Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 584, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233389

ABSTRACT

Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adapter protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, BCH-HSP-C01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate potential mechanisms of action of BCH-HSP-C01. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future studies.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/drug therapy , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism , Proteomics , Neurons/metabolism , Protein Transport , Proteins/metabolism , Mutation
2.
Neurobiol Dis ; 190: 106386, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110041

ABSTRACT

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. SSADHD leads to impaired GABA metabolism and results in accumulation of GABA and γ-hydroxybutyrate (GHB), which alter neurotransmission and are thought to lead to neurobehavioral symptoms. However, why increased inhibitory neurotransmitters lead to seizures remains unclear. We used induced pluripotent stem cells from SSADHD patients (one female and two male) and differentiated them into GABAergic and glutamatergic neurons. SSADHD iGABA neurons show altered GABA metabolism and concomitant changes in expression of genes associated with inhibitory neurotransmission. In contrast, glutamatergic neurons display increased spontaneous activity and upregulation of mitochondrial genes. CRISPR correction of the pathogenic variants or SSADHD mRNA expression rescue various metabolic and functional abnormalities in human neurons. Our findings uncover a previously unknown role for SSADHD in excitatory human neurons and provide unique insights into the cellular and molecular basis of SSADHD and potential therapeutic interventions.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Induced Pluripotent Stem Cells , Humans , Male , Female , Induced Pluripotent Stem Cells/metabolism , Amino Acid Metabolism, Inborn Errors/drug therapy , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Succinate-Semialdehyde Dehydrogenase/genetics
3.
Res Sq ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37398196

ABSTRACT

Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect novel therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adaptor protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia, characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, C-01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate putative molecular targets of C-01 and potential mechanisms of action. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future Investigational New Drug (IND)-enabling studies.

4.
Cell Rep ; 42(8): 112838, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37494191

ABSTRACT

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder, but new therapies have been impeded by a lack of understanding of the pathological mechanisms. Tuberous sclerosis complex (TSC) and fragile X syndrome are associated with alterations in the mechanistic target of rapamycin (mTOR) and fragile X messenger ribonucleoprotein 1 (FMRP), which have been implicated in the development of ASD. Previously, we observed that transcripts associated with FMRP were down-regulated in TSC2-deficient neurons. In this study, we find that FMRP turnover is dysregulated in TSC2-deficient rodent primary neurons and human induced pluripotent stem cell (iPSC)-derived neurons and is dependent on the E3 ubiquitin ligase anaphase-promoting complex. We also demonstrate that overexpression of FMRP can partially rescue hyperexcitability in TSC2-deficient iPSC-derived neurons. These data indicate that FMRP dysregulation represents an important pathological mechanism in the development of abnormal neuronal activity in TSC and illustrate a molecular convergence between these two neurogenetic disorders.


Subject(s)
Autism Spectrum Disorder , Induced Pluripotent Stem Cells , Tuberous Sclerosis , Humans , Autism Spectrum Disorder/metabolism , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism
5.
Front Psychiatry ; 13: 924956, 2022.
Article in English | MEDLINE | ID: mdl-36405918

ABSTRACT

16p13.11 copy number variants (CNVs) have been associated with autism, schizophrenia, psychosis, intellectual disability, and epilepsy. The majority of 16p13.11 deletions or duplications occur within three well-defined intervals, and despite growing knowledge of the functions of individual genes within these intervals, the molecular mechanisms that underlie commonly observed clinical phenotypes remain largely unknown. Patient-derived, induced pluripotent stem cells (iPSCs) provide a platform for investigating the morphological, electrophysiological, and gene-expression changes that result from 16p13.11 CNVs in human-derived neurons. Patient derived iPSCs with varying sizes of 16p13.11 deletions and familial controls were differentiated into cortical neurons for phenotypic analysis. High-content imaging and morphological analysis of patient-derived neurons demonstrated an increase in neurite branching in patients compared with controls. Whole-transcriptome sequencing revealed expression level changes in neuron development and synaptic-related gene families, suggesting a defect in synapse formation. Subsequent quantification of synapse number demonstrated increased numbers of synapses on neurons derived from early-onset patients compared to controls. The identification of common phenotypes among neurons derived from patients with overlapping 16p13.11 deletions will further assist in ascertaining common pathways and targets that could be utilized for screening drug candidates. These studies can help to improve future treatment options and clinical outcomes for 16p13.11 deletion patients.

