Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Nat Commun ; 13(1): 2300, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484108

ABSTRACT

While the genomes of normal tissues undergo dynamic changes over time, little is understood about the temporal-spatial dynamics of genomes in premalignant tissues that progress to cancer compared to those that remain cancer-free. Here we use whole genome sequencing to contrast genomic alterations in 427 longitudinal samples from 40 patients with stable Barrett's esophagus compared to 40 Barrett's patients who progressed to esophageal adenocarcinoma (ESAD). We show the same somatic mutational processes are active in Barrett's tissue regardless of outcome, with high levels of mutation, ESAD gene and focal chromosomal alterations, and similar mutational signatures. The critical distinction between stable Barrett's versus those who progress to cancer is acquisition and expansion of TP53-/- cell populations having complex structural variants and high-level amplifications, which are detectable up to six years prior to a cancer diagnosis. These findings reveal the timing of common somatic genome dynamics in stable Barrett's esophagus and define key genomic features specific to progression to esophageal adenocarcinoma, both of which are critical for cancer prevention and early detection strategies.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Adenocarcinoma/pathology , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Disease Progression , Esophageal Neoplasms/pathology , Humans
2.
Biochim Biophys Acta Mol Cell Res ; 1869(7): 119252, 2022 07.
Article in English | MEDLINE | ID: mdl-35271909

ABSTRACT

AIMS: Engagement of epidermal growth factor (EGF) with its receptor (EGFR) produces a broad range of cancer phenotypes. The overriding aim of this study was to understand EGFR signaling and its regulation by the Ca2+/calmodulin (CaM) dependent protein kinase kinase 2 (CaMKK2) in cancer cells. RESULTS: In ovarian cancer cells and other cancer cell types, EGF-induced activation of oncogenic Akt is mediated by both the canonical PI3K-PDK1 pathway and by CaMKK2. Akt activation induced by EGF occurs by both calcium-dependent and calcium-independent mechanisms. In contrast to the canonical pathway, CaMKK2 neither binds to, nor is regulated by phosphoinositides but is activated by Ca2+/CaM. Akt activation at its primary activation site, T308 occurs by direct phosphorylation by CaMKK2, but activation at its secondary site (S473), is through an indirect mechanism requiring mTORC2. In cells in which another CaMKK2 target, 5'AMP-dependent protein kinase (AMPK) was deleted, Akt activation and calcium-dependency of activation were still observed. CaMKK2 accumulates in the nucleus in response to EGF and regulates transcription of phosphofructokinase platelet (PFKP) a glycolytic regulator. CaMKK2 is required for optimal PFK activity. CaMKK2 regulates transcription of plasminogen activator, urokinase (PLAU) a metastasis regulator. The EGFR inhibitor gefitinib synergizes with CaMKK2 inhibition in the regulation of cell survival and increases the dose-reduction index. CRISPR/Cas9 knockout of CaMKK2 leads to compensatory PTEN downregulation and upregulation of Akt activation. CONCLUSIONS: CaMKK2-mediation of EGFR action may enable cancer cells to use intracellular calcium elevation as a signal for growth and survival.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase , Neoplasms , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Epidermal Growth Factor/pharmacology , ErbB Receptors/genetics , Proto-Oncogene Proteins c-akt/genetics
3.
Sci Total Environ ; 812: 151422, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34742976

ABSTRACT

Dissolved organic matter (DOM) is an important organic matter fraction that plays a key role in many biological and chemical processes in soil. The effect of biochar addition on the content and composition of soil organic matter (SOM) and DOM in an agricultural soil in Italy was investigated within a two-year period. UV-Vis spectroscopy and analytical pyrolysis have been applied to study complex components in DOM soil samples. Additionally, analytical pyrolysis was used to provide qualitative information of SOM at molecular level and the properties of biochar before and one year after amendment. A method was developed to quantify biochar levels by thermogravimetric analysis that enabled to identify deviations from the amendment rate. The water-soluble organic carbon (WSOC) concentrations in the amended soils were significantly lower than those in the control soils, indicating that biochar decreased the leaching of DOM. DOM in treated soils was characterized by a higher aromatic character according to analytical pyrolysis and UV-Vis spectroscopy. Moreover, a relatively high abundance of compounds with N was observed in pyrolysates of treated soils, suggesting that biochar increased the proportion of microbial DOM. The results from thermal and spectroscopy techniques are consistent in highlighting significant changes in DOM levels and composition due to biochar application with important effects on soil carbon storage and cycling.


