Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.386
Filter
1.
Biol Psychiatry Glob Open Sci ; 4(5): 100342, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39092138

ABSTRACT

Background: The amygdala is highly implicated in an array of psychiatric disorders but is not accessible using currently available noninvasive neuromodulatory techniques. Low-intensity transcranial focused ultrasound (TFUS) is a neuromodulatory technique that has the capability of reaching subcortical regions noninvasively. Methods: We studied healthy older adult participants (N = 21, ages 48-79 years) who received TFUS targeting the right amygdala and left entorhinal cortex (active control region) using a 2-visit within-participant crossover design. Before and after TFUS, behavioral measures were collected via the State-Trait Anxiety Inventory and an emotional reactivity and regulation task utilizing neutral and negatively valenced images from the International Affective Picture System. Heart rate and self-reported emotional valence and arousal were measured during the emotional reactivity and regulation task to investigate subjective and physiological responses to the task. Results: Significant increases in both self-reported arousal in response to negative images and heart rate during emotional reactivity and regulation task intertrial intervals were observed when TFUS targeted the amygdala; these changes were not evident when the entorhinal cortex was targeted. No significant changes were found for state anxiety, self-reported valence to the negative images, cardiac response to the negative images, or emotion regulation. Conclusions: The results of this study provide preliminary evidence that a single session of TFUS targeting the amygdala may alter psychophysiological and subjective emotional responses, indicating some potential for future neuropsychiatric applications. However, more work on TFUS parameters and targeting optimization is necessary to determine how to elicit changes in a more clinically advantageous way.


Transcranial focused ultrasound (TFUS) is an emerging brain stimulation technique with the ability to noninvasively alter the activity of deep brain regions. Studying the potential for TFUS to alter behavioral response and processing, this study employed MRI-guided TFUS targeting the right amygdala in older adults. We found that TFUS targeting the right amygdala increased self-reported arousal in response to negative images, providing preliminary evidence that a single session of TFUS may be capable of affecting emotional reactivity.

2.
Pharmacol Biochem Behav ; : 173840, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39096973

ABSTRACT

Alcohol use disorder (AUD) is a chronic relapsing disease that is deleterious at individual, familial, and societal levels. Although AUD is one of the highest preventable causes of death in the USA, therapies for the treatment of AUD are not sufficient given the heterogeneity of the disorder and the limited number of approved medications. To provide better pharmacological strategies, it is important to understand the neurological underpinnings of AUD. Evidence implicates the endogenous dynorphin (DYN)/κ-opioid receptor (KOR) system recruitment in dysphoric and negative emotional states in AUD to promote maladaptive behavioral regulation. The nucleus accumbens shell (AcbSh), mediating motivational and emotional processes that is a component of the mesolimbic dopamine system and the extended amygdala, is an important site related to alcohol's reinforcing actions (both positive and negative) and neuroadaptations in the AcbSh DYN/KOR system have been documented to induce maladaptive symptoms in AUD. We have previously shown that in other nodes of the extended amygdala, site-specific KOR antagonism can distinguish different symptoms of alcohol dependence and withdrawal. In the current study, we examined the role of the KOR signaling in the AcbSh of male Wistar rats in operant alcohol self-administration, measures of negative affective-like behavior, and physiological symptoms during acute alcohol withdrawal in alcohol-dependence. To induce alcohol dependence, rats were exposed to chronic intermittent ethanol vapor for 14 h/day for three months, during which stable escalation of alcohol self-administration was achieved and pharmacological AcbSh KOR antagonism ensued. The results showed that AcbSh KOR antagonism significantly reduced escalated alcohol intake and negative affective-like states but did not alter somatic symptoms of withdrawal. Understanding the relative contribution of these different drivers is important to understand and inform therapeutic efficacy approaches in alcohol dependence and further emphasis the importance of the KOR/DYN system as a target for AUD therapeutics.

3.
Elife ; 132024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088250

ABSTRACT

The brain's ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons' activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.


Subject(s)
Fear , Insular Cortex , Optogenetics , Animals , Fear/physiology , Male , Mice , Insular Cortex/physiology , Neural Pathways/physiology , Amygdala/physiology , Conditioning, Classical/physiology , Mice, Inbred C57BL , Pyramidal Cells/physiology
4.
Front Cell Neurosci ; 18: 1426153, 2024.
Article in English | MEDLINE | ID: mdl-39049824

ABSTRACT

Cholinergic cells have been proposed to innervate simultaneously those cortical areas that are mutually interconnected with each other. To test this hypothesis, we investigated the cholinergic innervation of functionally linked amygdala and prefrontal cortical regions. First, using tracing experiments, we determined that cholinergic cells located in distinct basal forebrain (BF) areas projected to the different nuclei of the basolateral amygdala (BLA). Specifically, cholinergic cells in the ventral pallidum/substantia innominata (VP/SI) innervated the basal nucleus (BA), while the horizontal limb of the diagonal band of Broca (HDB) projected to its basomedial nucleus (BMA). In addition, cholinergic neurons in these two BF areas gave rise to overlapping innervation in the medial prefrontal cortex (mPFC), yet their axons segregated in the dorsal and ventral regions of the PFC. Using retrograde-anterograde viral tracing, we demonstrated that a portion of mPFC-projecting cholinergic neurons also innervated the BLA, especially the BA. By injecting retrograde tracers into the mPFC and BA, we found that 28% of retrogradely labeled cholinergic cells were double labeled, which typically located in the VP/SI. In addition, we found that vesicular glutamate transporter type 3 (VGLUT3)-expressing neurons within the VP/SI were also cholinergic and projected to the mPFC and BA, implicating that a part of the cholinergic afferents may release glutamate. In contrast, we uncovered that GABA is unlikely to be a co-transmitter molecule in HDB and VP/SI cholinergic neurons in adult mice. The dual innervation strategy, i.e., the existence of cholinergic cell populations with single as well as simultaneous projections to the BLA and mPFC, provides the possibility for both synchronous and independent control of the operation in these cortical areas, a structural arrangement that may maximize computational support for functionally linked regions. The presence of VGLUT3 in a portion of cholinergic afferents suggests more complex functional effects of cholinergic system in cortical structures.

5.
Front Neurosci ; 18: 1433993, 2024.
Article in English | MEDLINE | ID: mdl-39050664

ABSTRACT

Traumatic stress, particularly during critical developmental periods such as adolescence, has been strongly linked to an increased propensity and severity of aggression. Existing literature underscores that being a victim of abuse can exacerbate aggressive behaviors, with the amygdala playing a pivotal role in mediating these effects. Historically, animal models have demonstrated that traumatic stressors can increase attack behavior, implicating various amygdala nuclei. Building on this foundation, our previous work has highlighted how traumatic stress invokes long-lasting aggression via an excitatory pathway within the posterior ventral medial amygdala (MeApv). In the current study, we sought to further delineate this mechanism by examining the effects of acute social defeat during adolescence on aggressive behaviors and neural activation in mice. Using a common social defeat paradigm, we first established that acute social defeat during late adolescence indeed promotes long-lasting aggression, measured as attack behavior 7 days after the defeat session. Immunolabeling with c-Fos demonstrated that acute social defeat activates the MeApv and ventrolateral aspect of the ventromedial hypothalamus (VmHvl), consistent with our previous studies that used foot shock as an acute stressor. Finally, chemogenetically inhibiting excitatory MeApv neurons during social defeat significantly mitigated the aggression increase without affecting non-aggressive social behavior. These results strongly suggest that the MeApv plays a critical role in the onset of aggression following traumatic social experience, and offer the MeA as a potential target for therapeutic interventions.

6.
Autism Res ; 17(7): 1328-1343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949436

ABSTRACT

Although aversive responses to sensory stimuli are common in autism spectrum disorder (ASD), it remains unknown whether the social relevance of aversive sensory inputs affects their processing. We used functional magnetic resonance imaging (fMRI) to investigate neural responses to mildly aversive nonsocial and social sensory stimuli as well as how sensory over-responsivity (SOR) severity relates to these responses. Participants included 21 ASD and 25 typically-developing (TD) youth, aged 8.6-18.0 years. Results showed that TD youth exhibited significant neural discrimination of socially relevant versus irrelevant aversive sensory stimuli, particularly in the amygdala and orbitofrontal cortex (OFC), regions that are crucial for sensory and social processing. In contrast, ASD youth showed reduced neural discrimination of social versus nonsocial stimuli in the amygdala and OFC, as well as overall greater neural responses to nonsocial compared with social stimuli. Moreover, higher SOR in ASD was associated with heightened responses in sensory-motor regions to socially-relevant stimuli. These findings further our understanding of the relationship between sensory and social processing in ASD, suggesting limited attention to the social relevance compared with aversiveness level of sensory input in ASD versus TD youth, particularly in ASD youth with higher SOR.


