Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39099090

ABSTRACT

Neuropilin-1 acts as a coreceptor with vascular endothelial growth factor receptors to facilitate binding of its ligand, vascular endothelial growth factor. Neuropilin-1 also binds to heparan sulfate, but the functional significance of this interaction has not been established. A combinatorial library screening using heparin oligosaccharides followed by molecular dynamics simulations of a heparin tetradecasaccharide suggested a highly conserved binding site composed of amino acid residues extending across the b1 and b2 domains of murine neuropilin-1. Mutagenesis studies established the importance of arginine513 and lysine514 for binding of heparin to a recombinant form of Nrp1 composed of the a1, a2, b1, and b2 domains. Recombinant Nrp1 protein bearing R513A,K514A mutations showed a significant loss of heparin-binding, heparin-induced dimerization, and heparin-dependent thermal stabilization. Isothermal calorimetry experiments suggested a 1:2 complex of heparin tetradecasaccharide:Nrp1. To study the impact of altered heparin binding in vivo, a mutant allele of Nrp1 bearing the R513A,K514A mutations was created in mice (Nrp1D) and crossbred to Nrp1+/- mice to examine the impact of altered heparan sulfate binding. Analysis of tumor formation showed variable effects on tumor growth in Nrp1D/D mice, resulting in a frank reduction in tumor growth in Nrp1D/- mice. Expression of mutant Nrp1D protein was normal in tissues, suggesting that the reduction in tumor growth was due to the altered binding of heparin/heparan sulfate to neuropilin-1. These findings suggest that the interaction of neuropilin-1 with heparan sulfate modulates its stability and its role in tumor formation and growth.

2.
Mol Biol Cell ; 35(8): vo1, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38991198

ABSTRACT

The word minority, when used incorrectly, is a condescending term that segregates, inaccurately represents groups as being smaller or less important, and fuels microaggressions. Scientific societies and other institutions have normalized using the word minority, or the "M word," to refer to members of underrepresented groups in Science, Technology, Engineering, and Mathematics (STEM). The message put forth using the term minority often directly conflicts with the inclusive agenda these societies seek to enact. More inclusive acronyms such as PEER (Persons Excluded because of their Ethnicity or Race) have been created to more accurately reflect the active process of exclusion by institutions. Here, we detail the rationale behind the decision to eradicate the word minority from the name of a prominent committee within the American Society for Cell Biology (ASCB). The ASCB Minority Affairs Committee changed its name to the Maximizing Access to Cell Biology for PEERS Committee. Herein, we emphasize the basis for the name change and highlight the contradictions intrinsic to the word minority in this context. We highlight why swift action is required for this rewording within the context of a committee dedicated to supporting the inclusion of PEERs in the scientific community.


Subject(s)
Cell Biology , Minority Groups , Humans , Societies, Scientific , United States , Peer Group , Terminology as Topic
3.
Am J Physiol Cell Physiol ; 327(2): C372-C378, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38912739

ABSTRACT

Heparan sulfate proteoglycans are a family of glycoproteins that modulate cell signaling by binding growth factors and changing their bioavailability. Syndecans are a specific family of transmembrane heparan sulfate proteoglycans that regulate cell adhesion, migration, and signaling. In this review, we will summarize emerging evidence for the functions of syndecans in the normal and malignant blood systems and their microenvironments. More specifically, we detail the known functions of syndecans within normal hematopoietic stem cells. Furthermore, we discuss the functions of syndecans in hematological malignancies, including myeloid malignancies, lymphomas, and bleeding disorders. As normal and malignant hematopoietic cells require cues from their microenvironments to function, we also summarize the roles of syndecans in cells of the stromal, endothelial, and osteolineage compartments. Syndecan biology is a rapidly evolving field; a comprehensive understanding of these molecules and their place in the hematopoietic system promises to improve our grasp on disease processes and better predict the efficacies of growth factor-targeting therapies.


Subject(s)
Hematopoietic Stem Cells , Stem Cell Niche , Syndecans , Humans , Hematopoietic Stem Cells/metabolism , Animals , Syndecans/metabolism , Syndecans/genetics , Signal Transduction , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Hematopoiesis/physiology
5.
Trends Biochem Sci ; 48(3): 203-210, 2023 03.
Article in English | MEDLINE | ID: mdl-36504139

ABSTRACT

The process of evaluating and negotiating a tenure-track job offer is unstructured and highly variable, making it susceptible to bias and inequitable outcomes. We outline common aspects of and recommendations for negotiating an academic job offer in the life sciences to support equitable recruitment of diverse faculty.


Subject(s)
Career Choice , Employment , Faculty , Negotiating
6.
Trends Mol Med ; 28(9): 707-709, 2022 09.
Article in English | MEDLINE | ID: mdl-35868960

ABSTRACT

Diversity, equity, and inclusion (DEI) efforts have increased drastically as companies and institutions recognize their value in fostering innovative ideas for success. Individuals trained in these efforts can impart their knowledge and expertise in consultation, but this transaction should be mutually beneficial. Here, we provide recommendations to maximize consulting opportunities.


Subject(s)
Referral and Consultation , Humans
7.
Trends Biochem Sci ; 47(10): 814-818, 2022 10.
Article in English | MEDLINE | ID: mdl-35644775

ABSTRACT

The process of starting a laboratory varies between institutions. However, there are universal tasks all investigators will need to address when launching their laboratories. In this piece, we provide a brief summary of considerations for incoming group leaders to centralize this information for the scientific community.


Subject(s)
Laboratories , Research Personnel , Humans
8.
Trends Cancer ; 8(8): 620-622, 2022 08.
Article in English | MEDLINE | ID: mdl-35672243

ABSTRACT

Shadow mentoring relationships are those outside of traditional mentoring roles and are an unseen yet critical component of trainee retention that is rarely acknowledged. In this paper, we detail the costs and benefits of shadow mentoring and propose mechanisms to ensure that shadow mentoring is acknowledged as a vital contribution to scientific communities.


Subject(s)
Mentoring , Cost-Benefit Analysis , Humans , Mentors
9.
Trends Biochem Sci ; 47(9): 725-727, 2022 09.
Article in English | MEDLINE | ID: mdl-35606213

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created unprecedented obstacles for new investigators to traverse. The pandemic's impact exacerbates inequities for groups historically excluded from science. We provide recommendations to support junior faculty, including women and faculty from groups historically excluded from science, in establishing laboratories during the pandemic and foreseeable future.


Subject(s)
COVID-19 , Pandemics , Female , Humans , Laboratories
10.
Trends Cell Biol ; 32(9): 725-728, 2022 09.
Article in English | MEDLINE | ID: mdl-35599178

ABSTRACT

Informal mentoring affects the development of cell biologists by providing essential career, scientific, and educational guidance to mentees. In this piece, we discuss the importance of formally recognizing casual mentorship to encourage this crucial form of mentorship that contributes to the advancement of an inclusive cell biology community.


Subject(s)
Mentoring , Humans , Mentors
11.
Blood ; 139(2): 188-204, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34767029

ABSTRACT

The discovery of novel hematopoietic stem cell (HSC) surface markers can enhance understanding of HSC identity and function. We have discovered a population of primitive bone marrow (BM) HSCs distinguished by their expression of the heparan sulfate proteoglycan Syndecan-2, which serves as both a marker and a regulator of HSC function. Syndecan-2 expression was increased 10-fold in CD150+CD48-CD34-c-Kit+Sca-1+Lineage- cells (long-term HSCs [LT-HSCs]) compared with differentiated hematopoietic cells. Isolation of BM cells based solely on syndecan-2 surface expression produced a 24-fold enrichment for LT-HSCs and sixfold enrichment for α-catulin+c-kit+ HSCs, and yielded HSCs with superior in vivo repopulating capacity compared with CD150+ cells. Competitive repopulation assays revealed the HSC frequency to be 17-fold higher in syndecan-2+CD34-KSL cells compared with syndecan-2-CD34-KSL cells and indistinguishable from CD150+CD34-KSL cells. Syndecan-2 expression also identified nearly all repopulating HSCs within the CD150+CD34-KSL population. Mechanistically, syndecan-2 regulates HSC repopulating capacity through control of expression of Cdkn1c (p57) and HSC quiescence. Loss of syndecan-2 expression caused increased HSC cell cycle entry, downregulation of Cdkn1c, and loss of HSC long-term repopulating capacity. Syndecan-2 is a novel marker of HSCs that regulates HSC repopulating capacity via control of HSC quiescence.


Subject(s)
Hematopoietic Stem Cells/cytology , Syndecan-2/metabolism , Animals , Cell Cycle , Cell Differentiation , Cells, Cultured , Female , Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , Male , Mice , Syndecan-2/genetics
12.
Nat Commun ; 12(1): 6990, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34848712

ABSTRACT

Ionizing radiation and chemotherapy deplete hematopoietic stem cells and damage the vascular niche wherein hematopoietic stem cells reside. Hematopoietic stem cell regeneration requires signaling from an intact bone marrow (BM) vascular niche, but the mechanisms that control BM vascular niche regeneration are poorly understood. We report that BM vascular endothelial cells secrete semaphorin 3 A (SEMA3A) in response to myeloablation and SEMA3A induces p53 - mediated apoptosis in BM endothelial cells via signaling through its receptor, Neuropilin 1 (NRP1), and activation of cyclin dependent kinase 5. Endothelial cell - specific deletion of Nrp1 or Sema3a or administration of anti-NRP1 antibody suppresses BM endothelial cell apoptosis, accelerates BM vascular regeneration and concordantly drives hematopoietic reconstitution in irradiated mice. In response to NRP1 inhibition, BM endothelial cells increase expression and secretion of the Wnt signal amplifying protein, R spondin 2. Systemic administration of anti - R spondin 2 blocks HSC regeneration and hematopoietic reconstitution which otherwise occurrs in response to NRP1 inhibition. SEMA3A - NRP1 signaling promotes BM vascular regression following myelosuppression and therapeutic blockade of SEMA3A - NRP1 signaling in BM endothelial cells accelerates vascular and hematopoietic regeneration in vivo.