Subject(s)
Dissolved Organic Matter , Soil , Agriculture , Charcoal
4.
Int J Cancer ; 150(2): 374-386, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34569060

ABSTRACT

Recurrent upper tract urothelial carcinomas (UTUCs) arise in the context of nephropathy linked to exposure to the herbal carcinogen aristolochic acid (AA). Here we delineated the molecular programs underlying UTUC tumorigenesis in patients from endemic aristolochic acid nephropathy (AAN) regions in Southern Europe. We applied an integrative multiomics analysis of UTUCs, corresponding unaffected tissues and of patient urines. Quantitative microRNA (miRNA) and messenger ribonucleic acid (mRNA) expression profiling, immunohistochemical analysis by tissue microarrays and exome and transcriptome sequencing were performed in UTUC and nontumor tissues. Urinary miRNAs of cases undergoing surgery were profiled before and after tumor resection. Ribonucleic acid (RNA) and protein levels were analyzed using appropriate statistical tests and trend assessment. Dedicated bioinformatic tools were used for analysis of pathways, mutational signatures and result visualization. The results delineate UTUC-specific miRNA:mRNA networks comprising 89 miRNAs associated with 1,862 target mRNAs, involving deregulation of cell cycle, deoxyribonucleic acid (DNA) damage response, DNA repair, bladder cancer, oncogenes, tumor suppressors, chromatin structure regulators and developmental signaling pathways. Key UTUC-specific transcripts were confirmed at the protein level. Exome and transcriptome sequencing of UTUCs revealed AA-specific mutational signature SBS22, with 68% to 76% AA-specific, deleterious mutations propagated at the transcript level, a possible basis for neoantigen formation and immunotherapy targeting. We next identified a signature of UTUC-specific miRNAs consistently more abundant in the patients' urine prior to tumor resection, thereby defining biomarkers of tumor presence. The complex gene regulation programs of AAN-associated UTUC tumors involve regulatory miRNAs prospectively applicable to noninvasive urine-based screening of AAN patients for cancer presence and recurrence.


Subject(s)
Aristolochic Acids/adverse effects , Biomarkers, Tumor/genetics , Carcinoma, Transitional Cell/pathology , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/urine , Mutation , Urinary Bladder Neoplasms/pathology , Biomarkers, Tumor/urine , Carcinoma, Transitional Cell/chemically induced , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/urine , Exome , Follow-Up Studies , Humans , Prognosis , Proteome/analysis , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/urine
5.
Nucleic Acids Res ; 48(16): 9301-9319, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32813020

ABSTRACT

Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of microbiology. Here, we performed Grad-seq to establish an RNA/protein complexome, reconstructing sedimentation profiles in a glycerol gradient for ∼85% of all E. coli transcripts and ∼49% of the proteins. These include the majority of small noncoding RNAs (sRNAs) detectable in this bacterium as well as the general sRNA-binding proteins, CsrA, Hfq and ProQ. In presenting use cases for utilization of these RNA and protein maps, we show that a stable association of RyeG with 30S ribosomes gives this seemingly noncoding RNA of prophage origin away as an mRNA of a toxic small protein. Similarly, we show that the broadly conserved uncharacterized protein YggL is a 50S subunit factor in assembled 70S ribosomes. Overall, this study crucially extends our knowledge about the cellular interactome of the primary model bacterium E. coli through providing global RNA/protein complexome information and should facilitate functional discovery in this and related species.