Subject(s)
Autism Spectrum Disorder , Magnetic Resonance Imaging , Humans , Male , Adolescent , Child , Female , Autism Spectrum Disorder/physiopathology , Amygdala/physiopathology , Social Perception , Brain/physiopathology , Brain/diagnostic imaging , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Brain Mapping/methods
7.
Behav Brain Res ; 472: 115147, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029628

ABSTRACT

Early life adversity has been linked with a higher probability of developing behavioral impairments and environmental manipulation is a strategy that may reduce the negative effects of exposure to adversity in early life. Here, we focused on exploring the influence of environmental enrichment (EE) as a protective factor in the context of early life adversity. We hypothesized that 24 hours of maternal deprivation (MD), in the second week of life, could induce anxiety-like behavior alterations and that exposure to EE could induce resilience to these behaviors due to alterations in the serotonergic system. Male Wistar rats were exposed to MD, on postnatal days 11 and 13, and to EE, after weaning. In adulthood, we performed a series of behavioral tests for fear, anxiety, and locomotor activity. We also measured the levels of serotonin in the amygdala and dorsal raphe nucleus. Our results revealed that MD does not impact fear behavior or the levels of serotonin, while EE decreases locomotor activity in a novel environment and enhances exploration in the predator odor test. EE also decreases serotonin in the amygdala and increases its turnover rate levels. Our findings provide insights into the critical timeframe during which stress exposure impacts the development and confirm that exposure to EE has an independent and protective effect for anxiety-like behaviors later in life.

8.
Neuroscience ; 554: 118-127, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019393

ABSTRACT

Despite significant advances in the study of fear and fear memory formation, little is known about fear learning and expression in females. This omission has been proven surprising, as normal and pathological behaviors are highly influenced by ovarian hormones, particularly estradiol and progesterone. In the current study, we investigated the joint influence of serotonin (5-HT) neurotransmission and estrous cycle phases (low or high levels of estradiol and progesterone) on the expression of conditioned fear in a group of female rats that were previously divided according to their response to stressful stimuli into low or high anxiety-like subjects. The baseline amplitude of the unconditioned acoustic startle responses was high in high-anxiety female rats, with no effect on the estrous cycle observed. Data collected during the proestrus-estrus phase revealed that low-anxiety rats had startle amplitudes similar to those of high-anxiety rats. It is supposed that high-anxiety female rats benefit from increased estradiol and progesterone levels to achieve comparable potentiated startle amplitudes. In contrast, female rats experienced a significant decrease in hormone levels during the Diestrus phase. This decrease is believed to play a role in preventing them from displaying a heightened startle response when faced with strongly aversive stimuli. Data collected after 5-HT and 8-OH-DPAT were administered into the basolateral nuclei and dorsal periaqueductal gray suggest that 5-HT neurotransmission works with progesterone and estrogen to reduce startle potentiation, most likely by activating the serotonin-1A receptor subtype.

9.
bioRxiv ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39026814

ABSTRACT

Temporal dynamics play a central role in models of emotion: "fear" is widely conceptualized as a phasic response to certain-and-imminent danger, whereas "anxiety" is a sustained response to uncertain-or-distal harm. Yet the underlying human neurobiology remains contentious. Leveraging an ethnoracially diverse sample, translationally relevant paradigm, and theory-driven modeling approach, we demonstrate that certain and uncertain threat recruit a shared threat-anticipation circuit. This circuit exhibits persistently elevated activation when anticipating uncertain threat encounters and a transient burst of activation in the moments before certain encounters. For many scientists and clinicians, feelings are the defining feature of human fear and anxiety. Here we used an independently validated brain signature to covertly decode the momentary dynamics of anticipatory distress for the first time. Results mirrored the dynamics of neural activation. These observations provide fresh insights into the neurobiology of threat-elicited emotions and set the stage for more ambitious clinical and mechanistic research.

