of active γ-NiOOH. Resulting from the optimized electronic configuration and nanosheet architecture, outstanding catalytic activities are demonstrated by Ni2P-F3 with low overpotentials to reach 100 mA cm-2 for HER (177 mV) and OER (293 mV), surpassing Ni2P by 234 and 205 mV, respectively. Notably, 1.618 V is required for full-water-diversion to reach 10 mA cm-2, while 1.414 V is required with urea oxidation for 100 mA cm-2.

17.
Cell Transplant ; 33: 9636897241254678, 2024.
Article in English | MEDLINE | ID: mdl-38798038

ABSTRACT

Chronic graft-versus-host disease (cGVHD) is a potentially life-threatening complication after allogeneic hematopoietic stem cell transplantation. Standard steroid first-line treatment could not satisfy therapeutic needs due to limited efficacy. As a highly selective Janus kinase (JAK) 1 inhibitor, SHR0302 exhibits a reduced inhibition effect on JAK2 and might have less effect on hematopoiesis. This phase I clinical trial investigated the tolerability and safety of SHR0302 in combination with prednisone, and its early efficacy evidence as a potential first-line treatment to moderate/severe cGVHD. The standard 3 + 3 dose escalation was implemented to find the optimal dose of SHR0302. And prednisone was concurrently administrated with a dose of 1 mg/kg/d and then gradually tapered after 2 weeks. Eighteen patients were enrolled into the study. Grade ≥ 3 treatment-related adverse events were observed in 38.9% of patients. Only one patient developed DLT (grade ≥ 3 hypercholesterolemia) in the highest dose-level group who had pre-existing hypercholesterolemia. The maximum tolerated dose was not reached. No patient discontinued treatment due to AEs. Sixteen out of 18 patients were evaluable for responses, the ORR at week 4 and week 24 were 94.4 and 87.5%, respectively. Overall, the treatment of SHR0302 combined with prednisone was safe and well-tolerated, preliminary clinical results presented a high response for previously untreated cGVHD and a significant reduction in prednisone use in this study. A phase II trial will be conducted to further investigate its therapeutic effects clinically.


Subject(s)
Graft vs Host Disease , Janus Kinase 1 , Prednisone , Humans , Graft vs Host Disease/drug therapy , Prednisone/therapeutic use , Male , Female , Adult , Middle Aged , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Chronic Disease , Young Adult , Hematopoietic Stem Cell Transplantation/adverse effects , Aged , Drug Therapy, Combination , Bronchiolitis Obliterans Syndrome
18.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773462

ABSTRACT

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Subject(s)
Cardiopulmonary Bypass , Disease Models, Animal , Glycogen Synthase Kinase 3 beta , Proto-Oncogene Proteins c-akt , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Animals , Cardiopulmonary Bypass/adverse effects , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyroptosis/drug effects , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Neurons/enzymology , Neuroprotective Agents/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Brain Edema/prevention & control , Brain Edema/metabolism , Brain Edema/enzymology , Brain Edema/pathology , Anti-Inflammatory Agents/pharmacology , Rats , S100 Calcium Binding Protein beta Subunit/metabolism , Inflammation Mediators/metabolism
19.
Signal Transduct Target Ther ; 9(1): 141, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811527

ABSTRACT

The immunoprotective components control COVID-19 disease severity, as well as long-term adaptive immunity maintenance and subsequent reinfection risk discrepancies across initial COVID-19 severity, remain unclarified. Here, we longitudinally analyzed SARS-CoV-2-specific immune effectors during the acute infection and convalescent phases of 165 patients with COVID-19 categorized by severity. We found that early and robust SARS-CoV-2-specific CD4+ and CD8+ T cell responses ameliorate disease progression and shortened hospital stay, while delayed and attenuated virus-specific CD8+ T cell responses are prominent severe COVID-19 features. Delayed antiviral antibody generation rather than titer level associates with severe outcomes. Conversely, initial COVID-19 severity imprints the long-term maintenance of SARS-CoV-2-specific adaptive immunity, demonstrating that severe convalescents exhibited more sustained virus-specific antibodies and memory T cell responses compared to mild/moderate counterparts. Moreover, initial COVID-19 severity inversely correlates with SARS-CoV-2 reinfection risk. Overall, our study unravels the complicated interaction between temporal characteristics of virus-specific T cell responses and COVID-19 severity to guide future SARS-CoV-2 wave management.


Subject(s)
Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 , Memory T Cells , Reinfection , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Male , Female , Reinfection/immunology , Middle Aged , CD8-Positive T-Lymphocytes/immunology , Adult , Antibodies, Viral/immunology , Memory T Cells/immunology , Aged , CD4-Positive T-Lymphocytes/immunology , Immunologic Memory
20.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612461

ABSTRACT

Legume crops establish symbiosis with nitrogen-fixing rhizobia for biological nitrogen fixation (BNF), a process that provides a prominent natural nitrogen source in agroecosystems; and efficient nodulation and nitrogen fixation processes require a large amount of phosphorus (P). Here, a role of GmPAP4, a nodule-localized purple acid phosphatase, in BNF and seed yield was functionally characterized in whole transgenic soybean (Glycine max) plants under a P-limited condition. GmPAP4 was specifically expressed in the infection zones of soybean nodules and its expression was greatly induced in low P stress. Altered expression of GmPAP4 significantly affected soybean nodulation, BNF, and yield under the P-deficient condition. Nodule number, nodule fresh weight, nodule nitrogenase, APase activities, and nodule total P content were significantly increased in GmPAP4 overexpression (OE) lines. Structural characteristics revealed by toluidine blue staining showed that overexpression of GmPAP4 resulted in a larger infection area than wild-type (WT) control. Moreover, the plant biomass and N and P content of shoot and root in GmPAP4 OE lines were also greatly improved, resulting in increased soybean yield in the P-deficient condition. Taken together, our results demonstrated that GmPAP4, a purple acid phosphatase, increased P utilization efficiency in nodules under a P-deficient condition and, subsequently, enhanced symbiotic BNF and seed yield of soybean.


Subject(s)
Glycine max , Nitrogen Fixation , Glycine max/genetics , Nitrogen Fixation/genetics , Symbiosis/genetics , Seeds/genetics , Phosphorus , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL