Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Avicenna J Phytomed ; 14(4): 455-469, 2024.
Article in English | MEDLINE | ID: mdl-38952773

ABSTRACT

Objective: This study assessed the cardioprotective properties of Persicaria maculosa (PME) and Citrus sinensis (CME) hydro-methanolic extracts, besides Citrus sinensis aqueous extract (CWE) against doxorubicin (DOX)-induced cardiotoxicity. Materials and Methods: The extracts were characterized. Mice were divided into eight groups: control (saline), DOX, protected (injected with 200 mg/kg of PME, CWE or CME for 21 days, orally, and DOX), and extracts (PME, CWE or CME administration, orally, for 21 days). DOX was injected (5 mg/kg, ip) on days 8, 13 and 18 of the experiment. Cardiac tumor necrosis factor-alpha (TNF-α), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and carbonyl reductase 1 (CBR1) expression levels, besides superoxide dismutase, catalase, malondialdehyde, nitric oxide and total protein levels were evaluated. Serum lactate dehydrogenase, creatine phosphokinase cardiac isoenzyme, aspartate transaminase, cholesterol, triglycerides and creatinine levels, as well as the cardiac tissues were examined. Results: Comparing with the control, DOX considerably (p<0.01) up-regulated TNF-α expression, malondialdehyde, nitric oxide, cardiac enzymes, lipids and creatinine levels, while it significantly (p<0.01) down-regulated Nrf2 and CBR1. Additionally, DOX interfered with antioxidant enzymes' activities (p<0.01). Conversely, protected groups showed a significant (p<0.01) amelioration of DOX-induced cardiotoxic effects. Conclusion: The current study provides a new understanding of P. maculosa and C. sinensis cardioprotective mechanisms. The extracts' cardioprotective effects may be due to their antioxidant activities, ability to maintain the redox homeostasis through regulation of important antioxidant genes and primary antioxidant enzymes, and capability to recover inflammatory cytokines and lipids levels. Noteworthy, the tested extracts showed no toxic changes on the normal mice.

2.
Heliyon ; 10(11): e31971, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947424

ABSTRACT

Objective: To analyze the effect of allicin on the immunoreactivity of osteosarcoma (OS) cells and further explore whether its mechanism is related to the long non-coding Ribonucleic Acid (lncRNA) CBR3-AS1/miR-145-5p/GRP78 axis, so as to provide clinical evidence. Methods: The human OS cell line Saos-2 was treated with allicin at 25, 50, and 100 µmol/L, respectively, to observe changes in cell biological behaviors. Subsequently, CBR3-AS1 abnormal expression vectors were constructed and transfected into Saos-2 to discuss their influence on OS. Furthermore, the regulatory relationship between allicin and the CBR3-AS1/miR-145-5p/GRP78 axis was validated by rescue experiments. Finally, a nude mice tumorigenesis experiment was carried out to analyze the effects of allicin and CBR3-AS1/miR-145-5p/GRP78 axis on the growth of living tumors. Alterations in T-lymphocyte subsets were also detected to assess the effect of allicin on OS immunoreactivity. Results: With the increase of allicin concentration, Saos-2 activity decreased and apoptosis increased (P < 0.05). In addition, the expression of CBR3-AS1 and GRP78 decreased after allicin intervention, while miR-145-5p increased (P < 0.05). Silencing CBR3-AS1 led to reduced Saos-2 activity, enhanced apoptosis, and activated mitophagy and endoplasmic reticulum stress (P < 0.05). In the rescue experiment, the effect of CBR3-AS1 on OS cells was reversed by silencing miR-145-5p, while the impact of miR-145-5p was reversed by GRP78. Finally, the tumorigenesis experiment in nude mice confirmed the regulatory effects of allicin and CBR3-AS1/miR-145-5p/GRP78 on tumor growth in vivo. Meanwhile, it was seen that allicin activated CD4+CD8+ in OS mice, confirming that allicin has the effect of activating OS immunoreactivity. Conclusions: Allicin activates OS immunoreactivity and induces apoptosis through the CBR3-AS1/miR-145-5p/GRP78 molecular axis.

4.
Oncol Lett ; 28(2): 359, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38881711

ABSTRACT

High expression of carbonyl reductase 1 (CBR1) protein in ovarian cancer cells inhibits tumor growth and metastasis. However, the underlying mechanism is unknown. To investigate the mechanism by which CBR1 suppresses tumor growth, the present study generated ovarian cancer cells that constitutively overexpress human CBR1 (hCBR1) protein. Ovarian cancer cell lines (OVCAR-3 and SK-OV-3) were transfected with a plasmid encoding hCBR1, followed by selection with G418 to isolate hCBR1-overexpressing lines. The proliferation rates of hCBR1-overexpressing cells were then compared with those of negative control and wild-type cells. Overexpression of hCBR1 led to significant inhibition of proliferation (P<0.05). Subsequently, to investigate changes in intracellular signaling pathways, cellular proteins were extracted and subjected to proteome analysis using liquid chromatography followed by mass spectrometry. There was an inverse correlation between CBR1 protein expression and cell proliferation. In addition, Ingenuity Pathway Analysis of hCBR1-overexpressing cell lines was performed, which revealed changes in the expression of proteins involved in signaling pathways related to growth regulation. Of these, the eukaryotic translation initiation factor 2 (eIF2) signaling pathway was upregulated most prominently. Thus, alterations in multiple tumor-related signaling pathways, including eIF2 signaling, may lead to growth suppression. Taken together, the present data may lead to the development of new drugs that target CBR1 and related signaling pathways, thereby improving outcomes for patients with ovarian cancer.

5.
Polymers (Basel) ; 16(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891532

ABSTRACT

The freeze-drying of biopolymers presents a fresh option with greater potential for application in soil subgrade stabilization. A freeze-dried combination of ß-glucan (BG) and γ-poly-glutamic acid (GPA) biopolymers was used to treat low compressible clay (CL) and low compressible silt (ML) soils in dosages of 0.5%, 1%, 1.5%, and 2%. The California bearing ratio (CBR) test for the treated specimens was performed under three curing conditions: (i) thermal curing at 60 °C, (ii) air-curing for seven days followed by submergence for 4 days, and (iii) no curing, i.e., tested immediately after mixing. To investigate the influence of shear strength on the freeze-dried biopolymer-stabilized soil specimens and their variations with aging, unconfined compressive strength (UCS) tests were conducted after thermal curing at 60 °C for 3 days, 7 days, and 7 days of thermal curing followed by 21 days of air curing. The maximum CBR of 125.3% was observed for thermally cured CL and a minimum CBR of 6.1% was observed under soaked curing conditions for ML soils. Scanning electron microscopy (SEM), infrared spectroscopy, average particle size, permeability, and adsorption tests revealed the pore filling, biopolymer adsorption and coating on the soil surface, and agglomeration of the soil along with the presence of hydrogen bonds, covalent amide bonds, and Van der Waals forces that contributed to the stiffening of the stabilized soil. Using three-dimensional (3D) finite element analysis (FEA) and layered elastic analysis (LEA), a mechanistic-empirical pavement design was carried out for the stabilized soil and a design thickness catalog was prepared for the maximum CBR. The cost reductions for a 1 km section of the pavement were expected to be 12.5%.

6.
Sci Rep ; 14(1): 12925, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839856

ABSTRACT

Waste glass is hugely present in Morocco, and can be recycled for many geotechnical purposes, including road construction. In contrast, earthworks often produce significant amounts of clay waste that lack the necessary technical criteria for use as barriers. The present work aimed to study the influence of the addition of glass waste on the evolution of the mechanical characteristics of clays stabilized with crushed glass (particles less than 63 µm). The work consists of carrying out CBR, Proctor, and shear tests on natural clay taken as a reference and mixtures (clay-crushed glass) at different percentages. Results showed that the addition of glass to clay decreases the swelling and compaction indices along with modifying the intrinsic characteristics of the clay.

7.
Int J Implant Dent ; 10(1): 21, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691252

ABSTRACT

BACKGROUND: Beta-tricalcium phosphate (ß-TCP) is a biocompatible ceramic material widely used in the field of oral regeneration. Due to its excellent biological and mechanical properties, it is increasingly utilized for alveolar ridge augmentation or guided bone regeneration (GBR). With recent advances in computer-aided design and manufacturing (CAD/CAM), ß-TCP can now be used in the form of digitally designed patient-specific scaffolds for customized bone regeneration (CBR) of advanced defects in a two-stage implant therapy concept. In this case report following the CARE case report guidelines, we present a novel application of a patient-specific ß-TCP scaffold in pre-implant mandibular alveolar ridge augmentation. CASE PRESENTATION: A 63-year-old female patient with significant horizontal bone loss in the posterior mandible was treated with a custom ß-TCP scaffold in the context of a two-stage backward-planned implant therapy. Cone-beam computed tomography nine months after augmentation showed successful integration of the scaffold into the surrounding bone, allowing implant placement. Follow-up until two years after initial surgery showed excellent oral and peri-implant health. CONCLUSIONS: This case highlights the potential of patient-specific ß-TCP scaffolds for alveolar ridge augmentation and their advantage over traditional techniques, including avoidance of xeno-, allo-, and autografts. The results provide encouraging evidence for their use in clinical practice. Patient-specific ß-TCP scaffolds may be a promising alternative for clinicians seeking to provide their patients with safe, predictable, and effective alveolar ridge augmentation results in customized bone regeneration procedures.


Subject(s)
Alveolar Ridge Augmentation , Calcium Phosphates , Cone-Beam Computed Tomography , Tissue Scaffolds , Humans , Alveolar Ridge Augmentation/methods , Calcium Phosphates/therapeutic use , Female , Middle Aged , Mandible/surgery , Bone Regeneration/drug effects , Dental Implantation, Endosseous/methods , Computer-Aided Design , Alveolar Bone Loss/surgery
8.
J Pregnancy ; 2024: 6620156, 2024.
Article in English | MEDLINE | ID: mdl-38745869

ABSTRACT

Background: The cannabinoid receptor (CBR) plays a significant role in oogenesis, pregnancy, and childbirth. It might also play a significant role in preterm birth (PTB). The aim of the study was to investigate the association between the expression of the CBR in the placenta and the incidence of PTB. Methods: This prospective, observational, multicentre preliminary study was conducted on placental samples obtained from 109 women. The study included 95 patients hospitalized due to the high risk of PTB. They were divided into two groups: Group 1, where the expression of the CBR1 and CBR1a was analyzed, and Group 2, in which we examined CBR2 expression. The control group, that is, Group 3, consisted of 14 women who delivered at term, and their placentas were tested for the presence of all three receptor types (CBR1, CBR1a, and CBR2). Results: The study used reverse transcription and real-time PCR methods to assess the expression of CBRs in the placental tissues. The expression of the CBR2, CBR1, and CBR1a receptors was significantly lower in the placentas of women after PTB compared to those after term births, p = 0.038, 0.033, and 0.034, respectively. Conclusions: The presence of CBR mRNA in the human placental tissue was confirmed. The decreased expression of CBRs could serve as an indicator in predicting PTB.


Subject(s)
Placenta , Premature Birth , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Humans , Female , Pregnancy , Placenta/metabolism , Premature Birth/metabolism , Prospective Studies , Adult , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Case-Control Studies , RNA, Messenger/metabolism , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/genetics
9.
Discov Oncol ; 15(1): 154, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733440

ABSTRACT

Reprogramming of the serine synthesis pathway (SSP) is intricately linked to the progression of epithelial ovarian cancer (EOC). CBR-5884, a selective small-molecule inhibitor targeting phosphoglycerate dehydrogenase (PHGDH), effectively impedes the de novo synthesis of serine within cancer cells. This study aimed to evaluate the inhibitory effect of CBR-5884 on EOC cells and delineate its specific mechanism, thereby proposing a novel therapeutic approach for treating EOC. The suppression of serine biosynthesis after CBR-5884 treatment was evaluated using RNA sequencing and a serine assay kit, and the results showed that CBR-5884 effectively downregulated serine biosynthesis in EOC cells, particularly those expressing high levels of PHGDH. In vitro studies revealed that CBR-5884 demonstrated significant antitumor effects and suppressed migration and invasion of EOC cells through down-regulation of the integrin subunit beta 4 (ITGB4)/extracellular signal-regulated kinase (ERK)/epithelial-mesenchymal transition signal axis. Additionally, CBR-5884 mitigated the stemness of EOC cells and heightened their sensitivity to chemotherapy. Moreover, in vivo studies revealed that CBR-5884 significantly delayed tumor growth, with histological analysis indicating the safety profile of CBR-5884. Finally, the patient-derived organoid (PDO) models were utilized to explore the preclinical efficacy of CBR-5884 against EOC cells, and the results unveiled that CBR-5884 impeded proliferation and downregulated the expression of ITGB4 in EOC PDO models. Our findings supports the anticancer properties of CBR-5884 in EOC cells exhibiting high PHGDH expression, manifesting through the suppression of proliferation, migration, and invasion, while enhancing chemotherapy sensitivity, suggesting that CBR-5884 holds promise as an efficacious strategy for the treatment of EOC.

10.
Indian J Surg Oncol ; 15(2): 321-331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741631

ABSTRACT

Head and neck squamous cell carcinomas (HNSCC) have proven to be inherently resistant to systemic treatments as a result of histological, molecular, and etiological heterogeneity, with limited responses seen after second-line therapy and beyond. With limited treatment options after progression on systemic chemotherapy in HNSCCs, immunotherapy has a role to play with improved results. In this prospective, observational, non-randomized, open-label study, a total of 12 patients with advanced, relapsed, or metastatic HNSCC received Inj. Nivolumab weight-based dose of 3 mg per kg, intravenously every 2 weeks along with low-dose capecitabine 500 mg twice a day, was prospectively assessed. The patient's clinical, hematological, and staging characteristics were described and the clinical benefit rate (CBR) was calculated. A total of 12 patients received the combined metronomic chemo-immunotherapy (CMCI). The majority of patients were belonging to ECOG-PS 1(66%), with all patients being in stage IV disease. Six, four, and two patients received immunotherapy as the 5th, 3rd, and 4th line of therapy, respectively. Nivolumab and low-dose capecitabine were used in all 12 patients. CBR was seen in 66% (8/12) of patients, one patient died due to hepatitis and hepatic encephalopathy, another patient died due to pneumonia and respiratory complications, two patients had progressive disease, and two patients with stable disease discontinued treatment because of financial constraints and kept on capecitabine alone. The majority tolerated therapy well with no grade 3/4 immune-related adverse events (IRAEs). Two patients required supportive therapy with packed red cell transfusion and albumin infusions. Six-month overall survival (OS) and progression-free survival (PFS) in the study population were 83.3% and 66.6%, respectively. In conclusion, nivolumab along with metronomic chemotherapy with low-dose capecitabine was very well tolerated and exhibited anti-tumor activity with a CBR of 66%, 6-month OS of 83.3%, and 6-month PFS of 66.6%, in extensively pretreated patients with HNSCCs. Additional studies of nivolumab and metronomic chemotherapy and immuno-immuno combination therapy in these diseases are ongoing.

11.
Cells ; 13(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38786097

ABSTRACT

Neurodegenerative diseases (NDDs) are progressive multifactorial disorders of the nervous system sharing common pathogenic features, including intracellular misfolded protein aggregation, mitochondrial deficit, and inflammation. Taking into consideration the multifaceted nature of NDDs, development of multitarget-directed ligands (MTDLs) has evolved as an attractive therapeutic strategy. Compounds that target the cannabinoid receptor type II (CB2R) are rapidly emerging as novel effective MTDLs against common NDDs, such as Alzheimer's disease (AD). We recently developed the first CB2R bitopic/dualsteric ligand, namely FD22a, which revealed the ability to induce neuroprotection with fewer side effects. To explore the potential of FD22a as a multitarget drug for the treatment of NDDs, we investigated here its ability to prevent the toxic effect of ß-amyloid (Aß25-35 peptide) on human cellular models of neurodegeneration, such as microglia (HMC3) and glioblastoma (U87-MG) cell lines. Our results displayed that FD22a efficiently prevented Aß25-35 cytotoxic and proinflammatory effects in both cell lines and counteracted ß-amyloid-induced depression of autophagy in U87-MG cells. Notably, a quantitative proteomic analysis of U87-MG cells revealed that FD22a was able to potently stimulate the autophagy-lysosomal pathway (ALP) by activating its master transcriptional regulator TFEB, ultimately increasing the potential of this novel CB2R bitopic/dualsteric ligand as a multitarget drug for the treatment of NDDs.


Subject(s)
Amyloid beta-Peptides , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Proteomics , Receptor, Cannabinoid, CB2 , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Proteomics/methods , Receptor, Cannabinoid, CB2/metabolism , Ligands , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Autophagy/drug effects , Neuroglia/drug effects , Neuroglia/metabolism , Cell Line, Tumor
12.
mBio ; 15(5): e0063324, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587428

ABSTRACT

Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE: Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.


Subject(s)
Antifungal Agents , CDPdiacylglycerol-Serine O-Phosphatidyltransferase , Candida albicans , Enzyme Inhibitors , Candida albicans/drug effects , Candida albicans/enzymology , Candida albicans/genetics , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/genetics , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/metabolism , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Microbial Sensitivity Tests , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Phosphatidylserines/metabolism , Furans , Thiophenes
13.
Reprod Med Biol ; 23(1): e12572, 2024.
Article in English | MEDLINE | ID: mdl-38571514

ABSTRACT

Purpose: To investigate whether long noncoding RNAs (lncRNAs) are involved in the development or malignant behavior of ovarian high-grade serous carcinoma (HGSC), we attempted to identify lncRNAs specific to HGSC. Methods: Total RNAs were isolated from HGSC, normal ovarian, and fallopian tube tissue samples and were subjected to a PCR array that can analyze 84 cancer-associated lncRNAs. The lncRNAs that were upregulated and downregulated in HGSC in comparison to multiple samples of normal ovary and fallopian tube were validated by real-time RT-PCR. To infer the function, ovarian cancer cell lines that overexpress the identified lncRNAs were established, and the activation of cell proliferation, migration, and invasion was analyzed. Results: Eleven lncRNAs (ACTA2-AS1, ADAMTS9-AS2, CBR3-AS1, HAND2-AS1, IPW, LINC00312, LINC00887, MEG3, NBR2, TSIX, and XIST) were downregulated in HGSC samples. We established the cell lines that overexpress ADAMTS9-AS2, CBR3-AS1, or NBR2. In cell lines overexpressing ADAMTS9-AS2, cell proliferation was suppressed, but migration and invasion were promoted. In cell lines overexpressing CBR3-AS1 or NBR2, cell migration tended to be promoted, although cell proliferation and invasion were unchanged. Conclusion: We identified eleven lncRNAs that were specifically downregulated in HGSC. Of these, CBR3-AS1, NBR2, and ADAMTS9-AS2 had unique functions in the malignant behaviors of HGSC.

14.
J Educ Health Promot ; 13: 24, 2024.
Article in English | MEDLINE | ID: mdl-38545318

ABSTRACT

BACKGROUND: The fast growth of science and technology in the 21st century has made it necessary for advances in many sectors, including social, economic, educational, and health. Physiotherapists must have highly developed critical thinking abilities, such as creative, critical, problem-solving, and analytical thinking, to deal with these changes. Creativity is the capacity to view, shape, and organize the world in a unique way, whereas critical thinking is the ability to think outside the box, notice parts that others cannot see, be open to new ideas, and never be afraid to attempt new things. All of the continually developing and changing knowledge cannot be included in educational programs for physiotherapy students. The Six Thinking Hats were designed by Edward de Bono. The "Six Thinking Hats" concept is a teaching strategy for encouraging creative thinking by organizing and presenting ideas within a predetermined framework. The goal of the study was to apply the Six Thinking Hats model to physiotherapy themes in order to create a creative teaching technique and get feedback by fostering the critical thinking abilities of physiotherapy students. MATERIALS AND METHODS: During the 2021-2022 academic year, there were 42 students registered for III and IV BPT students enrolled for physiotherapy course; however, the research sample comprised 41 students. The course included 6 h of theory and 18 h of clinical sessions. Students were taught by two instructors via a PowerPoint presentation on SCI, obesity, and for further practice, they were given two case studies taught by Six Thinking Hats model. After the class, each group received a set of hats in one of six colors to use the Six Thinking Hats method effectively, and then students were asked to provide opinions on the Six Thinking Hats model of learning. Data analysis and response reporting were conducted, using literature and student comments. RESULTS: The Six Thinking Hats model was discovered to be more efficient in comprehending topics and provides all-encompassing care. The ability to understand patients' views, see both the positive and negative aspects in conditions, develop their ability to think critically, and create with unique concepts all improved for the students. About 90.2% of students stated that they learned to think from different aspects, 85.4% of the students stated that it ensured they considered the patient holistically, 87.8% of the students stated that the method allowed for sharing different ideas and thoughts, 75.6% that it helped them to produce creative ideas. Overall, 95% of students agreed that the Six Thinking Hats approach was better than conventional lectures and case studies, with 5% disagreeing. CONCLUSION: This study concluded that the Six Thinking Hats model of learning is a creative teaching method that is useful for the development of physiotherapy students' critical thinking. Skills and having this type of study in the physiotherapy literature add to the improvement and enrichment of physiotherapy education.