Subject(s)
Multiprotein Complexes/genetics , Protein Interaction Maps/genetics , RNA, Small Untranslated/genetics , RNA/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Host Factor 1 Protein/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Ribosomes/genetics
6.
Microlife ; 1(1): uqaa002, 2020.
Article in English | MEDLINE | ID: mdl-37223003

ABSTRACT

Small proteins are an emerging class of gene products with diverse roles in bacterial physiology. However, a full understanding of their importance has been hampered by insufficient genome annotations and a lack of comprehensive characterization in microbes other than Escherichia coli. We have taken an integrative approach to accelerate the discovery of small proteins and their putative virulence-associated functions in Salmonella Typhimurium. We merged the annotated small proteome of Salmonella with new small proteins predicted with in silico and experimental approaches. We then exploited existing and newly generated global datasets that provide information on small open reading frame expression during infection of epithelial cells (dual RNA-seq), contribution to bacterial fitness inside macrophages (Transposon-directed insertion sequencing), and potential engagement in molecular interactions (Grad-seq). This integrative approach suggested a new role for the small protein MgrB beyond its known function in regulating PhoQ. We demonstrate a virulence and motility defect of a Salmonella ΔmgrB mutant and reveal an effect of MgrB in regulating the Salmonella transcriptome and proteome under infection-relevant conditions. Our study highlights the power of interpreting available 'omics' datasets with a focus on small proteins, and may serve as a blueprint for a data integration-based survey of small proteins in diverse bacteria.

7.
mBio ; 10(1)2019 01 02.
Article in English | MEDLINE | ID: mdl-30602583

ABSTRACT

FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3'UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs.IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked "third domain" of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria.


Subject(s)
Bacterial Proteins/biosynthesis , Epithelial Cells/microbiology , Gene Expression Regulation, Bacterial , RNA-Binding Proteins/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Virulence Factors/biosynthesis , Gene Expression Profiling , HeLa Cells , Humans , Salmonella typhimurium/growth & development , Sequence Analysis, RNA , Virulence
8.
Proc Natl Acad Sci U S A ; 115(26): E6030-E6038, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29875142

ABSTRACT

In ∼30% of patients with EGFR-mutant lung adenocarcinomas whose disease progresses on EGFR inhibitors, the basis for acquired resistance remains unclear. We have integrated transposon mutagenesis screening in an EGFR-mutant cell line and clinical genomic sequencing in cases of acquired resistance to identify mechanisms of resistance to EGFR inhibitors. The most prominent candidate genes identified by insertions in or near the genes during the screen were MET, a gene whose amplification is known to mediate resistance to EGFR inhibitors, and the gene encoding the Src family kinase YES1. Cell clones with transposon insertions that activated expression of YES1 exhibited resistance to all three generations of EGFR inhibitors and sensitivity to pharmacologic and siRNA-mediated inhibition of YES1 Analysis of clinical genomic sequencing data from cases of acquired resistance to EGFR inhibitors revealed amplification of YES1 in five cases, four of which lacked any other known mechanisms of resistance. Preinhibitor samples, available for two of the five patients, lacked YES1 amplification. None of 136 postinhibitor samples had detectable amplification of other Src family kinases (SRC and FYN). YES1 amplification was also found in 2 of 17 samples from ALK fusion-positive lung cancer patients who had progressed on ALK TKIs. Taken together, our findings identify acquired amplification of YES1 as a recurrent and targetable mechanism of resistance to EGFR inhibition in EGFR-mutant lung cancers and demonstrate the utility of transposon mutagenesis in discovering clinically relevant mechanisms of drug resistance.


Subject(s)
DNA Transposable Elements , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , ErbB Receptors , Gene Amplification , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms , Proto-Oncogene Proteins c-yes , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins c-yes/biosynthesis , Proto-Oncogene Proteins c-yes/genetics , Proto-Oncogene Proteins pp60(c-src)/genetics , Proto-Oncogene Proteins pp60(c-src)/metabolism
9.
Front Chem ; 6: 60, 2018.
Article in English | MEDLINE | ID: mdl-29616212

ABSTRACT

In this work a new mesoporous adsorbent material obtained from a natural, high abundant raw material and a high volume industrial by-product is presented. The material is consolidated by the gelling properties of alginate and by decomposition of sodium-bicarbonate controlled porosity at low temperatures (70-80°C) at different scale lengths. The structural, thermal, and morphological characterization shows that the material is a mesoporous organic-inorganic hybrid. The material is tested as adsorbent, showing high performances. Methylene blue, used as model pollutant, can be adsorbed and removed from aqueous solutions even at a high concentration with efficiency up to 94%. By coating the material with a 100 nm thin film of titania, good photodegradation performance (more than 20%) can be imparted. Based on embodied energy and carbon footprint of its primary production, the sustainability of the new obtained material is evaluated and quantified in respect to activated carbon as well. It is shown that the new proposed material has an embodied energy lower than one order of magnitude in respect to the one of activated carbon, which represents the gold standards. The versatility of the new material is also demonstrated in terms of its design and manufacturing possibilities In addition, this material can be printed in 3D. Finally, preliminary results about its ability to capture diesel exhaust particulate matter are reported. The sample exposed to diesel contains a large amount of carbon in its surface. At the best of our knowledge, this is the first time that hybrid porous materials are proposed as a new class of sustainable materials, produced to reduce pollutants in the wastewaters and in the atmosphere.

10.
Science ; 359(6375): 550-555, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29217587

ABSTRACT

Somatic mosaicism in the human brain may alter function of individual neurons. We analyzed genomes of single cells from the forebrains of three human fetuses (15 to 21 weeks postconception) using clonal cell populations. We detected 200 to 400 single-nucleotide variations (SNVs) per cell. SNV patterns resembled those found in cancer cell genomes, indicating a role of background mutagenesis in cancer. SNVs with a frequency of >2% in brain were also present in the spleen, revealing a pregastrulation origin. We reconstructed cell lineages for the first five postzygotic cleavages and calculated a mutation rate of ~1.3 mutations per division per cell. Later in development, during neurogenesis, the mutation spectrum shifted toward oxidative damage, and the mutation rate increased. Both neurogenesis and early embryogenesis exhibit substantially more mutagenesis than adulthood.


Subject(s)
Brain/embryology , Gastrulation/genetics , Mosaicism , Mutagenesis , Mutation Rate , Neurogenesis/genetics , Cell Lineage/genetics , Genome, Human , Humans , Mutation , Neoplasms/genetics , Neurons , Polymorphism, Single Nucleotide , Single-Cell Analysis
11.
Neurosignals ; 25(1): 26-38, 2017.
Article in English | MEDLINE | ID: mdl-28869943

ABSTRACT

BACKGROUND/AIMS: Glioblastoma (GBM) is one of the most aggressive cancers, counting for a high number of the newly diagnosed patients with central nervous system (CNS) cancers in the United States and Europe. Major features of GBM include aggressive and invasive growth as well as a high resistance to treatment. Kv1.3, a potassium channel of the shaker family, is expressed in the inner mitochondrial membrane of many cancer cells. Inhibition of mitochondrial Kv1.3 was shown to induce apoptosis in several tumor cells at doses that were not lethal for normal cells. METHODS: We investigated the expression of Kv1.3 in different glioma cell lines by immunocytochemistry, western blotting and electron microscopy and analyzed the effect of newly synthesized, mitochondria-targeted, Kv1.3 inhibitors on the induction of cell death in these cells. Finally, we performed in vivo studies on glioma bearing mice. RESULTS: Here, we report that Kv1.3 is expressed in mitochondria of human and murine GL261, A172 and LN308 glioma cells. Treatment with the novel Kv1.3 inhibitors PAPTP or PCARBTP as well as with clofazimine induced massive cell death in glioma cells, while Psora-4 and PAP-1 were almost without effect. However, in vivo experiments revealed that the drugs had no effect on orthotopic brain tumors in vivo. CONCLUSION: These data serve as proof of principle that Kv1.3 inhibitors kills GBM cells, but drugs that act in vivo against glioblastoma must be developed to translate these findings in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Kv1.3 Potassium Channel/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Clofazimine/pharmacology , Clofazimine/therapeutic use , Coumarins/pharmacology , Coumarins/therapeutic use , Humans , Immunohistochemistry , Mice , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/therapeutic use
12.
Cancer Cell ; 31(4): 516-531.e10, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28399409

ABSTRACT

The potassium channel Kv1.3 is highly expressed in the mitochondria of various cancerous cells. Here we show that direct inhibition of Kv1.3 using two mitochondria-targeted inhibitors alters mitochondrial function and leads to reactive oxygen species (ROS)-mediated death of even chemoresistant cells independently of p53 status. These inhibitors killed 98% of ex vivo primary chronic B-lymphocytic leukemia tumor cells while sparing healthy B cells. In orthotopic mouse models of melanoma and pancreatic ductal adenocarcinoma, the compounds reduced tumor size by more than 90% and 60%, respectively, while sparing immune and cardiac functions. Our work provides direct evidence that specific pharmacological targeting of a mitochondrial potassium channel can lead to ROS-mediated selective apoptosis of cancer cells in vivo, without causing significant side effects.


Subject(s)
Antineoplastic Agents/pharmacology , Kv1.3 Potassium Channel/antagonists & inhibitors , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Potassium Channel Blockers/pharmacology , Aged , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Case-Control Studies , Coumarins/pharmacology , Drug Stability , Female , Humans , Kv1.3 Potassium Channel/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Melanoma/drug therapy , Melanoma/pathology , Mice, Inbred C57BL , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Targeted Therapy , Organophosphorus Compounds/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Potassium Channel Blockers/chemical synthesis , Potassium Channel Blockers/chemistry
13.
Cell Calcium ; 58(1): 131-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25443654

ABSTRACT

Although chemotherapy is able to cure many patients with malignancies, it still also often fails. Therefore, novel approaches and targets for chemotherapeutic treatment of malignancies are urgently required. Recent studies demonstrated the expression of several potassium channels in the inner mitochondrial membrane. Among them the voltage gated potassium channel Kv1.3 and the big-potassium (BK) channel were shown to directly function in cell death by serving as target for pro-apoptotic Bax and Bak proteins. Here, we discuss the role of mitochondrial potassium channel Kv1.3 (mitoKv1.3) in cell death and its potential function in treatment of solid tumors, leukemia and lymphoma. Bax and Bak inhibit mitoKv1.3 by directly binding into the pore of the channel, by a toxin-like mechanism. Inhibition of mitoKv1.3 results in an initial hyperpolarization of the inner mitochondrial membrane that triggers the production of reactive oxygen species (ROS). ROS in turn induce a release of cytochrome c from the cristae of the inner mitochondrial membrane and an activation of the permeability transition pore, resulting in opening of the intrinsic apoptotic cell death. Since mitoKv1.3 functions downstream of pro-apoptotic Bax and Bak, compounds that directly inhibit mitoKv1.3 may serve as a new class of drugs for treatment of tumors, even with an altered expression of either pro- or anti-apoptotic Bcl-2 protein family members. This was successfully proven by the in vivo treatment of mouse melanoma and ex vivo human chronic leukemia B cells with inhibitors of mitoKv1.3.


Subject(s)
Mitochondria/metabolism , Potassium Channels/metabolism , Animals , Apoptosis/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Potassium/metabolism , Potassium Channel Blockers/therapeutic use , Potassium Channel Blockers/toxicity , Potassium Channels/chemistry , Potassium Channels/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism
14.
Environ Sci Pollut Res Int ; 21(20): 11634-48, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24488520