10.
Neuroimage Clin ; 43: 103644, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39042954

ABSTRACT

AIM: Obsessive-compulsive disorder (OCD) is a heterogeneous condition characterized by distinct symptom subtypes, each with varying pathophysiologies and treatment responses. Recent research has highlighted the role of the amygdala, a brain region that is central to emotion processing, in these variations. However, the role of amygdala subregions with distinct functions has not yet been fully elucidated. In this study, we aimed to clarify the biological mechanisms underlying OCD subtype heterogeneity by investigating the functional connectivity (FC) of amygdala subregions across distinct OCD symptom subtypes. METHODS: Resting-state functional magnetic resonance images were obtained from 107 medication-free OCD patients and 110 healthy controls (HCs). Using centromedial, basolateral, and superficial subregions of the bilateral amygdala as seed regions, whole-brain FC was compared between OCD patients and HCs and among patients with different OCD symptom subtypes, which included contamination fear and washing, obsessive (i.e., harm due to injury, aggression, sexual, and religious), and compulsive (i.e., symmetry, ordering, counting, and checking) subtypes. RESULTS: Compared to HCs, compulsive-type OCD patients exhibited hypoconnectivity between the left centromedial amygdala (CMA) and bilateral superior frontal gyri. Compared with patients with contamination fear and washing OCD subtypes, patients with compulsive-type OCD showed hypoconnectivity between the left CMA and left frontal cortex. CONCLUSIONS: CMA-frontal cortex hypoconnectivity may contribute to the compulsive presentation of OCD through impaired control of behavioral responses to negative emotions. Our findings underscored the potential significance of the distinct neural underpinnings of different OCD manifestations, which could pave the way for more targeted treatment strategies in the future.

11.
Sci Rep ; 14(1): 17034, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043776

ABSTRACT

Racism is an insidious problem with far-reaching effects on the lives of Black, Indigenous, and People of Color (BIPOC). The pervasive negative impact of racism on mental health is well documented. However, less is known about the potential downstream impacts of maternal experiences of racism on offspring neurodevelopment. This study sought to examine evidence for a biological pathway of intergenerational transmission of racism-related trauma. This study examined the effects of self-reported maternal experiences of racism on resting state functional connectivity (rsFC) in n = 25 neonates (13 female, 12 male) birthed by BIPOC mothers. Amygdala and hippocampus are brain regions involved in fear, memory, and anxiety, and are central nodes in brain networks associated with trauma-related change. We used average scores on the Experiences of Racism Scale as a continuous, voxel-wise regressor in seed-based, whole-brain connectivity analysis of anatomically defined amygdala and hippocampus seed regions of interest. All analyses controlled for infant sex and gestational age at the 2-week scanning session. More maternal racism-related experiences were associated with (1) stronger right amygdala rsFC with visual cortex and thalamus; and (2) stronger hippocampus rsFC with visual cortex and a temporo-parietal network, in neonates. The results of this research have implications for understanding how maternal experiences of racism may alter neurodevelopment, and for related social policy.


Subject(s)
Amygdala , Hippocampus , Magnetic Resonance Imaging , Racism , Humans , Female , Male , Amygdala/physiology , Amygdala/diagnostic imaging , Racism/psychology , Hippocampus/physiology , Infant, Newborn , Adult , Rest/physiology , Mothers/psychology , Neural Pathways/physiology
12.
Behav Brain Res ; 472: 115150, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009188

ABSTRACT

INTRODUCTION: Both cannabis use and depressive symptomology increase in prevalence throughout adolescence. Concurrently, the brain is undergoing neurodevelopment in important limbic regions, such as the amygdala. Prior research indicates the amygdala may also be related to cannabis use and depressive symptoms. We aimed to investigate the effects of adolescent cannabis use on amygdala volumes as well as the interaction of cannabis use and amygdala morphometry on depressive symptoms in youth. METHOD: Two-hundred-twenty-four participants (ages 12-15), balanced by sex assigned at birth, were selected from a sub-sample of the Adolescent Brain Cognitive Development (ABCD) Study based on hair toxicology and self-report measures of cannabis use. Participants positive for cannabinoids in hair and/or self-reported cannabis use were demographically matched to youth with no self-reported or confirmed cannabis use. The guardians of these youth reported depression symptoms on the Child Behavioral Checklist. Linear mixed effect models were run investigating cannabis use group on amygdala volumes bilaterally, controlling for whole brain volume and random effects of scanner type. Additional analyses examined cannabis group status and bilateral amygdala volume on depression symptoms. RESULTS: Cannabis use was not significantly associated with amygdala volume but was associated with increased depressive symptoms (p<0.01). Cannabis group interacted with amygdala volume, such that individuals with smaller volumes had increased depressive symptoms within the cannabis group (p's<0.01-0.02). CONCLUSION: Aberrations in amygdala volume based on cannabis use were not found in early adolescence; however, more depressive symptoms were related to cannabis group. Youth who use cannabis and have smaller amygdala volumes were at increased risk for depressive symptomology, suggesting potential neurovulnerabilities to cannabis use.

13.
Trends Cogn Sci ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39054193

ABSTRACT

Although the social role of oxytocin came to light due to sex-specific interactions such as mother-offspring bonding, current understanding of sex differences in the effects of oxytocin on human sociality is limited because of the predominance of all-male samples. With the increasing inclusion of females in intranasal oxytocin research, it is now possible to explore such patterns. Neuroimaging studies reveal relatively consistent sex-differential effects of oxytocin on the activation of brain regions associated with processing social stimuli - particularly the amygdala. Findings from behavioral research are varied but suggest that oxytocin more often facilitates social cognition and positive social interactions in males, with context-dependent effects in each sex. We discuss potential biological and psychological mechanisms underlying the reported sex differences, and conclude with considerations for future research and clinical applications of oxytocin.

14.
Psychiatry Res Neuroimaging ; 343: 111859, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986265

ABSTRACT

Electroconvulsive therapy (ECT) demonstrates favorable outcomes in the management of severe depressive disorders. ECT has been consistently associated with volumetric increases in the amygdala and hippocampus. However, the underlying mechanisms of these structural changes and their association to clinical improvement remains unclear. In this cross-sectional structural MRI study, we assessed the difference in amygdala subnuclei and hippocampus subfields in n = 37 patients with either unipolar or bipolar disorder immediately after eighth ECT sessions compared to (n = 40) demographically matched patients in partial remission who did not receive ECT (NoECT group). Relative to NoECT, the ECT group showed significantly larger bilateral amygdala volumes post-treatment, with the effect originating from the lateral, basal, and paralaminar nuclei and the left corticoamydaloid transition area. No significant group differences were observed for the hippocampal or cortical volumes. ECT was associated with a significant decrease in depressive symptoms. However, there were no significant correlations between amygdala subnuclei volumes and symptom improvement. Our study corroborates previous reports on increased amygdalae volumes following ECT and further identifies the subnuclei driving this effect. However, the therapeutic effect of ECT does not seem to be directly related to structural changes in the amygdala.

15.
bioRxiv ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39005462

ABSTRACT

Subcortical volumes are a promising source of biomarkers and features in biosignatures, and automated methods facilitate extracting them in large, phenotypically rich datasets. However, while extensive research has verified that the automated methods produce volumes that are similar to those generated by expert annotation, the consistency of methods with each other is understudied. Using data from the UK Biobank, we compare the estimates of subcortical volumes produced by two popular software suites: FSL and FreeSurfer. Although most subcortical volumes exhibit good to excellent consistency across the methods, the tools produce diverging estimates of amygdalar volume. Through simulation, we show that this poor consistency can lead to conflicting results, where one but not the other tool suggests statistical significance, or where both tools suggest a significant relationship but in opposite directions. Considering these issues, we discuss several ways in which care should be taken when reporting on relationships involving amygdalar volume.

16.
Article in English | MEDLINE | ID: mdl-39019996

ABSTRACT

Serotonin signaling plays critical roles in social and emotional behaviors. Likewise, decades of research demonstrate that the amygdala is a prime modulator of social behavior. Permanent excitotoxic lesions and transient amygdala inactivation consistently increase social behaviors in non-human primates. In rodents, acute systemic administration of drugs that increase serotonin signaling is associated with decreased social interactions. However, in primates, the direct involvement of serotonin signaling in the amygdala, particularly in affiliative social interaction, remains unexplored. Here, we examined the effects of serotonin manipulations within the amygdala on social behavior in eight pairs of familiar male macaques. We microinfused drugs targeting the serotonin system into either the basolateral (BLA) or central (CeA) amygdala and measured changes in social behavior. Surprisingly, the results demonstrated no significant differences in social behavior following the infusion of a selective serotonin reuptake inhibitor, 5-HT1A agonist or antagonist, 5-HT2A agonist or antagonist, or 5-HT3 agonist or antagonist into either the BLA or CeA. These findings suggest that serotonin signaling in the amygdala does not directly contribute to the regulation of social behavior between familiar conspecifics. Future research should explore alternative mechanisms and potential interactions with other brain regions to gain a comprehensive understanding of the complex neural circuitry governing social behavior.

17.
Zhen Ci Yan Jiu ; 49(7): 667-677, 2024 Jul 25.
Article in English, Chinese | MEDLINE | ID: mdl-39020484

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) of "Zusanli" (ST36) and "Sanyinjiao" (SP6) on cancer pain and concomitant negative emotion in cancer pain model mice, and to explore its molecular mechanisms in the basolateral amygdala (BLA) by using transcriptomics techniques. METHODS: C57BL/6 mice were randomized into sham operation, model and EA groups, with 10 mice in each group. The cancer pain model was established by injecting PBS suspension containing Lewis lung cancer cells into the femur. The mice in the EA group received EA stimulation(1 mA, 2 Hz) on ST36 and SP6 from the 10th day after modeling, 20 min per day for 12 successive days. The bone damage of the distal femur was observed with X-ray and H.E. staining, respectively. The mechanical pain threshold (MPT) was detected by using von Frey. The depression-like behavior was detected by using sucrose-preference test (sucrose preference index in 12 h), and the immobility (feeling of despair) duration of forced swimming within 4 min. The BLA tissue was extracted for RNA sequencing (RNA library construction, and screening differential gene profiling by transcriptomic sequencing) and bioinformatics analysis. The real-time PCR was used to validate the mRNA expression of differentially expressed genes:tumor necrosis factor superfamily 8 (Tnfsf8), bone marrow stromal cell antigen 1 (Bst1), prodynorphin (Pdyn) and voltage-gated sodium channelß4 (Scn4b). RESULTS: H.E. staining and X-ray showed significant bone damage in the distal femur in cancer pain mice. In contrast to the sham operation group, the MPT on the 1st , 4th, 7th , 10th, 14th and 21st day after modeling and sucrose preference index were significantly decreased (P<0.001, P<0.000 1), and the immobility time of the forced swimming was considerably increased in the model group (P<0.001). In contrast to the model group, the MPT values on the 14th and 21st day and sucrose preference index were obviously increased (P<0.000 1, P<0.05), and the immobility time was strikingly decreased in the EA group (P<0.01). RNA sequencing showed that a total of 404 differentially expressed genes (205 up-regulated, 199 down-regulated) were screened in the model group compared with the sham operation group, and a total of 329 differentially expressed genes (206 up-regulated and 123 down-regulated) were screened in the EA group compared with the model group. Venn diagram analysis of the differentially expressed genes showed that 45 up-regulated and 28 down-regulated genes in the model group were completely reversed by EA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the screened differentially expressed genes revealed that the above differential genes were mainly enriched in the ligand receptor activity, cytokine receptor binding, and cytokine activity related to neuro-inflammation, as well as in neuropeptide signaling pathways related to neuronal excitability, and calcium ion mediated signal transduction. The analysis of KEGG pathway showed that the differentially expressed genes were mainly enriched in the inflammation-related pathways, such as interleukin-17 pathway. Validation analysis of the differentially expressed genes showed that the expression levels of Tnfsf8 and Bst1 were significantly up-regulated in the model group compared with the sham operation group (P<0.01, P<0.05), and down-regulated by EA (P<0.01, P<0.05), while the expression levels of Pdyn and Scn4b were down-regulated in the model group in comparison with the sham operation group (P<0.01), and up-regulated by EA (P<0.05, P<0.01), which was consistent with the changing trend of the gene sequencing results. CONCLUSIONS: Acupuncture of ST36 and SP6 can significantly relieve cancer pain and concomitant negative emotion in cancer pain mice, which may be related to its functions in alleviating neuro-inflammation and relieving the abnormal activities of specific neurons in the BLA.