6.
Bio Protoc ; 12(9): e4407, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35800463

ABSTRACT

Mammalian tissues are highly heterogenous and complex, posing a challenge in understanding the molecular mechanisms regulating protein expression within various tissues. Recent studies have shown that translation at the level of the ribosome is highly regulated, and can vary independently of gene expression observed at a transcriptome level, as well as between cell populations, contributing to the diversity of mammalian tissues. Earlier methods that analyzed gene expression at the level of translation, such as polysomal- or ribosomal-profiling, required large amounts of starting material to isolate enough RNA for analysis by microarray or RNA-sequencing. Thus, rare or less abundant cell types within tissues were not able to be properly studied with these methods. Translating ribosome affinity purification (TRAP) utilizes the incorporation of an eGFP-affinity tag on the large ribosome subunit, driven by expression of cell-type specific Cre-lox promoters, to allow for identification and capture of transcripts from actively translating ribosomes in a cell-specific manner. As a result, TRAP offers a unique opportunity to evaluate the entire mRNA translation profile within a specific cell type, and increase our understanding regarding the cellular complexity of mammalian tissues. Graphical abstract: Schematic demonstrating TRAP protocol for identifying ribosome-bound transcripts specifically within cerebellar Purkinje cells.

7.
Cell Rep ; 37(4): 109902, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34706228

ABSTRACT

Rheumatoid arthritis is a systemic autoimmune disease, but disease flares typically affect only a subset of joints, distributed in a distinctive pattern for each patient. Pursuing this intriguing pattern, we show that arthritis recurrence is mediated by long-lived synovial resident memory T cells (TRM). In three murine models, CD8+ cells bearing TRM markers remain in previously inflamed joints during remission. These cells are bona fide TRM, exhibiting a failure to migrate between joints, preferential uptake of fatty acids, and long-term residency. Disease flares result from TRM activation by antigen, leading to CCL5-mediated recruitment of circulating effector cells. Correspondingly, TRM depletion ameliorates recurrence in a site-specific manner. Human rheumatoid arthritis joint tissues contain a comparable CD8+-predominant TRM population, which is most evident in late-stage leukocyte-poor synovium, exhibiting limited T cell receptor diversity and a pro-inflammatory transcriptomic signature. Together, these findings establish synovial TRM as a targetable mediator of disease chronicity in autoimmune arthritis.


Subject(s)
Arthritis, Rheumatoid/immunology , CD8-Positive T-Lymphocytes/immunology , Memory T Cells/immunology , Synovial Membrane/immunology , Transcriptome/immunology , Animals , Arthritis, Rheumatoid/pathology , CD8-Positive T-Lymphocytes/pathology , Humans , Memory T Cells/pathology , Mice , Mice, Knockout , Synovial Membrane/pathology
8.
Elife ; 102021 07 14.
Article in English | MEDLINE | ID: mdl-34259631

ABSTRACT

Tuberous sclerosis complex (TSC) is a genetic disorder that is associated with multiple neurological manifestations. Previously, we demonstrated that Tsc1 loss in cerebellar Purkinje cells (PCs) can cause altered social behavior in mice. Here, we performed detailed transcriptional and translational analyses of Tsc1-deficient PCs to understand the molecular alterations in these cells. We found that target transcripts of the Fragile X Mental Retardation Protein (FMRP) are reduced in mutant PCs with evidence of increased degradation. Surprisingly, we observed unchanged ribosomal binding for many of these genes using translating ribosome affinity purification. Finally, we found that multiple FMRP targets, including SHANK2, were reduced, suggesting that compensatory increases in ribosomal binding efficiency may be unable to overcome reduced transcript levels. These data further implicate dysfunction of FMRP and its targets in TSC and suggest that treatments aimed at restoring the function of these pathways may be beneficial.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Purkinje Cells/metabolism , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , Animals , Disease Models, Animal , Gene Expression , Mice , Nerve Tissue Proteins/metabolism , Ribosomes/metabolism , Tuberous Sclerosis/genetics , Tuberous Sclerosis/metabolism
9.
Nat Commun ; 12(1): 2897, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006844

