Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 22(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38921550

ABSTRACT

Although lipophilic shellfish toxins (LSTs) pose a significant threat to the health of seafood consumers, their systematic investigation and risk assessment remain scarce. The goals of this study were as follows: (1) analyze LST levels in commercially available shellfish in Zhejiang province, China, and determine factors influencing LST distribution; (2) assess the acute dietary risk of exposure to LSTs for local consumers during the red tide period; (3) explore potential health risks of LSTs in humans; and (4) study the acute risks of simultaneous dietary exposure to LSTs and paralytic shellfish toxins (PSTs). A total of 546 shellfish samples were collected. LSTs were detected in 89 samples (16.3%) at concentrations below the regulatory limits. Mussels were the main shellfish species contaminated with LSTs. Spatial variations were observed in the yessotoxin group. Acute exposure to LSTs based on multiple scenarios was low. The minimum tolerable exposure durations for LSTs calculated using the mean and the 95th percentile of consumption data were 19.7 and 4.9 years, respectively. Our findings showed that Zhejiang province residents are at a low risk of combined exposure to LSTs and PSTs; however, the risk may be higher for children under 6 years of age in the extreme scenario.


Subject(s)
Dietary Exposure , Marine Toxins , Shellfish , China , Humans , Shellfish/analysis , Marine Toxins/analysis , Marine Toxins/toxicity , Animals , Risk Assessment , Dietary Exposure/analysis , Shellfish Poisoning/prevention & control , Shellfish Poisoning/etiology , Food Contamination/analysis , Adult , Child , Middle Aged , Seafood/analysis , Child, Preschool , Bivalvia/chemistry , Female , Young Adult
2.
Molecules ; 29(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675615

ABSTRACT

This study presents a new technique for determining vitamin B12 in milk powder using high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). We used ultrasonics with potassium ferrocyanide and zinc acetate solutions to extract the samples. 59Co was employed as the analytical target for cyanocobalamin. It was separated using a Phenomenex Luna 5 µm C18 (250 × 4.6 mm) chromatographic column with a mobile phase consisting of 1.6 mmol/L EDTA and 0.4 mmol/L KH2PO4 in a 60% v/v methanol solution (pH = 4.0). The sample has an excellent separating degree for free cobalt and cyanocobalamin, and isocratic elution can be finished within 4.0 min. To eliminate the matrix interference due to the presence of milk powder, we applied collision mode (KED). The linear range of cyanocobalamine ranged from 1.0 µg/L to 20 µg/L, with correlation coefficients (r2) of 0.9994. The limit of detection (LOD) was 0.63 µg/kg, and the limit of quantitation (LOQ) was 2.11 µg/kg. The mean recoveries were in the range of 87.4-103.6%. The accuracy and precision of the developed method are well suited for the fast quantification of the trace vitamin B12 in milk powder.


Subject(s)
Mass Spectrometry , Milk , Vitamin B 12 , Vitamin B 12/analysis , Chromatography, High Pressure Liquid/methods , Milk/chemistry , Animals , Mass Spectrometry/methods , Limit of Detection , Powders/chemistry , Reproducibility of Results
3.
Toxics ; 12(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38535902

ABSTRACT

Nickel (Ni) is a silver-white metal with high antioxidative properties, often existing in a bivalent form in the environment. Despite being the fifth most abundant metal on Earth, anthropogenic activities, including industrial processes, have elevated Ni levels in environmental media. This study investigated Ni contamination in various food groups in Zhejiang Province, China, mainly focusing on Ni levels in beans, vegetables, aquatic foods, meat products, cereal products, and fruits. A total of 2628 samples were collected and analyzed. Beans exhibited the highest Ni content in all samples. The overall detection rate of Ni was 86.5%, with variation among food categories. For plant-origin foods, legumes had the highest Ni concentration while for animal-origin foods, shellfish showed the highest median Ni concentration. The results indicate generally acceptable Ni exposure levels among Zhejiang residents, except for children aged 0-6. Beans were identified as the primary contributor to high Ni exposure risk. The paper suggests monitoring Ni contamination in food, especially for vulnerable populations, and provides insights into exposure risks in different age groups.

4.
Front Immunol ; 14: 1259381, 2023.
Article in English | MEDLINE | ID: mdl-38077346

ABSTRACT

Serum C-reactive protein (CRP) has been found elevated during COVID-19 infection, and associated with systematic inflammation as well as a poor clinical outcome. However, how did CRP participated in the COVID-19 pathogenesis remains poorly understood. Here, we report that serum C-reactive protein (CRP) levels are correlated with megakaryocyte marker genes and could regulate immune response through interaction with megakaryocytes. Molecular dynamics simulation through ColabFold showed a reliable interaction between monomeric form of CRP (mCRP) and the secreted protein acidic and rich in cysteine (SPARC). The interaction does not affect the physiological activities of SPARC while would be disturbed by pentamerization of CRP. Interplay between SPARC and mCRP results in a more intense immune response which may led to poor prognosis. This study highlights the complex interplay between inflammatory markers, megakaryocytes, and immune regulation in COVID-19 and sheds light on potential therapeutic targets.


Subject(s)
C-Reactive Protein , COVID-19 , Humans , C-Reactive Protein/metabolism , Cells, Cultured , Inflammation/metabolism , Osteonectin/genetics
5.
Adv Sci (Weinh) ; 10(22): e2206798, 2023 08.
Article in English | MEDLINE | ID: mdl-37330650

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Donafenib is a multi-receptor tyrosine kinase inhibitor approved for the treatment of patients with advanced HCC, but its clinical effect is very limited. Here, through integrated screening of a small-molecule inhibitor library and a druggable CRISPR library, that GSK-J4 is synthetically lethal with donafenib in liver cancer is shown. This synergistic lethality is validated in multiple HCC models, including xenograft, orthotopically induced HCC, patient-derived xenograft, and organoid models. Furthermore, co-treatment with donafenib and GSK-J4 resulted in cell death mainly via ferroptosis. Mechanistically, through integrated RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) analyses, that donafenib and GSK-J4 synergistically promoted the expression of HMOX1 and increased the intracellular Fe2+ level is found, eventually leading to ferroptosis. Additionally, through cleavage under targets & tagmentation followed by sequencing (CUT&Tag-seq), it is found that the enhancer regions upstream of HMOX1 promoter significantly increased under donafenib and GSK-J4 co-treatment. A chromosome conformation capture assay confirmed that the increased expression of HMOX1 is caused by the significantly enhanced interaction between the promoter and upstream enhancer under dual-drug combination. Taken together, this study elucidates a new synergistic lethal interaction in liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Heme Oxygenase-1
6.
Chemosphere ; 307(Pt 3): 135899, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35934099

ABSTRACT

Zeolites have widely been studied because of the better performance as catalysts and supports. However, the zeolites with only micropores have drawbacks in reactivity and selectivity due to limitation of diffusivity. The hollow zeolite fibers (HZF) with hierarchical porosity however can overcome the problem. The HZF can be synthesized by such methods as incorporated substrate removal method, solid-solid transformation method, co-axial electrospinning technology, dry-wet spinning technology, and hollow fiber incorporation method. The unique hierarchical porous structure leads to the great improvement in the diffusion efficiency of reactants. The catalytic zeolite membrane fibers are the most commonly used as they have stronger catalyst stability and higher catalytic selectivity. The HZFs are suitable in catalytic applications such as selective catalysis, CO preferential oxidation, air purification and wastewater treatment. In order that the HZFs can be applied to industrial operations, more research work should be carried out, such as developments of self-assembly pure HZFs, catalytic substrate incorporated HZFs, HZFs with gradient multicomponent zeolites and HZFs with nanoscale diameters.

7.
Angew Chem Int Ed Engl ; 60(52): 27078-27085, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34619005

ABSTRACT

Ionic covalent organic framework nanosheets (iCOFNs) with long-range ordered and mono-dispersed ionic groups hold great potential in many advanced applications. Considering the inherent drawbacks of oil-water biphase method, herein, we explore an oil-water-oil triphase method based on phase engineering strategy for the bottom-up synthesis of iCOFNs. The middle water phase serves as a confined reaction region, and the two oil phases are reservoirs for storing and supplying monomers to the water phase. A large aqueous space and low monomer concentration lead to the anisotropic gradual growth of iCOFNs into few-layer thickness, large lateral size, and high crystallinity. Notably, the resulting three cationic and anionic iCOFNs exhibit ultra-high aspect ratios of up to 20,000. We further demonstrate their application potential by processing into ultrathin defect-free COF membranes for efficient biogas separation. Our triphase method may offer an alternative platform technology for the synthesis and innovative applications of iCOFNs.

8.
PLoS One ; 16(9): e0255603, 2021.
Article in English | MEDLINE | ID: mdl-34543296

ABSTRACT

The reinforced concrete-filled steel tube (RCFST) column solves several of the problems of the concrete-filled steel tube (CFST) column in practical engineering applications. Moreover, RCFST has a simple joint structure, high bearing capacity, good ductility, and superior fire resistance. From a structural safety perspective, designers prioritize the creep performance of CFST members in structural design. Therefore, the creep behavior of RCFST columns should be thoroughly investigated in practical engineering design. To study the influence of the creep behavior of RCFST columns under axial compression, this work analyzed the mechanical behavior of composite columns based on their mechanical characteristics under axial compression and established a creep formula suitable for RCFST columns under axial compression. A creep analysis program was also developed to obtain the creep strain-time curve, and its correctness was verified by existing tests. On this basis, the effects of the main design parameters, such as the stress level, steel ratio, and reinforcement ratio, on the creep behavior were determined and analyzed. The creep of the tested composite columns increased rapidly in the early stages (28 days) of load action; the growth rate was relatively low after 28 days and tended to stabilize after approximately six months. The stress level had the greatest influence on the creep of RCFST columns under axial compression, followed by the steel ratio. The influence of the reinforcement ratio on the creep behavior was less. The results of this study can provide a reference for engineering practice.


Subject(s)
Construction Materials/analysis , Engineering/methods , Materials Testing/methods , Steel/chemistry , Stress, Mechanical , Tensile Strength , Physical Phenomena , Pressure
9.
J Clin Lab Anal ; 35(8): e23893, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34216514

ABSTRACT

OBJECTIVE: To clarify the role of miR-92a in regulating the malignant progression of cervical cancer and its specific molecular mechanism. METHODS: qRT-PCR was used to detect the differential expression of miR-92a in cervical cancer and adjacent tissues. The effects of overexpression of miR-92a on the proliferation, migration, and invasion of HeLa and SiHa cells were tested. Luciferase assays and rescue experiments were used to investigate the regulatory mechanism of miR-92a on its downstream gene PIK3R1 and their interaction in the progression of cervical cancer. RESULTS: miR-92a was significantly up-regulated in cervical cancer tissues. Overexpression of miR-92a significantly increased the ability of cervical cancer cells to proliferate, migrate, and invade. PIK3R1 was identified as a downstream gene of miR-92a. In cervical cancer tissues, PIK3R1 was found to be down-regulated and negatively correlated with the level of miR-92a. Overexpression of PIK3R1 reversed the promotional effect of overexpressed miR-92a on the proliferation, migration, and invasion of cervical cancer. CONCLUSION: miR-92a is up-regulated in cervical cancer tissues. miR-92a promotes the malignant development of cervical cancer by negatively regulating PIK3R1.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/genetics , MicroRNAs/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Up-Regulation
10.
Front Immunol ; 12: 644396, 2021.
Article in English | MEDLINE | ID: mdl-33953716

ABSTRACT

The development of effective vaccines and delivery systems in aquaculture is a long-term challenge for controlling emerging and reemerging infections. Cost-efficient and advanced nanoparticle vaccines are of tremendous applicability in prevention of infectious diseases of fish. In this study, dihydrolipoamide dehydrogenase (DLDH) antigens of Vibrio alginolyticus were loaded into mesoporous silica nanoparticles (MSN) to compose the vaccine delivery system. Hydroxypropyl methylcellulose phthalate (HP55) was coated to provide protection of immunogen. The morphology, loading capacity, acid-base triggered release were characterized and the toxicity of nanoparticle vaccine was determined in vitro. Further, the vaccine immune effects were evaluated in large yellow croaker via oral administration. In vitro studies confirmed that the antigen could be stable in enzymes-rich artificial gastric fluid and released under artificial intestinal fluid environment. In vitro cytotoxicity assessment demonstrated the vaccines within 120 µg/ml have good biocompatibility for large yellow croaker kidney cells. Our data confirmed that the nanoparticle vaccine in vivo could elicit innate and adaptive immune response, and provide good protection against Vibrio alginolyticus challenge. The MSN delivery system prepared may be a potential candidate carrier for fish vaccine via oral administration feeding. Further, we provide theoretical basis for developing convenient, high-performance, and cost-efficient vaccine against infectious diseases in aquaculture.


Subject(s)
Bacterial Proteins , Bacterial Vaccines , Dihydrolipoamide Dehydrogenase , Fish Diseases , Nanoparticles , Perciformes , Silicon Dioxide , Vibrio Infections , Vibrio alginolyticus , Administration, Oral , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Bacterial Vaccines/chemistry , Bacterial Vaccines/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Dihydrolipoamide Dehydrogenase/chemistry , Dihydrolipoamide Dehydrogenase/pharmacology , Fish Diseases/immunology , Fish Diseases/prevention & control , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Perciformes/immunology , Perciformes/microbiology , Porosity , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Vibrio Infections/immunology , Vibrio Infections/prevention & control , Vibrio Infections/veterinary , Vibrio alginolyticus/enzymology , Vibrio alginolyticus/immunology
11.
Adv Sci (Weinh) ; 8(15): e2100284, 2021 08.
Article in English | MEDLINE | ID: mdl-34032021

ABSTRACT

Anion exchange membrane fuel cells (AEMFCs) performance have significantly improved in the last decade (>1 W cm-2 ), and is now comparable with that of proton exchange membrane fuel cells (PEMFCs). At high current densities, issues in the catalyst layer (CL, composed of catalyst and ionomer), like oxygen transfer, water balance, and microstructural evolution, play important roles in the performance. In addition, CLs for AEMFCs have different requirements than for PEMFCs, such as chemical/physical stability, reaction mechanism, and mass transfer, because of different conductive media and pH environment. The anion exchange ionomer (AEI), which is the soluble or dispersed analogue of the anion exchange membrane (AEM), is required for hydroxide transport in the CL and is normally handled separately with the electrocatalyst during the electrode fabrication process. The importance of the AEI-catalyst interface in maximizing the utilization of electrocatalyst and fuel/oxygen transfer process must be carefully investigated. This review briefly covers new concepts in the complex AEMFC catalyst layer, before a detailed discussion on advances in CLs based on the design of AEIs and electrocatalysts. The importance of the structure-function relationship is highlighted with the aim of directing the further development of CLs for high-performance AEMFC.

12.
Theranostics ; 11(10): 4743-4758, 2021.
Article in English | MEDLINE | ID: mdl-33754025

ABSTRACT

Aims: Emerging evidence is demonstrating that rapid regeneration of remnant liver elicited by associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) may be attenuated in fibrotic livers. However, the molecular mechanisms responsible for this process are largely unknown. It is widely acknowledged that the TGFß1 signaling axis plays a major role in liver fibrosis. Therefore, the aims of this study were to elucidate the underlying mechanism of liver regeneration during ALPPS with or without fibrosis, specifically focusing on TGFß1 signaling. Approach: ALPPS was performed in rat models with N-diethylnitrosamine-induced liver fibrosis and no fibrosis. Functional liver remnant regeneration and expression of TGFß1 were analyzed during the ALPPS procedures. Adeno-associated virus-shTGFß1 and the small molecule inhibitor LY2157299 (galunisertib) were used separately or in combination to inhibit TGFß1 signaling in fibrotic rats. Results: Liver regeneration following ALPPS was lower in fibrotic rats than non-fibrotic rats. TGFß1 was a key mediator of postoperative regeneration in fibrotic liver. Interestingly, AAV-shTGFß1 accelerated the regeneration of fibrotic functional liver remnant and improved fibrosis, while LY2157299 only enhanced liver regeneration. Moreover, combination treatment elicited a stronger effect. Conclusions: Inhibition of TGFß1 accelerated regeneration of fibrotic liver, ameliorated liver fibrosis, and improved liver function following ALPPS. Therefore, TGFß1 is a promising therapeutic target in ALPPS to improve fibrotic liver reserve function and prognosis.


Subject(s)
Hepatectomy/methods , Hepatocytes/metabolism , Liver Cirrhosis/metabolism , Liver Regeneration/physiology , Liver/physiology , Transforming Growth Factor beta1/metabolism , Animals , Carbon Tetrachloride/toxicity , Diethylnitrosamine/toxicity , Hepatic Stellate Cells/metabolism , Ligation , Liver/drug effects , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Liver Regeneration/drug effects , Portal Vein/surgery , Primary Cell Culture , Pyrazoles/pharmacology , Quinolines/pharmacology , Rats , Signal Transduction , Transforming Growth Factor beta1/antagonists & inhibitors
13.
Adv Exp Med Biol ; 1136: 87-95, 2019.
Article in English | MEDLINE | ID: mdl-31201718

ABSTRACT

The hypoxic microenvironment is one of the major features of solid tumors, which regulates cell malignancy in multiple ways. As a response to hypoxia, a large number of target genes involved in cell growth, metabolism, metastasis and immunity are activated in cancer cells. Hypoxia-inducible factor 1 (HIF-1), as a heterodimeric DNA-binding complex, is comprised of a constitutively expressed HIF-1ß subunit and an oxygen sensitive HIF-1α subunit, thus, adapts to decreased oxygen availability as a transcriptional factor. HIF-1 regulates many genes involved in tumorigenesis. Here, we focus on cancer cell metabolism and metastasis regulated by hypoxia.


Subject(s)
Neoplasm Metastasis/pathology , Neoplasms/metabolism , Neoplasms/pathology , Tumor Hypoxia , Cell Hypoxia , Gene Expression Regulation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit , Oxygen , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...