Subject(s)
Cancer Pain , Depression , Electroacupuncture , Mice, Inbred C57BL , Animals , Mice , Depression/therapy , Depression/metabolism , Depression/genetics , Depression/etiology , Humans , Cancer Pain/therapy , Cancer Pain/metabolism , Cancer Pain/genetics , Male , Basolateral Nuclear Complex/metabolism , Transcriptome , Female , Acupuncture Points , Enkephalins/metabolism , Enkephalins/genetics
18.
Philos Trans R Soc Lond B Biol Sci ; 379(1908): 20230245, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39005034

ABSTRACT

It has been reported that threatening and non-threatening visual stimuli can be distinguished based on the multi-voxel patterns of haemodynamic activity in the human ventral visual stream. Do these findings mean that there may be evolutionarily hardwired mechanisms within early perception, for the fast and automatic detection of threat, and maybe even for the generation of the subjective experience of fear? In this human neuroimaging study, we presented participants ('fear' group: N = 30; 'no fear' group: N = 30) with 2700 images of animals that could trigger subjective fear or not as a function of the individual's idiosyncratic 'fear profiles' (i.e. fear ratings of animals reported by a given participant). We provide evidence that the ventral visual stream may represent affectively neutral visual features that are statistically associated with fear ratings of participants, without representing the subjective experience of fear itself. More specifically, we show that patterns of haemodynamic activity predictive of a specific 'fear profile' can be observed in the ventral visual stream whether a participant reports being afraid of the stimuli or not. Further, we found that the multivariate information synchronization between ventral visual areas and prefrontal regions distinguished participants who reported being subjectively afraid of the stimuli from those who did not. Together, these findings support the view that the subjective experience of fear may depend on the relevant visual information triggering implicit metacognitive mechanisms in the prefrontal cortex. This article is part of the theme issue 'Sensing and feeling: an integrative approach to sensory processing and emotional experience'.


Subject(s)
Fear , Magnetic Resonance Imaging , Prefrontal Cortex , Visual Cortex , Humans , Fear/physiology , Prefrontal Cortex/physiology , Male , Visual Cortex/physiology , Adult , Female , Young Adult , Visual Perception/physiology , Photic Stimulation
19.
Spora ; 10(1): 65-82, 2024.
Article in English | MEDLINE | ID: mdl-39006246

ABSTRACT

Neuropathic pain is caused by nerve injury and involves brain areas such as the central nucleus of the amygdala (CeA). We developed the first 3-D agent-based model (ABM) of neuropathic pain-related neurons in the CeA using NetLogo3D. The execution time of a single ABM simulation using realistic parameters (e.g., 13,000 neurons and 22,000+ neural connections) is an important factor in the model's usability. In this paper, we describe our efforts to improve the computational efficiency of our 3-D ABM, which resulted in a 28% reduction in execution time on average for a typical simulation. With this upgraded model, we performed one- and two-parameter sensitivity analyses to study the sensitivity of model output to variability in several key parameters along the anterior to posterior axis of the CeA. These results highlight the importance of computational modeling in exploring spatial and cell-type specific properties of brain regions to inform future wet lab experiments.

20.
Neuron ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39032491

ABSTRACT

Erasing traumatic memory during memory reconsolidation is a promising retrieval-extinction strategy for post-traumatic stress disorder (PTSD). Here, we developed an acute social defeat stress (SDS) mouse model with short-term and re-exposure-evoked long-term social avoidance. SDS-associated traumatic memories were identified to be stored in basolateral amygdala (BLA) engram cells. A single intraperitoneal administration of subanesthetic-dose ketamine within, but not beyond, the re-exposure time window significantly alleviates SDS-induced social avoidance, which reduces the activity and quantity of reactivated BLA engram cells. Furthermore, activation or inhibition of dopaminergic projections from the ventral tegmental area to the BLA effectively mimics or blocks the therapeutic effect of re-exposure with ketamine and is dopamine D2 receptor dependent. Single-cell RNA sequencing reveals that re-exposure with ketamine triggered significant changes in memory-related pathways in the BLA. Together, our research advances the understanding of how ketamine mitigates PTSD symptoms and offers promising avenues for developing more effective treatments for trauma-related disorders.

SELECTION OF CITATIONS
SEARCH DETAIL