ABSTRACT

Reciprocal copy number variations (CNVs) of 16p11.2 are associated with a wide spectrum of neuropsychiatric and neurodevelopmental disorders. Here, we use human induced pluripotent stem cells (iPSCs)-derived dopaminergic (DA) neurons carrying CNVs of 16p11.2 duplication (16pdup) and 16p11.2 deletion (16pdel), engineered using CRISPR-Cas9. We show that 16pdel iPSC-derived DA neurons have increased soma size and synaptic marker expression compared to isogenic control lines, while 16pdup iPSC-derived DA neurons show deficits in neuronal differentiation and reduced synaptic marker expression. The 16pdel iPSC-derived DA neurons have impaired neurophysiological properties. The 16pdel iPSC-derived DA neuronal networks are hyperactive and have increased bursting in culture compared to controls. We also show that the expression of RHOA is increased in the 16pdel iPSC-derived DA neurons and that treatment with a specific RHOA-inhibitor, Rhosin, rescues the network activity of the 16pdel iPSC-derived DA neurons. Our data suggest that 16p11.2 deletion-associated iPSC-derived DA neuron hyperactivation can be rescued by RHOA inhibition.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 16/genetics , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Nerve Net/metabolism , Synaptic Transmission/genetics , rhoA GTP-Binding Protein/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , DNA Copy Number Variations , Dopaminergic Neurons/cytology , Dopaminergic Neurons/physiology , Gene Expression/drug effects , Humans , Induced Pluripotent Stem Cells/cytology , Nerve Net/drug effects , Organic Chemicals/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Synaptic Transmission/drug effects , rhoA GTP-Binding Protein/antagonists & inhibitors , rhoA GTP-Binding Protein/metabolism
10.
Mod Pathol ; 34(2): 264-279, 2021 02.
Article in English | MEDLINE | ID: mdl-33051600

ABSTRACT

Subependymal giant-cell astrocytomas (SEGAs) are slow-growing brain tumors that are a hallmark feature seen in 5-10% of patients with Tuberous Sclerosis Complex (TSC). Though histologically benign, they can cause serious neurologic symptoms, leading to death if untreated. SEGAs consistently show biallelic loss of TSC1 or TSC2. Herein, we aimed to define other somatic events beyond TSC1/TSC2 loss and identify potential transcriptional drivers that contribute to SEGA formation. Paired tumor-normal whole-exome sequencing was performed on 21 resected SEGAs from 20 TSC patients. Pathogenic variants in TSC1/TSC2 were identified in 19/21 (90%) SEGAs. Copy neutral loss of heterozygosity (size range: 2.2-46 Mb) was seen in 76% (16/21) of SEGAs (44% chr9q and 56% chr16p). An average of 1.4 other somatic variants (range 0-7) per tumor were identified, unlikely of pathogenic significance. Whole transcriptome RNA-sequencing analyses revealed 190 common differentially expressed genes in SEGA (n = 16, 13 from a prior study) in pairwise comparison to each of: low grade diffuse gliomas (n = 530) and glioblastoma (n = 171) from The Cancer Genome Atlas (TCGA) consortium, ganglioglioma (n = 10), TSC cortical tubers (n = 15), and multiple normal tissues. Among these, homeobox transcription factors (TFs) HMX3, HMX2, VAX1, SIX3; and TFs IRF6 and EOMES were all expressed >12-fold higher in SEGAs (FDR/q-value < 0.05). Immunohistochemistry supported the specificity of IRF6, VAX1, SIX3 for SEGAs in comparison to other tumor entities and normal brain. We conclude that SEGAs have an extremely low somatic mutation rate, suggesting that TSC1/TSC2 loss is sufficient to drive tumor growth. The unique and highly expressed SEGA-specific TFs likely reflect the neuroepithelial cell of origin, and may also contribute to the transcriptional and epigenetic state that enables SEGA growth following two-hit loss of TSC1 or TSC2 and mTORC1 activation.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Adolescent , Astrocytoma/metabolism , Brain Neoplasms/metabolism , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Mutation Rate , Transcriptome , Young Adult
11.
Cell Rep ; 31(12): 107780, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32579942

ABSTRACT

Tuberous sclerosis complex (TSC) is a neurogenetic disorder that leads to elevated mechanistic targeting of rapamycin complex 1 (mTORC1) activity. Cilia can be affected by mTORC1 signaling, and ciliary deficits are associated with neurodevelopmental disorders. Here, we examine whether neuronal cilia are affected in TSC. We show that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. Using high-content image-based assays, we demonstrate that mTORC1 activity inversely correlates with ciliation in TSC1/2-deficient neurons. To investigate the mechanistic relationship between mTORC1 and cilia, we perform a phenotypic screen for mTORC1 inhibitors with TSC1/2-deficient neurons. We identify inhibitors of the heat shock protein 90 (Hsp90) that suppress mTORC1 through regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Pharmacological inhibition of Hsp90 rescues ciliation through downregulation of Hsp27. Our study uncovers the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia due to loss of TSC1/2, and it provides broadly applicable platforms for studying TSC-related neuronal dysfunction.