15.
Xenobiotica ; 54(3): 160-170, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38491961

ABSTRACT

This study investigates the impact of single nucleotide polymorphisms in genes (SLC22A16 and CBR1) involved in the pharmacokinetics and toxicity of doxorubicin (DOX) in Egyptian female patients with breast cancer.Patients administered DOX (60 mg/m2) for 4 cycles every 3 weeks. The peak DOX plasma concentration was measured using a validated chromatographic method. The genotyping for the selected SNPs, SLC22A16 T > C (rs714368), and CBR1 C > T (rs20572), was performed by RT-PCR. Patients were monitored for hematological and cardiac toxicities.The variant carriers of CBR1 C > T (rs20572) exhibited significantly higher DOX concentration, but no significant association to DOX-induced hematological toxicity. On the other hand, SLC22A16 T > C (rs714368) had no significant influence on DOX plasma concentration, but was significantly correlated with lower risk of neutropenia (OR 0.31, 95% CI 0.12-0.75, p = 0.01) and leukopoenia (OR 0.18, 95% CI 0.07-0.5, p = 0.001). DOX-related cardiotoxicity was correlated with the cumulative dose of DOX (R = 0.238, p = 0.017), but not with any of the two examined SNPs.Genetic polymorphisms in SLC22A16 and CBR1 may explain the inter-individual variations in DOX pharmacokinetics and toxicity. Using pharmacogenetic testing is important to customise drug therapy for cancer patients treated with anthracyclines.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Pharmacogenetics , Egypt , Doxorubicin/adverse effects , Polymorphism, Single Nucleotide , Cardiotoxicity
16.
Eur J Med Chem ; 267: 116203, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38342014

ABSTRACT

BACKGROUND: Quercetin is widely distributed in nature and abundant in the human diet, which exhibits diverse biological activities and potential medical benefits. However, there remains a lack of comprehensive understanding about its cellular targets, impeding its in-depth mechanistic studies and clinical applications. PURPOSE: This study aimed to profile protein targets of quercetin at the proteome level. METHODS: A label-free CETSA-MS proteomics technique was employed for target enrichment and identification. The R package Inflect was used for melting curve fitting and target selection. D3Pocket and LiBiSco tools were used for binding pocket prediction and binding pocket analysis. Western blotting, molecular docking, site-directed mutagenesis and pull-down assays were used for target verification and validation. RESULTS: We curated a library of direct binding targets of quercetin in cells. This library comprises 37 proteins that show increased thermal stability upon quercetin binding and 33 proteins that display decreased thermal stability. Through Western blotting, molecular docking, site-directed mutagenesis and pull-down assays, we validated CBR1 and GSK3A from the stabilized protein group and MAPK1 from the destabilized group as direct binding targets of quercetin. Moreover, we characterized the shared chemical properties of the binding pockets of quercetin with targets. CONCLUSION: Our findings deepen our understanding of the proteins pivotal to the bioactivity of quercetin and lay the groundwork for further exploration into its mechanisms of action and potential clinical applications.


Subject(s)
Proteome , Quercetin , Humans , Quercetin/pharmacology , Quercetin/chemistry , Molecular Docking Simulation , Proteome/metabolism , Mass Spectrometry
17.
S Afr J Physiother ; 80(1): 1965, 2024.
Article in English | MEDLINE | ID: mdl-38322651

ABSTRACT

Background: Community-based rehabilitation (CBR) is a World Health Organization (WHO) strategy for social inclusion, equalisation of opportunities and provision of essential services for people with disabilities (PWDs). Community-based rehabilitation is a multi-sectoral strategy that requires all stakeholders to participate equally in its implementation. KwaZulu-Natal has implemented CBR for over two decades, with various stakeholders at the forefront of implementation. However, the status of stakeholder engagement, collaboration and coordination is unknown. Objective: The objective of our study was to understand how CBR is implemented in KwaZulu-Natal and the roles of each stakeholder in its implementation, with a focus, on managers from government and non-governmental organisations. Method: A descriptive explorative approach using semi-structured interviews was used to collect data from 20 managers from various stakeholders involved in implementing CBR in KwaZulu-Natal. Data were transcribed and analysed using thematic analysis. Results: The findings revealed five dominant themes: (1) the understanding of concepts, (2) missed opportunities for implementing CBR, (3) barriers to implementing CBR, (4) benefits to implementing CBR and (5) recommendations for future implementation. Conclusion: A formal management structure with clear roles and responsibilities was fundamental for implementation. Collaboration, coordination and planning were believed to be the critical roles of managers in the implementation of CBR. Training, awareness and sharing of resources among stakeholders were also identified as important factors in implementing CBR in KwaZulu-Natal. Clinical implications: Our study will assist managers and clinicians to improve their planning and implementation of CBR.