ABSTRACT

In order to determine the pollution sources in a suburban area and identify the main direction of their origin, PM2.5 was collected with samplers coupled with a wind select sensor and then subjected to Positive Matrix Factorization (PMF) analysis. In each sample, soluble ions, organic carbon, elemental carbon, levoglucosan, metals, and Polycyclic Aromatic Hydrocarbons (PAHs) were determined. PMF results identified six main sources affecting the area: natural gas home appliances, motor vehicles, regional transport, biomass combustion, manufacturing activities, and secondary aerosol. The connection of factor temporal trends with other parameters (i.e., temperature, PM2.5 concentration, and photochemical processes) confirms factor attributions. PMF analysis indicated that the main source of PM2.5 in the area is secondary aerosol. This should be mainly due to regional contributions, owing to both the secondary nature of the source itself and the higher concentration registered in inland air masses. The motor vehicle emission source contribution is also important. This source likely has a prevalent local origin. The most toxic determined components, i.e., PAHs, Cd, Pb, and Ni, are mainly due to vehicular traffic. Even if this is not the main source in the study area, it is the one of greatest concern. The application of PMF analysis to PM2.5 collected with this new sampling technique made it possible to obtain more detailed results on the sources affecting the area compared to a classical PMF analysis.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Wind , Geography , Italy , Limit of Detection , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Time Factors
15.
Curr Pharm Des ; 20(2): 189-200, 2014.
Article in English | MEDLINE | ID: mdl-23701546

ABSTRACT

Plasma membrane (PM) and mitochondrial (mt) ion channels - particularly potassium channels - became oncological targets soon after the discovery that they are involved both in the regulation of proliferation and apoptosis. Some members of the Kv Shaker family, namely Kv1.1, Kv1.3, Kv1.5 and Kv11.1 (Herg), and the intermediate-conductance calcium-activated potassium KCa3.1 (IK) channels have been shown to contribute to apoptosis in various cell lines. Kv1.3, Kv1.5 and IK are located in the plasma membrane but also in the mitochondrial inner membrane, where they participate in apoptotic signalling. Interestingly, an altered protein expression of some of the channels mentioned above has been reported in neoplastic cell lines/tissues, but a systematic quantification addressing the protein expression of the above potassium channels in tumor cell lines of different origin has not been carried out yet. In the present study we investigated whether expression of specific potassium channels, at the mRNA and protein level, can be correlated with cell sensitivity to various apoptotic stimuli, including chemotherapeutic drugs, in a panel of cancer cell lines. The results show correlation between the protein expression of the Kv1.1 and Kv1.3 channels and susceptibility to death upon treatment with staurosporine, C2-ceramide and cisplatin. Furthermore, we investigated the correlation between Kv channel expression and sensitivity to three distinct membrane-permeant Kv1.3 inhibitors, since these drugs have recently been shown to be able to induce apoptosis and also reduce tumor volume in an in vivo model. Higher protein expression of Kv1.3 significantly correlated with lower cell survival upon treatment with clofazimine, one of the Kv1.3 inhibitors. These results suggest that expression of Kv1.1 and Kv1.3 sensitizes tumour cells of various origins to cytotoxins. Data reported in this work regarding potassium channel protein expression in different cancer cell lines may be exploited for pharmacological manipulation aiming to affect proliferation/apoptosis of cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Kv1.1 Potassium Channel/drug effects , Kv1.3 Potassium Channel/drug effects , Neoplasms/drug therapy , Apoptosis/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation/drug effects , Cisplatin/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Kv1.1 Potassium Channel/genetics , Kv1.1 Potassium Channel/metabolism , Kv1.3 Potassium Channel/genetics , Kv1.3 Potassium Channel/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/pathology , Potassium Channel Blockers/pharmacology , RNA, Messenger/metabolism , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Staurosporine/pharmacology , Tumor Burden/drug effects
16.
Sci Total Environ ; 456-457: 392-403, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23639865

ABSTRACT

In order to assess the contribution of a Municipal Solid Waste incinerator to the area's total contamination, metals and soluble ions have been determined in bulk deposition collected at sites affected by different levels of plant emissions, according to the results of the Calpuff air dispersion model. Results show that in general fluxes monitored at the different sites during the same period are quite similar for each analyte. Deposition fluxes of nitrite and ammonium are significantly lower at the more distant site, while copper is significantly higher at this site, possibly because of copper fungicide used on the nearby agriculture land. The presence of sea spray and resuspended soil dust can be inferred from Pearson correlation coefficients, while enrichment factors indicate that Cu, Pb and Zn have a probable anthropogenic origin. A more complete evaluation of the sources affecting the area was obtained with PMF analysis. The sources associated with each factor were identified from the source profile and temporal trends. Six factors were identified, three sources associate with natural matrices, while three factors represent anthropogenic sources. The greatest contribution of heavy metals, the most toxic and persistent components determined, is associated with resuspended soil dust, especially when weighted according to their toxicity. The anthropogenic source contribution is similar at all sites, and therefore the incinerator's relative contribution to the total pollutant load appears to be negligible compared to other sources affecting the area.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Incineration/methods , Metals, Heavy/analysis , Solid Waste/analysis , Cities , Italy , Meteorological Concepts , Models, Theoretical , Seasons
17.
Immunity ; 32(3): 317-28, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20206554

ABSTRACT

Enhancers determine tissue-specific gene expression programs. Enhancers are marked by high histone H3 lysine 4 mono-methylation (H3K4me1) and by the acetyl-transferase p300, which has allowed genome-wide enhancer identification. However, the regulatory principles by which subsets of enhancers become active in specific developmental and/or environmental contexts are unknown. We exploited inducible p300 binding to chromatin to identify, and then mechanistically dissect, enhancers controlling endotoxin-stimulated gene expression in macrophages. In these enhancers, binding sites for the lineage-restricted and constitutive Ets protein PU.1 coexisted with those for ubiquitous stress-inducible transcription factors such as NF-kappaB, IRF, and AP-1. PU.1 was required for maintaining H3K4me1 at macrophage-specific enhancers. Reciprocally, ectopic expression of PU.1 reactivated these enhancers in fibroblasts. Thus, the combinatorial assembly of tissue- and signal-specific transcription factors determines the activity of a distinct group of enhancers. We suggest that this may represent a general paradigm in tissue-restricted and stimulus-responsive gene regulation.


Subject(s)
Gene Expression Regulation , Macrophages/immunology , Regulatory Sequences, Nucleic Acid , Animals , Binding Sites , Cells, Cultured , Chromatin/immunology , Chromatin/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Female , Gene Expression Profiling , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides/immunology , Macrophages/metabolism , Mice , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
18.
Cancer Res ; 70(5): 2126-35, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20179205

ABSTRACT

Altered phosphatidylcholine (PC) metabolism in epithelial ovarian cancer (EOC) could provide choline-based imaging approaches as powerful tools to improve diagnosis and identify new therapeutic targets. The increase in the major choline-containing metabolite phosphocholine (PCho) in EOC compared with normal and nontumoral immortalized counterparts (EONT) may derive from (a) enhanced choline transport and choline kinase (ChoK)-mediated phosphorylation, (b) increased PC-specific phospholipase C (PC-plc) activity, and (c) increased intracellular choline production by PC deacylation plus glycerophosphocholine-phosphodiesterase (GPC-pd) or by phospholipase D (pld)-mediated PC catabolism followed by choline phosphorylation. Biochemical, protein, and mRNA expression analyses showed that the most relevant changes in EOC cells were (a) 12-fold to 25-fold ChoK activation, consistent with higher protein content and increased ChoKalpha (but not ChoKbeta) mRNA expression levels; and (b) 5-fold to 17-fold PC-plc activation, consistent with higher, previously reported, protein expression. PC-plc inhibition by tricyclodecan-9-yl-potassium xanthate (D609) in OVCAR3 and SKOV3 cancer cells induced a 30% to 40% reduction of PCho content and blocked cell proliferation. More limited and variable sources of PCho could derive, in some EOC cells, from 2-fold to 4-fold activation of pld or GPC-pd. Phospholipase A2 activity and isoform expression levels were lower or unchanged in EOC compared with EONT cells. Increased ChoKalpha mRNA, as well as ChoK and PC-plc protein expression, were also detected in surgical specimens isolated from patients with EOC. Overall, we showed that the elevated PCho pool detected in EOC cells primarily resulted from upregulation/activation of ChoK and PC-plc involved in PC biosynthesis and degradation, respectively.


Subject(s)
Ovarian Neoplasms/enzymology , Phosphatidylcholines/biosynthesis , Choline Kinase/biosynthesis , Choline Kinase/genetics , Choline Kinase/metabolism , Enzyme Activation , Epithelial Cells/pathology , Female , Humans , Membrane Transport Proteins/biosynthesis , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phospholipase D/metabolism , Phosphoric Diester Hydrolases/metabolism , Type C Phospholipases/metabolism
19.
PLoS Genet ; 4(11): e1000275, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19043539

ABSTRACT

A reciprocal translocation involving chromosomes 8 and 21 generates the AML1/ETO oncogenic transcription factor that initiates acute myeloid leukemia by recruiting co-repressor complexes to DNA. AML1/ETO interferes with the function of its wild-type counterpart, AML1, by directly targeting AML1 binding sites. However, transcriptional regulation determined by AML1/ETO probably relies on a more complex network, since the fusion protein has been shown to interact with a number of other transcription factors, in particular E-proteins, and may therefore target other sites on DNA. Genome-wide chromatin immunoprecipitation and expression profiling were exploited to identify AML1/ETO-dependent transcriptional regulation. AML1/ETO was found to co-localize with AML1, demonstrating that the fusion protein follows the binding pattern of the wild-type protein but does not function primarily by displacing it. The DNA binding profile of the E-protein HEB was grossly rearranged upon expression of AML1/ETO, and the fusion protein was found to co-localize with both AML1 and HEB on many of its regulated targets. Furthermore, the level of HEB protein was increased in both primary cells and cell lines expressing AML1/ETO. Our results suggest a major role for the functional interaction of AML1/ETO with AML1 and HEB in transcriptional regulation determined by the fusion protein.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Oncogene Proteins, Fusion/genetics , Animals , Binding Sites , Cell Line, Tumor , Chromosomes, Human, Pair 19/genetics , HeLa Cells , Humans , Mice , Oncogene Proteins, Fusion/metabolism , Promoter Regions, Genetic , RUNX1 Translocation Partner 1 Protein , Transcription, Genetic , U937 Cells
20.
Blood ; 106(3): 899-902, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-15831697

ABSTRACT

Approximately one third of acute myeloid leukemias (AMLs) are characterized by aberrant cytoplasmic localization of nucleophosmin (NPMc+ AML), consequent to mutations in the NPM putative nucleolar localization signal. These events are mutually exclusive with the major AML-associated chromosomal rearrangements, and are frequently associated with normal karyotype, FLT3 mutations, and multilineage involvement. We report the gene expression profiles of 78 de novo AMLs (72 with normal karyotype; 6 without major chromosomal abnormalities) that were characterized for the subcellular localization and mutation status of NPM. Unsupervised clustering clearly separated NPMc+ from NPMc- AMLs, regardless of the presence of FLT3 mutations or non-major chromosomal rearrangements, supporting the concept that NPMc+ AML represents a distinct entity. The molecular signature of NPMc+ AML includes up-regulation of several genes putatively involved in the maintenance of a stem-cell phenotype, suggesting that NPMc+ AML may derive from a multipotent hematopoietic progenitor.


Subject(s)
Cytoplasm/chemistry , Leukemia, Myeloid/genetics , Leukemia, Myeloid/pathology , Nuclear Proteins/analysis , Up-Regulation/genetics , Acute Disease , Cell Lineage , DNA Mutational Analysis , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Hematopoietic Stem Cells , Leukemia, Myeloid/classification , Neoplasm Proteins/analysis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , fms-Like Tyrosine Kinase 3
SELECTION OF CITATIONS
SEARCH DETAIL
...