Subject(s)
Cilia/metabolism , Heat-Shock Response , Mechanistic Target of Rapamycin Complex 1/metabolism , Neurons/metabolism , Tuberous Sclerosis Complex 1 Protein/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism , Aging/metabolism , Animals , Benzoquinones/pharmacology , Brain/pathology , Down-Regulation/drug effects , HSP27 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Response/drug effects , Humans , Lactams, Macrocyclic/pharmacology , Mice, Knockout , Neurons/drug effects , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Sirolimus/pharmacology , Time Factors , Up-Regulation/drug effects
12.
J Neurosci ; 39(47): 9294-9305, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31591157

ABSTRACT

Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations in TSC1 or TSC2 Patients frequently have epilepsy, autism spectrum disorder, and/or intellectual disability, as well as other systemic manifestations. In this study, we differentiated human induced pluripotent stem cells (iPSCs) from a female patient with TSC with one or two mutations in TSC2 into neurons using induced expression of NGN2 to examine neuronal dysregulation associated with the neurological symptoms in TSC. Using this method, neuronal differentiation was comparable between the three genotypes of iPSCs. We observed that TSC2+/- neurons show mTOR complex 1 (mTORC1) hyperactivation and associated increased cell body size and process outgrowth, as well as exacerbation of the abnormalities by loss of the second allele of TSC2 in TSC2-/- neurons. Interestingly, iPSC-derived neurons with either a single or biallelic mutation in TSC2 demonstrated hypersynchrony and downregulation of FMRP targets. However, only neurons with biallelic mutations of TSC2 demonstrated hyperactivity and transcriptional dysregulation observed in cortical tubers. These data demonstrate that loss of one allele of TSC2 is sufficient to cause some morphological and physiological changes in human neurons but that biallelic mutations in TSC2 are necessary to induce gene expression dysregulation present in cortical tubers. Finally, we found that treatment of iPSC-derived neurons with rapamycin reduced neuronal activity and partially reversed gene expression abnormalities, demonstrating that mTOR dysregulation contributes to both phenotypes. Therefore, biallelic mutations in TSC2 and associated molecular dysfunction, including mTOR hyperactivation, may play a role in the development of cortical tubers.SIGNIFICANCE STATEMENT In this study, we examined neurons derived from induced pluripotent stem cells with two, one, or no functional TSC2 (tuberous sclerosis complex 2) alleles and found that loss of one or both alleles of TSC2 results in mTORC1 hyperactivation and specific neuronal abnormalities. However, only biallelic mutations in TSC2 resulted in elevated neuronal activity and upregulation of cell adhesion genes that is also observed in cortical tubers. These data suggest that loss of heterozygosity of TSC1 or TSC2 may play an important role in the development of cortical tubers, and potentially epilepsy, in patients with TSC.


Subject(s)
Alleles , Induced Pluripotent Stem Cells/physiology , Mutation/genetics , Neurons/physiology , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis/genetics , Cells, Cultured , Female , Humans , Induced Pluripotent Stem Cells/pathology , Male , Neurons/pathology , Tuberous Sclerosis/pathology
13.
Annu Rev Neurosci ; 41: 1-23, 2018 07 08.
Article in English | MEDLINE | ID: mdl-29490194

ABSTRACT

The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR inhibitors to improve neurodevelopmental outcomes have been initiated.


Subject(s)
Autistic Disorder/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Autistic Disorder/genetics , Autistic Disorder/pathology , Autistic Disorder/physiopathology , Humans , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics
14.
Mol Psychiatry ; 23(11): 2167-2183, 2018 11.
Article in English | MEDLINE | ID: mdl-29449635

ABSTRACT

Accumulating evidence suggests that cerebellar dysfunction early in life is associated with autism spectrum disorder (ASD), but the molecular mechanisms underlying the cerebellar deficits at the cellular level are unclear. Tuberous sclerosis complex (TSC) is a neurocutaneous disorder that often presents with ASD. Here, we developed a cerebellar Purkinje cell (PC) model of TSC with patient-derived human induced pluripotent stem cells (hiPSCs) to characterize the molecular mechanisms underlying cerebellar abnormalities in ASD and TSC. Our results show that hiPSC-derived PCs from patients with pathogenic TSC2 mutations displayed mTORC1 pathway hyperactivation, defects in neuronal differentiation and RNA regulation, hypoexcitability and reduced synaptic activity when compared with those derived from controls. Our gene expression analyses revealed downregulation of several components of fragile X mental retardation protein (FMRP) targets in TSC2-deficient hiPSC-PCs. We detected decreased expression of FMRP, glutamate receptor δ2 (GRID2), and pre- and post-synaptic markers such as synaptophysin and PSD95 in the TSC2-deficient hiPSC-PCs. The mTOR inhibitor rapamycin rescued the deficits in differentiation, synaptic dysfunction, and hypoexcitability of TSC2 mutant hiPSC-PCs in vitro. Our findings suggest that these gene expression changes and cellular abnormalities contribute to aberrant PC function during development in TSC affected individuals.


Subject(s)
Purkinje Cells/metabolism , Tuberous Sclerosis/metabolism , Adult , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/metabolism , Cerebellar Diseases/metabolism , Cerebellum/metabolism , Child , Child, Preschool , Female , Fragile X Mental Retardation Protein/drug effects , Fragile X Mental Retardation Protein/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Models, Biological , Purkinje Cells/pathology , Sirolimus/pharmacology , Synapses/metabolism , Synapses/physiology , TOR Serine-Threonine Kinases/metabolism , Tuberous Sclerosis/physiopathology , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics
15.
J Exp Med ; 214(3): 681-697, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28183733

ABSTRACT

Disruption of myelination during development has been implicated in a range of neurodevelopmental disorders including tuberous sclerosis complex (TSC). TSC patients with autism display impairments in white matter integrity. Similarly, mice lacking neuronal Tsc1 have a hypomyelination phenotype. However, the mechanisms that underlie these phenotypes remain unknown. In this study, we demonstrate that neuronal TSC1/2 orchestrates a program of oligodendrocyte maturation through the regulated secretion of connective tissue growth factor (CTGF). We characterize oligodendrocyte maturation both in vitro and in vivo. We find that neuron-specific Tsc1 deletion results in an increase in CTGF secretion that non-cell autonomously stunts oligodendrocyte development and decreases the total number of oligodendrocytes. Genetic deletion of CTGF from neurons, in turn, mitigates the TSC-dependent hypomyelination phenotype. These results show that the mechanistic target of rapamycin (mTOR) pathway in neurons regulates CTGF production and secretion, revealing a paracrine mechanism by which neuronal signaling regulates oligodendrocyte maturation and myelination in TSC. This study highlights the role of mTOR-dependent signaling between neuronal and nonneuronal cells in the regulation of myelin and identifies an additional therapeutic avenue for this disease.


Subject(s)
Connective Tissue Growth Factor/physiology , Myelin Sheath/physiology , Neurons/physiology , Tuberous Sclerosis/physiopathology , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Oligodendroglia/physiology , Rats , TOR Serine-Threonine Kinases/physiology , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/physiology
16.
Hum Mol Genet ; 25(11): 2168-2181, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27005422

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal-recessive pediatric neurodegenerative disease characterized by selective loss of spinal motor neurons. It is caused by mutation in the survival of motor neuron 1, SMN1, gene and leads to loss of function of the full-length SMN protein. microRNAs (miRNAs) are small RNAs that are involved in post-transcriptional regulation of gene expression. Prior studies have implicated miRNAs in the pathogenesis of motor neuron disease. We hypothesized that motor neuron-specific miRNA expression changes are involved in their selective vulnerability in SMA. Therefore, we sought to determine the effect of SMN loss on miRNAs and their target mRNAs in spinal motor neurons. We used microarray and RNAseq to profile both miRNA and mRNA expression in primary spinal motor neuron cultures after acute SMN knockdown. By integrating the miRNA:mRNA profiles, a number of dysregulated miRNAs were identified with enrichment in differentially expressed putative mRNA targets. miR-431 expression was highly increased, and a number of its putative mRNA targets were significantly downregulated in motor neurons after SMN loss. Further, we found that miR-431 regulates motor neuron neurite length by targeting several molecules previously identified to play a role in motor neuron axon outgrowth, including chondrolectin. Together, our findings indicate that cell-type-specific dysregulation of miR-431 plays a role in the SMA motor neuron phenotype.