18.
Sci Rep ; 14(1): 4854, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418474

ABSTRACT

A large area of coarse-grained saline soil is distributed in saline soil areas, and chlorine saline soil with a high salt content is a typical representative. The dynamic resilient modulus was accurately predicted using the California-bearing ratio (CBR) value to determine the relationship between the dynamic resilient modulus of coarse-grained chloride saline soil and its CBR value. Indoor dynamic triaxial tests and CBR tests were conducted to investigate the evolution of the dynamic resilient modulus (MR) and CBR of coarse-grained chlorine saline soil under the influence of the stress level, water content, and salt content. The test results showed that the dynamic resilient modulus increased with an increase in the confining pressure and bulk stress and decreased as the deviator stress increased; however, the CBR increased with an increase in the corresponding unit pressure. The higher the salt and water contents, the more obvious the influence of stress on the dynamic resilient modulus and CBR value. Under the same stress level, the decrease in the dynamic resilient modulus and CBR gradually increased with increasing salt and moisture content, and the effect of salt tended to be more significant than that of water. Based on the correlation between the dynamic resilient modulus and CBR revealed by the experiment, a more widely applicable model was selected from the existing theoretical models related to CBR for the regression analysis of the test data, and a prediction model of the dynamic resilient modulus based on the CBR value was proposed (MR = 21.06CBR0.52). This prediction model had a high correlation coefficient (R2 = 0.893) and could effectively predict the dynamic resilient modulus of coarse-grained chlorine saline soil using CBR values. The results provide a simple and reliable method for determining the design parameters of a coarse-grained saline soil subgrade.

19.
Arch Toxicol ; 98(3): 807-820, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38175295

ABSTRACT

The most important dose-limiting factor of the anthracycline idarubicin is the high risk of cardiotoxicity, in which the secondary alcohol metabolite idarubicinol plays an important role. It is not yet clear which enzymes are most important for the formation of idarubicinol and which inhibitors might be suitable to suppress this metabolic step and thus would be promising concomitant drugs to reduce idarubicin-associated cardiotoxicity. We, therefore, established and validated a mass spectrometry method for intracellular quantification of idarubicin and idarubicinol and investigated idarubicinol formation in different cell lines and its inhibition by known inhibitors of the aldo-keto reductases AKR1A1, AKR1B1, and AKR1C3 and the carbonyl reductases CBR1/3. The enzyme expression pattern differed among the cell lines with dominant expression of CBR1/3 in HEK293 and MCF-7 and very high expression of AKR1C3 in HepG2 cells. In HEK293 and MCF-7 cells, menadione was the most potent inhibitor (IC50 = 1.6 and 9.8 µM), while in HepG2 cells, ranirestat was most potent (IC50 = 0.4 µM), suggesting that ranirestat is not a selective AKR1B1 inhibitor, but also an AKR1C3 inhibitor. Over-expression of AKR1C3 verified the importance of AKR1C3 for idarubicinol formation and showed that ranirestat is also a potent inhibitor of this enzyme. Taken together, our study underlines the importance of AKR1C3 and CBR1 for the reduction of idarubicin and identifies potent inhibitors of metabolic formation of the cardiotoxic idarubicinol, which should now be tested in vivo to evaluate whether such combinations can increase the cardiac safety of idarubicin therapies while preserving its efficacy.


Subject(s)
Cardiotoxicity , Daunorubicin/analogs & derivatives , Idarubicin , Pyrazines , Spiro Compounds , Humans , Idarubicin/toxicity , Idarubicin/metabolism , Aldo-Keto Reductases , HEK293 Cells , Aldehyde Reductase
20.
Int J Legal Med ; 138(1): 207-227, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37338605

ABSTRACT

OBJECTIVE: Application of Tandem Mass Tags (TMT)-based LC-MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI. METHODS: A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague-Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and ß-APP immunohistochemical staining). TMT combined with LC-MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans. RESULTS: Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans. CONCLUSION: Using TMT combined with LC-MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and ß-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Humans , Rats , Animals , Rats, Sprague-Dawley , Chromatography, Liquid , Proteomics/methods , Brain Stem/metabolism , Biomarkers/metabolism , Cytochrome P450 Family 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL