Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(23): eadm7273, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848365

ABSTRACT

By analyzing 15,000 samples from 348 mammalian species, we derive DNA methylation (DNAm) predictors of maximum life span (R = 0.89), gestation time (R = 0.96), and age at sexual maturity (R = 0.85). Our maximum life-span predictor indicates a potential innate longevity advantage for females over males in 17 mammalian species including humans. The DNAm maximum life-span predictions are not affected by caloric restriction or partial reprogramming. Genetic disruptions in the somatotropic axis such as growth hormone receptors have an impact on DNAm maximum life span only in select tissues. Cancer mortality rates show no correlation with our epigenetic estimates of life-history traits. The DNAm maximum life-span predictor does not detect variation in life span between individuals of the same species, such as between the breeds of dogs. Maximum life span is determined in part by an epigenetic signature that is an intrinsic species property and is distinct from the signatures that relate to individual mortality risk.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Longevity , Mammals , Animals , Longevity/genetics , Mammals/genetics , Female , Humans , Male , Life History Traits , Species Specificity
2.
Science ; 384(6701): eadh9979, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870291

ABSTRACT

Understanding cellular architectures and their connectivity is essential for interrogating system function and dysfunction. However, we lack technologies for mapping the multiscale details of individual cells and their connectivity in the human organ-scale system. We developed a platform that simultaneously extracts spatial, molecular, morphological, and connectivity information of individual cells from the same human brain. The platform includes three core elements: a vibrating microtome for ultraprecision slicing of large-scale tissues without losing cellular connectivity (MEGAtome), a polymer hydrogel-based tissue processing technology for multiplexed multiscale imaging of human organ-scale tissues (mELAST), and a computational pipeline for reconstructing three-dimensional connectivity across multiple brain slabs (UNSLICE). We applied this platform for analyzing human Alzheimer's disease pathology at multiple scales and demonstrating scalable neural connectivity mapping in the human brain.


Subject(s)
Alzheimer Disease , Brain , Molecular Imaging , Humans , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Molecular Imaging/methods , Phenotype , Hydrogels/chemistry , Connectome
3.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38645196

ABSTRACT

Neuronal reconstruction-a process that transforms image volumes into 3D geometries and skeletons of cells-bottlenecks the study of brain function, connectomics and pathology. Domain scientists need exact and complete segmentations to study subtle topological differences. Existing methods are diskbound, dense-access, coupled, single-threaded, algorithmically unscalable and require manual cropping of small windows and proofreading of skeletons due to low topological accuracy. Designing a data-intensive parallel solution suited to a neurons' shape, topology and far-ranging connectivity is particularly challenging due to I/O and load-balance, yet by abstracting these vision tasks into strategically ordered specializations of search, we progressively lower memory by 4 orders of magnitude. This enables 1 mouse brain to be fully processed in-memory on a single server, at 67× the scale with 870× less memory while having 78% higher automated yield than APP2, the previous state of the art in performant reconstruction.

6.
Nature ; 623(7987): 580-587, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938769

ABSTRACT

Microsatellite repeat expansions within genes contribute to a number of neurological diseases1,2. The accumulation of toxic proteins and RNA molecules with repetitive sequences, and/or sequestration of RNA-binding proteins by RNA molecules containing expanded repeats are thought to be important contributors to disease aetiology3-9. Here we reveal that the adenosine in CAG repeat RNA can be methylated to N1-methyladenosine (m1A) by TRMT61A, and that m1A can be demethylated by ALKBH3. We also observed that the m1A/adenosine ratio in CAG repeat RNA increases with repeat length, which is attributed to diminished expression of ALKBH3 elicited by the repeat RNA. Additionally, TDP-43 binds directly and strongly with m1A in RNA, which stimulates the cytoplasmic mis-localization and formation of gel-like aggregates of TDP-43, resembling the observations made for the protein in neurological diseases. Moreover, m1A in CAG repeat RNA contributes to CAG repeat expansion-induced neurodegeneration in Caenorhabditis elegans and Drosophila. In sum, our study offers a new paradigm of the mechanism through which nucleotide repeat expansion contributes to neurological diseases and reveals a novel pathological function of m1A in RNA. These findings may provide an important mechanistic basis for therapeutic intervention in neurodegenerative diseases emanating from CAG repeat expansion.


Subject(s)
Adenosine , Caenorhabditis elegans , DNA-Binding Proteins , Drosophila melanogaster , Neurodegenerative Diseases , RNA , Trinucleotide Repeat Expansion , Animals , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , DNA-Binding Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , RNA/chemistry , RNA/genetics , RNA/metabolism , Trinucleotide Repeat Expansion/genetics , Cytoplasm/metabolism , Disease Models, Animal
7.
Nat Med ; 29(11): 2866-2884, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814059

ABSTRACT

Huntington's disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from patients with HD that is associated with the increased activation and localization of complement proteins, innate immune molecules, to these synaptic elements. We also found that levels of these secreted innate immune molecules are elevated in the cerebrospinal fluid of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD, we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis, marking them for removal by microglia, the brain's resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons. Inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function-blocking antibody or genetic ablation of a complement receptor on microglia prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD; they also provide new preclinical data to support complement as a therapeutic target for early intervention.


Subject(s)
Cognitive Dysfunction , Huntington Disease , Neurodegenerative Diseases , Humans , Animals , Huntington Disease/genetics , Neurodegenerative Diseases/pathology , Microglia/pathology , Synapses/physiology , Corpus Striatum , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Huntingtin Protein/genetics , Complement System Proteins/metabolism , Disease Models, Animal
9.
bioRxiv ; 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37577582

ABSTRACT

Background: Genetic study of late-onset Alzheimer's disease (AD) reveals that a rare Arginine-to-Histamine mutation at amino acid residue 47 (R47H) in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) results in increased disease risk. TREM2 plays critical roles in regulating microglial response to amyloid plaques in AD, leading to their clustering and activation surrounding the plaques. We previously showed that increasing human TREM2 gene dosage exerts neuroprotective effects against AD-related deficits in amyloid depositing mouse models of AD. However, the in vivo effects of the R47H mutation on human TREM2-mediated microglial reprogramming and neuroprotection remains poorly understood. Method: Here we created a BAC transgenic mouse model expressing human TREM2 with the R47H mutation in its cognate genomic context (BAC-TREM2-R47H). Importantly, the BAC used in this study was engineered to delete critical exons of other TREM-like genes on the BAC to prevent confounding effects of overexpressing multiple TREM-like genes. We crossed BAC-TREM2- R47H mice with 5xFAD [1], an amyloid depositing mouse model of AD, to evaluate amyloid pathologies and microglial phenotypes, transcriptomics and in situ expression of key TREM2 -dosage dependent genes. We also compared the key findings in 5xFAD/BAC-TREM2-R47H to those observed in 5xFAD/BAC-TREM2 mice. Result: Both BAC-TREM2 and BAC-TREM2-R47H showed proper expression of three splicing isoforms of TREM2 that are normally found in human. In 5xFAD background, elevated TREM2-R47H gene dosages significantly reduced the plaque burden, especially the filamentous type. The results were consistent with enhanced phagocytosis and altered NLRP3 inflammasome activation in BAC- TREM2-R47H microglia in vitro. However, unlike TREM2 overexpression, elevated TREM2- R47H in 5xFAD failed to ameliorate cognitive and transcriptomic deficits. In situ analysis of key TREM2 -dosage dependent genes and microglial morphology uncovered that TREM2-R47H showed a loss-of-function phenotype in reprogramming of plaque-associated microglial reactivity and gene expression in 5xFAD. Conclusion: Our study demonstrated that the AD-risk variant has a previously unknown, mixture of partial and full loss of TREM2 functions in modulating microglial response in AD mouse brains. Together, our new BAC-TREM2-R47H model and prior BAC-TREM2 mice are invaluable resource to facilitate the therapeutic discovery that target human TREM2 and its R47H variant to ameliorate AD and other neurodegenerative disorders.

10.
Mol Ther ; 31(6): 1661-1674, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37177784

ABSTRACT

Huntington's disease (HD) is a severe neurodegenerative disorder caused by the expansion of the CAG trinucleotide repeat tract in the huntingtin gene. Inheritance of expanded CAG repeats is needed for HD manifestation, but further somatic expansion of the repeat tract in non-dividing cells, particularly striatal neurons, hastens disease onset. Called somatic repeat expansion, this process is mediated by the mismatch repair (MMR) pathway. Among MMR components identified as modifiers of HD onset, MutS homolog 3 (MSH3) has emerged as a potentially safe and effective target for therapeutic intervention. Here, we identify a fully chemically modified short interfering RNA (siRNA) that robustly silences Msh3 in vitro and in vivo. When synthesized in a di-valent scaffold, siRNA-mediated silencing of Msh3 effectively blocked CAG-repeat expansion in the striatum of two HD mouse models without affecting tumor-associated microsatellite instability or mRNA expression of other MMR genes. Our findings establish a promising treatment approach for patients with HD and other repeat expansion diseases.