Subject(s)
Bone Marrow/metabolism , Hematopoietic Stem Cells/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism , Regeneration/physiology , Animals , Apoptosis , Bone Marrow/pathology , Bone Marrow Cells , Cyclin-Dependent Kinase 5/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Semaphorin-3A/metabolism , Signal Transduction , Transcriptome , Wnt Proteins
13.
Cell ; 184(26): 6217-6221, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34942095

ABSTRACT

Virtual interviewing has become ubiquitous with the academic job market. Here, we highlight the best practices for candidates and departments to consider when using virtual interviewing. We propose how virtual interviews can be leveraged and adapted for hybrid academic job searches combining virtual and in-person activities in a post-pandemic world.


Subject(s)
Employment , Interviews as Topic , Universities , COVID-19/epidemiology , Career Choice , Faculty , Humans
14.
Pathog Dis ; 79(5)2021 06 03.
Article in English | MEDLINE | ID: mdl-34048540

ABSTRACT

While it is commonly thought that microaggressions are isolated incidents, microaggressions are ingrained throughout the academic research institution (Young, Anderson and Stewart 2015; Lee et al. 2020). Persons Excluded from science because of Ethnicity and Race (PEERs) frequently experience microaggressions from various academicians, including graduate students, postdocs and faculty (Asai 2020; Lee et al. 2020). Here, we elaborate on a rationale for concrete actions to cope with and diminish acts of microaggressions that may otherwise hinder the inclusion of PEERs. We encourage Science, Technology, Engineering and Mathematics (STEM) departments and leadership to affirm PEER scholar identities and promote allyship by infusing sensitivity, responsiveness and anti-bias awareness.


Subject(s)
Microaggression , Racism/prevention & control , Science/organization & administration , Engineering , Humans , Mathematics , Students , Technology , Universities
15.
Trends Cancer ; 7(5): 385-388, 2021 05.
Article in English | MEDLINE | ID: mdl-33563577

ABSTRACT

Scientists at all career stages can benefit from building diverse mentoring networks that transcend boundaries and promote inclusion. In this piece, we define mentoring networks, describe examples of how mentoring networks can reinforce scientific identity, and help minority scientists overcome unique challenges to achieve their goals in cancer research.


Subject(s)
Biomedical Research/organization & administration , Cultural Diversity , Mentoring/organization & administration , Minority Groups , Social Networking , Humans , Mentors , Neoplasms , Research Personnel/education , Research Personnel/organization & administration
16.
Trends Biochem Sci ; 46(5): 345-348, 2021 05.
Article in English | MEDLINE | ID: mdl-33622580

ABSTRACT

Scientific success is mainly supported by mentoring, which often occurs through face-to-face interactions. Changes to the research environment incurred by the Coronavirus 2019 (COVID-19) pandemic have necessitated mentorship adaptations. Here, we describe how mentors can broaden their mentorship to support trainee growth and provide reassurance about trainee development amid uncertain circumstances.


Subject(s)
COVID-19/epidemiology , Mentoring , Pandemics , Research Personnel/education , SARS-CoV-2 , Humans
17.
Exp Hematol ; 96: 44-51, 2021 04.
Article in English | MEDLINE | ID: mdl-33515635

ABSTRACT

Protein tyrosine phosphatase receptor σ (PTPσ) is highly expressed by murine and human hematopoietic stem cells (HSCs) and negatively regulates HSC self-renewal and regeneration. Previous studies of the nervous system suggest that heparan sulfate proteoglycans can inactivate PTPσ by clustering PTPσ receptors on neurons, but this finding has yet to be visually verified with adequate resolution. Here, we sought to visualize and quantify how heparan sulfate proteoglycans regulate the organization and activation of PTPσ in hematopoietic stem/progenitor cells (HSPCs). Our study illustrates that syndecan-2 promotes PTPσ clustering, which sustains phospho-tyrosine and phospho-ezrin levels in association with augmentation of hematopoietic colony formation. Strategies that promote clustering of PTPσ on HSPCs may serve to powerfully augment hematopoietic function.


Subject(s)
Hematopoietic Stem Cells/metabolism , Proteoglycans/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Animals , Cells, Cultured , Cytoskeletal Proteins/metabolism , Hematopoietic Stem Cells/cytology , Mice, Inbred C57BL , Proteoglycans/analysis , Receptor-Like Protein Tyrosine Phosphatases, Class 2/analysis , Syndecan-2/analysis , Syndecan-2/metabolism
19.
Cell ; 183(3): 568-575, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33125882

ABSTRACT

We identify problematic areas throughout the Science, Technology, Engineering and Mathematics (STEM) pipeline that perpetuate racial disparities in academia. Distinct ways to curtail these disparities include early exposure and access to resources, supportive mentoring networks and comprehensive training programs specifically for racially minoritized students and trainees at each career stage. These actions will revitalize the STEM pipeline.


Subject(s)
Engineering/education , Mathematics/education , Science/education , Technology/education , Education, Graduate , Humans , Universities
20.
SELECTION OF CITATIONS
SEARCH DETAIL