Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 13: 102798, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39007027

ABSTRACT

The analysis of soil organic matter (OM), total carbon (TC), and total nitrogen (TN) using traditional methods is quite time-consuming and involves the use of hazardous chemical reagents. Absorbance spectroscopy, especially near-infrared (NIR), is becoming more popular for soil analysis. This method requires little sample preparation, no chemicals, and a single spectral analysis to evaluate soil properties. Thus, this research aimed to develop an NIR spectroscopy method for the analysis of OM, TC, and TN in agricultural soils. These findings can provide a good concept of using PLS regression with NIR techniques. The method is as follows:•Topsoil (0-20 cm) samples were collected from various agricultural fields. OM, TC, and TN were analyzed using traditional methods and NIR spectroscopy.•NIR spectra were obtained using an FT-NIR spectrometer, original spectral including with Savitzky-Golay smoothing, standard normal variate (SNV) and multiplicative scatter correction (MSC) preprocessing method were used to create a predicted model through Partial Least Squares (PLS) regression with 65 % calibration, and the rest 35 % for validation.•The results showed significant relationships between measured soil properties (SOM and TC) and NIR absorbance spectra in agricultural soil (R 2 of calibration and validation higher than 0.80).

2.
Molecules ; 27(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36500300

ABSTRACT

This research aimed to improve the classification performance of a developed near-infrared (NIR) spectrometer when applied to the geographical origin identification of coffee bean samples. The modification was based on the utilization of a collection of spectral databases from several different agricultural samples, including corn, red beans, mung beans, black beans, soybeans, green and roasted coffee, adzuki beans, and paddy and white rice. These databases were established using a reference NIR instrument and the piecewise direct standardization (PDS) calibration transfer method. To evaluate the suitability of the transfer samples, the Davies-Bouldin index (DBI) was calculated. The outcomes that resulted in low DBI values were likely to produce better classification rates. The classification of coffee origins was based on the use of a supervised self-organizing map (SSOM). Without the spectral modification, SSOM classification using the developed NIR instrument resulted in predictive ability (% PA), model stability (% MS), and correctly classified instances (% CC) values of 61%, 58%, and 64%, respectively. After the transformation process was completed with the corn, red bean, mung bean, white rice, and green coffee NIR spectral data, the predictive performance of the SSOM models was found to have improved (67-79% CC). The best classification performance was observed with the use of corn, producing improved % PA, % MS, and % CC values at 71%, 67%, and 79%, respectively.


Subject(s)
Fabaceae , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Calibration , Seeds , Algorithms
3.
Sci Rep ; 12(1): 18802, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335160

ABSTRACT

Milk tablets are a popular dairy product in many Asian countries. This research aimed to develop an instant and rapid method for determining sucrose and lactose contents in milk tablets using near-infrared (NIR) spectroscopy. For the quantitative analysis, a training set composed of laboratory-scale milk samples was generated based on a central composite design (CCD) and used to establish partial least squares (PLS) regression for the predictions of sucrose and lactose contents resulting in R2 values of 0.9749 and 0.9987 with the corresponding root mean square error of calibration (RMSEC) values of 1.69 and 0.35. However, the physical difference between the laboratory-scale powder and the final product milk tablet samples resulted in spectral deviations that dramatically affected the predictive performance of the PLS models. Therefore, calibration transfer methods called direct standardization (DS) and piecewise direct standardization (PDS) were used to adjust the NIR spectra from the real milk tablet samples before the quantitative prediction. Using high-performance liquid chromatography (HPLC) as a reference method, the developed NIR-chemometric model could be used to instantly predict the sugar contents in real milk tablets by producing root mean square error of prediction (RMSEP) values for sucrose and lactose of 5.04 and 4.22 with Q2 values of 0.7973 and 0.9411, respectively, after the PDS transformation.


Subject(s)
Lactose , Spectroscopy, Near-Infrared , Animals , Spectroscopy, Near-Infrared/methods , Lactose/analysis , Milk/chemistry , Sugars/analysis , Chemometrics , Tablets/chemistry , Least-Squares Analysis , Calibration , Sucrose/analysis
SELECTION OF CITATIONS
SEARCH DETAIL