Subject(s)
MicroRNAs/genetics , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Animals , Disease Models, Animal , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Mice , Mice, Knockout , MicroRNAs/biosynthesis , Microarray Analysis , Motor Neurons/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/physiopathology , Neurites/metabolism , Neurites/pathology
17.
Semin Neurol ; 35(3): 277-87, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26060907

ABSTRACT

Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and behavioral problems; specific disorders have associations with overgrowth or abnormalities in other tissues. The molecular underpinnings of many of these disorders are now understood, providing insight into how dysregulation of critical pathways leads to disease. The advances in molecular understanding are leading to improved diagnosis of these conditions, as well as providing new avenues for therapeutic interventions.


Subject(s)
Epilepsy/etiology , Megalencephaly/complications , Developmental Disabilities/etiology , Humans , Mental Disorders/etiology
18.
Neurobiol Dis ; 78: 35-44, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25818007

ABSTRACT

The molecular basis of epileptogenesis is poorly characterized. Studies in humans and animal models have identified an electrophysiological signature that precedes the onset of epilepsy, which has been termed fast ripples (FRs) based on its frequency. Multiple lines of evidence implicate regions generating FRs in epileptogenesis, and FRs appear to demarcate the seizure onset zone, suggesting a role in ictogenesis as well. We performed gene expression analysis comparing areas of the dentate gyrus that generate FRs to those that do not generate FRs in a well-characterized rat model of epilepsy. We identified a small cohort of genes that are differentially expressed in FR versus non-FR brain tissue and used quantitative PCR to validate some of those that modulate neuronal excitability. Gene expression network analysis demonstrated conservation of gene co-expression between non-FR and FR samples, but examination of gene connectivity revealed changes that were most pronounced in the cm-40 module, which contains several genes associated with synaptic function and the differentially expressed genes Kcna4, Kcnv1, and Npy1r that are down-regulated in FRs. We then demonstrate that the genes within the cm-40 module are regulated by seizure activity and enriched for the targets of the RNA binding protein Elavl4. Our data suggest that seizure activity induces co-expression of genes associated with synaptic transmission and that this pattern is attenuated in areas displaying FRs, implicating the failure of this mechanism in the generation of FRs.


Subject(s)
Dentate Gyrus/physiopathology , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/physiopathology , Animals , Disease Models, Animal , Gene Expression , Gene Regulatory Networks , Rats
19.
J Neuroimaging ; 24(4): 411-3, 2014.
Article in English | MEDLINE | ID: mdl-23551880

ABSTRACT

We report the case of a 27-year-old man with a history of previously undiagnosed renal disease that presented with multiple cerebrovascular infarctions. Workup for traditional causes of cerebrovascular infarction including cardiac telemetry, multiple echocardiograms, and hypercoagulative workup was negative. However, a transcranial Doppler detected circulating microemboli at the rate of 14 per hour. A serum oxalate level greater than the supersaturation point of calcium oxalate was detected, providing a potential source of the microemboli. Furthermore, serial imaging recorded rapid mineralization of the infarcted territories. In the absence of any proximal vessel irregularities, atherosclerosis, valvular abnormalities, arrhythmias, or systemic shunt as potential stroke etiology in this patient, we propose that circulating oxalate precipitate may be a potential mechanism for stroke in patients with primary oxalosis.


Subject(s)
Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/pathology , Intracranial Embolism/etiology , Intracranial Embolism/pathology , Magnetic Resonance Angiography/methods , Stroke/etiology , Stroke/pathology , Adult , Diagnosis, Differential , Humans , Male
20.
Neuron ; 75(4): 601-17, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22920253

ABSTRACT

Understanding human-specific patterns of brain gene expression and regulation can provide key insights into human brain evolution and speciation. Here, we use next-generation sequencing, and Illumina and Affymetrix microarray platforms, to compare the transcriptome of human, chimpanzee, and macaque telencephalon. Our analysis reveals a predominance of genes differentially expressed within human frontal lobe and a striking increase in transcriptional complexity specific to the human lineage in the frontal lobe. In contrast, caudate nucleus gene expression is highly conserved. We also identify gene coexpression signatures related to either neuronal processes or neuropsychiatric diseases, including a human-specific module with CLOCK as its hub gene and another module enriched for neuronal morphological processes and genes coexpressed with FOXP2, a gene important for language evolution. These data demonstrate that transcriptional networks have undergone evolutionary remodeling even within a given brain region, providing a window through which to view the foundation of uniquely human cognitive capacities.


Subject(s)
Brain/anatomy & histology , Brain/metabolism , Gene Expression/physiology , Transcription Factors/metabolism , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Evolution, Molecular , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Gene Regulatory Networks/genetics , Humans , Macaca , Mental Disorders/genetics , Oligonucleotide Array Sequence Analysis , Pan troglodytes , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...