Subject(s)
Huntington Disease , MutS Homolog 3 Protein , Trinucleotide Repeat Expansion , Animals , Mice , Corpus Striatum/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/therapy , Huntington Disease/metabolism , Neostriatum/metabolism , RNA, Double-Stranded , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Trinucleotide Repeat Expansion/genetics , MutS Homolog 3 Protein/genetics
11.
Neuron ; 110(20): 3318-3338.e9, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36265442

ABSTRACT

Brain tissue transcriptomes may be organized into gene coexpression networks, but their underlying biological drivers remain incompletely understood. Here, we undertook a large-scale transcriptomic study using 508 wild-type mouse striatal tissue samples dissected exclusively in the afternoons to define 38 highly reproducible gene coexpression modules. We found that 13 and 11 modules are enriched in cell-type and molecular complex markers, respectively. Importantly, 18 modules are highly enriched in daily rhythmically expressed genes that peak or trough with distinct temporal kinetics, revealing the underlying biology of striatal diurnal gene networks. Moreover, the diurnal coexpression networks are a dominant feature of daytime transcriptomes in the mouse cortex. We next employed the striatal coexpression modules to decipher the striatal transcriptomic signatures from Huntington's disease models and heterozygous null mice for 52 genes, uncovering novel functions for Prkcq and Kdm4b in oligodendrocyte differentiation and bipolar disorder-associated Trank1 in regulating anxiety-like behaviors and nocturnal locomotion.


Subject(s)
Huntington Disease , Transcriptome , Animals , Mice , Protein Kinase C-theta/genetics , Gene Regulatory Networks , Huntington Disease/genetics , Brain
12.
Cell Syst ; 13(4): 268-270, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35447076

ABSTRACT

In this issue of Cell Systems, Greco et al. define high-confidence polyglutamine-dependent huntingtin interactors using AP-MS and complementary approaches and categorize them based on their interaction abundance and stability. The study reveals that a toxic gain of polyQ-dependent Htt interacting partners is a robust feature of HD pathogenesis.


Subject(s)
Nuclear Proteins , Peptides , Huntingtin Protein/genetics , Nuclear Proteins/genetics , Peptides/genetics
13.
Neuron ; 110(7): 1173-1192.e7, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35114102

ABSTRACT

In Huntington's disease (HD), the uninterrupted CAG repeat length, but not the polyglutamine length, predicts disease onset. However, the underlying pathobiology remains unclear. Here, we developed bacterial artificial chromosome (BAC) transgenic mice expressing human mutant huntingtin (mHTT) with uninterrupted, and somatically unstable, CAG repeats that exhibit progressive disease-related phenotypes. Unlike prior mHTT transgenic models with stable, CAA-interrupted, polyglutamine-encoding repeats, BAC-CAG mice show robust striatum-selective nuclear inclusions and transcriptional dysregulation resembling those in murine huntingtin knockin models and HD patients. Importantly, the striatal transcriptionopathy in HD models is significantly correlated with their uninterrupted CAG repeat length but not polyglutamine length. Finally, among the pathogenic entities originating from mHTT genomic transgenes and only present or enriched in the uninterrupted CAG repeat model, somatic CAG repeat instability and nuclear mHTT aggregation are best correlated with early-onset striatum-selective molecular pathogenesis and locomotor and sleep deficits, while repeat RNA-associated pathologies and repeat-associated non-AUG (RAN) translation may play less selective or late pathogenic roles, respectively.


Subject(s)
Huntington Disease , Nerve Tissue Proteins , Animals , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/metabolism , Disease Models, Animal , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Trinucleotide Repeat Expansion/genetics
14.
Nature ; 598(7879): 188-194, 2021 10.
Article in English | MEDLINE | ID: mdl-34616074

ABSTRACT

The cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1-4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico-basal ganglia-thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico-basal ganglia-thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.


Subject(s)
Basal Ganglia/cytology , Cerebral Cortex/cytology , Neural Pathways , Neurons/cytology , Thalamus/cytology , Animals , Basal Ganglia/anatomy & histology , Cerebral Cortex/anatomy & histology , Male , Mice , Mice, Inbred C57BL , Thalamus/anatomy & histology
15.
Sci Transl Med ; 13(613): eabe7104, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34586830

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifying treatments are not yet available. Although gene-silencing therapies are currently being tested, further molecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation element binding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 and decreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogramming of polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associated genes including PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS, and HTT and suggesting a new molecular mechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylated transcripts, including striatal atrophy­linked genes not previously related to HD, such as KTN1 and the easily druggable SLC19A3 (the ThTr2 thiamine transporter). Mutations in SLC19A3 cause biotin-thiamine­responsive basal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine. Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid. Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate (TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiency in HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealing an easily implementable therapy that might benefit patients with HD.


Subject(s)
Huntington Disease , Polyadenylation , Transcription Factors/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , Humans , Huntington Disease/genetics , Huntington Disease/therapy , Membrane Transport Proteins , Transcriptome
16.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468657

ABSTRACT

DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.


Subject(s)
DNA Repair Enzymes/genetics , DNA Repair , DNA/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Inhibitors of Activated STAT/genetics , Protein Processing, Post-Translational , Small Ubiquitin-Related Modifier Proteins/genetics , Animals , Cell Differentiation , DNA/metabolism , DNA Damage , DNA Repair Enzymes/metabolism , Disease Models, Animal , Female , Humans , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/pathology , Primary Cell Culture , Protein Inhibitors of Activated STAT/antagonists & inhibitors , Protein Inhibitors of Activated STAT/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Small Ubiquitin-Related Modifier Proteins/antagonists & inhibitors , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Transcription, Genetic
17.
Sci Rep ; 10(1): 20295, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219289

ABSTRACT

In Huntington's disease (HD), the mutant Huntingtin (mHTT) is postulated to mediate template-based aggregation that can propagate across cells. It has been difficult to quantitatively detect such pathological seeding activities in patient biosamples, e.g. cerebrospinal fluids (CSF), and study their correlation with the disease manifestation. Here we developed a cell line expressing a domain-engineered mHTT-exon 1 reporter, which showed remarkably high sensitivity and specificity in detecting mHTT seeding species in HD patient biosamples. We showed that the seeding-competent mHTT species in HD CSF are significantly elevated upon disease onset and with the progression of neuropathological grades. Mechanistically, we showed that mHTT seeding activities in patient CSF could be ameliorated by the overexpression of chaperone DNAJB6 and by antibodies against the polyproline domain of mHTT. Together, our study developed a selective and scalable cell-based tool to investigate mHTT seeding activities in HD CSF, and demonstrated that the CSF mHTT seeding species are significantly associated with certain disease states. This seeding activity can be ameliorated by targeting specific domain or proteostatic pathway of mHTT, providing novel insights into such pathological activities.


Subject(s)
Cerebrospinal Fluid/metabolism , HSP40 Heat-Shock Proteins/metabolism , Huntingtin Protein/metabolism , Huntington Disease/pathology , Molecular Chaperones/metabolism , Nerve Tissue Proteins/metabolism , Protein Aggregation, Pathological/pathology , Adult , Aged , Aged, 80 and over , Brain/pathology , Cell Line , Exons/genetics , Female , Genes, Reporter/genetics , HSP40 Heat-Shock Proteins/genetics , Humans , Huntingtin Protein/cerebrospinal fluid , Huntingtin Protein/genetics , Huntington Disease/cerebrospinal fluid , Huntington Disease/genetics , Intravital Microscopy , Male , Middle Aged , Molecular Chaperones/genetics , Mutation , Nerve Tissue Proteins/genetics , Protein Aggregation, Pathological/cerebrospinal fluid , Protein Aggregation, Pathological/genetics , Protein Domains/genetics , Protein Engineering , Protein Folding
19.
Neuron ; 108(1): 111-127.e6, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32795398

ABSTRACT

Cajal recognized that the elaborate shape of neurons is fundamental to their function in the brain. However, there are no simple and generalizable genetic methods to study neuronal or glial cell morphology in the mammalian brain. Here, we describe four mouse lines conferring Cre-dependent sparse cell labeling based on mononucleotide repeat frameshift (MORF) as a stochastic translational switch. Notably, the optimized MORF3 mice, with a membrane-bound multivalent immunoreporter, confer Cre-dependent sparse and bright labeling of thousands of neurons, astrocytes, or microglia in each brain, revealing their intricate morphologies. MORF3 mice are compatible with imaging in tissue-cleared thick brain sections and with immuno-EM. An analysis of 151 MORF3-labeled developing retinal horizontal cells reveals novel morphological cell clusters and axonal maturation patterns. Our study demonstrates a conceptually novel, simple, generalizable, and scalable mouse genetic solution to sparsely label and illuminate the morphology of genetically defined neurons and glia in the mammalian brain.


Subject(s)
Astrocytes/ultrastructure , Brain/ultrastructure , Microglia/ultrastructure , Neurons/ultrastructure , Retinal Horizontal Cells/ultrastructure , Animals , Astrocytes/metabolism , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Frameshift Mutation/genetics , Green Fluorescent Proteins/genetics , Integrases , Mice , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Microsatellite Repeats/genetics , Neurons/metabolism , Neurons/pathology , Retinal Horizontal Cells/metabolism , Retinal Horizontal Cells/pathology
20.
Neuron ; 106(1): 4-6, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32272066

ABSTRACT

Forward genetic screen, typically performed in invertebrates or mammalian cell lines, has been instrumental in discovering genes essential for neural function. In this issue of Neuron, Wertz et al. (2020) demonstrate the first viral-mediated, genome-wide screen to identify neuroprotective genes in wild-type and Huntington's disease (HD) mouse brains.


Subject(s)
Huntington Disease , Animals , Cell Death , Cell Survival , Mice , Neurons , Neuroprotection
SELECTION OF CITATIONS
SEARCH DETAIL
...