Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.829
Filter
1.
Adv Sci (Weinh) ; : e2403778, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992962

ABSTRACT

Solution-processable perovskite-based devices are potentially very interesting because of their relatively cheap fabrication cost but outstanding optoelectronic performance. However, the solution spin-coating process involves complicated processes, including perovskite solution droplets, nucleation of perovskite, and formation of intermediate perovskite films, resulting in complicated crystallization pathways for perovskite films under annealing. Understanding and therefore controlling the fabrication process of perovskites is difficult. Recently, synchrotron radiation-based in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) techniques, which possess the advantages of high collimation, high resolution, and high brightness, have enabled to bridge complicated perovskite structure information with device performance by revealing the real-time crystallization pathways of perovskites during the spin-coating process. Herein, the developments of synchrotron radiation-based in situ GIWAXS are discussed in the study of the crystallization process of perovskites, especially revealing the important crystallization mechanisms of state-of-the-art perovskite optoelectronic devices with high performance. At the end, several potential applications and challenges associated with in situ GIWAXS techniques for perovskite-based devices are highlighted.

2.
Fish Shellfish Immunol ; 151: 109754, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977113

ABSTRACT

Copper (Cu) is a crucial element that plays a vital role in facilitating proper biological activities in living organisms. In this study, copper oxide nanoparticles (CuO NPs) were synthesized using a straightforward precipitation chemical method from a copper nitrate precursor at a temperature of 85 °C. Subsequently, these NPs were coated with the aqueous extract of Sargassum angustifolium algae. The size, morphology, and coating of the NPs were analyzed through various methods, revealing dimensions of approximately 50 nm, a multidimensional shaped structure, and successful algae coating. The antibacterial activity of both coated and uncoated CuO NPs against Vibrio harveyi, a significant pathogen in Litopenaeus vannamei, was investigated. Results indicated that the minimum inhibitory concentration (MIC) for uncoated CuO NPs was 1000 µg/mL, whereas for coated CuO NPs, it was 500 µg/mL. Moreover, the antioxidant activity of the synthesized NPs was assessed. Interestingly, uncoated CuO NPs exhibited superior antioxidant activity (IC50 ≥ 16 µg/mL). The study also explored the cytotoxicity of different concentrations (10-100 µg/mL) of both coated and uncoated CuO NPs. Following 48 h of incubation, cell viability assays on shrimp hemocytes and human lymphocytes were conducted. The findings indicated that CuO NPs coated with alga extract at a concentration of 10 µg/mL increased shrimp hemocyte viability. In contrast, uncoated CuO NPs at a concentration of 25 µg/mL and higher, as well as CuO NPs at a concentration of 50 µg/mL and higher, led to a decrease in shrimp hemocyte survival. Notably, this study represents the first quantitative assessment of the toxicity of CuO NPs on shrimp cells, allowing for a comparative analysis with human cells.

3.
Article in English | MEDLINE | ID: mdl-38949536

ABSTRACT

Up-scalable coating processes need to be developed to manufacture efficient and stable perovskite-based solar modules. In this work, we combine two Lewis base additives (N,N'-dimethylpropyleneurea and thiourea) to fabricate high-quality Cs0.15FA0.85PbI3 perovskite films by blade-coating on large areas. Selected-area electron diffraction patterns reveal a minimization of stacking faults in the α-FAPbI3 phase for this specific cesium-formamidinium composition in both spin-coated and blade-coated perovskite films, demonstrating its scaling potential. The underlying mechanism of the crystallization process and the specific role of thiourea are characterized by Fourier transform infrared spectroscopy and in situ optical absorption, showing clear interaction between thiourea and perovskite precursors and halved film-formation activation energy (from 114 to 49 kJ/mol), which contribute to the obtained specific morphology with the formation of large domain sizes on a short time scale. The blade-coated perovskite solar cells demonstrate a maximum efficiency of approximately 16.9% on an aperture area of 1 cm2.

4.
Int J Biol Macromol ; 275(Pt 1): 133586, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960242

ABSTRACT

In the face of agricultural challenges posed by both abiotic and biotic stressors, phytopathogens emerge as formidable threats to crop productivity. Conventional methods, involving the use of pesticides and microbes, often lead to unintended consequences. In addressing this issue, ICAR -Indian Institute of Oilseeds Research (ICAR-IIOR) has developed a chitosan-based double-layer seed coating. Emphasizing crop input compatibility, entrapment, and characterization, the study has yielded promising results. The double-layer coating on groundnut seeds enhanced germination and seedling vigor. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed the structural changes and entrapment of crop inputs. The persistence of T. harzianum (Th4d) and Bradyrhizobium sp. in chitosan blended film in studied soils revealed that viable propogules of Th4d were recorded in double layer treatment combination with 3.54 and 3.50 Log CFUs/g of soil (colony forming units) and Bradyrhizobium sp. with 5.34 and 5.27 Log CFUs/g of soil at 90 days after application (DAA). Root colonization efficacy studies of Th4d and Bradyrhizobium sp. in groundnut crop in studied soils revealed that, maximum viable colonies were observed at 45 days after sowing (DAS). This comprehensive study highlights the potential of chitosan-based double-layer seed coating providing a promising and sustainable strategy for stress management in agriculture.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124680, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38963950

ABSTRACT

The present work focuses on the investigation of the thermal stability and structural integrity of amorphous alumina coatings intended for use as protective coatings on cladding tubes in Generation IV nuclear reactors, specifically in the Lead-cooled Fast Reactor (LFR) type. High-temperature Raman spectroscopy and high-temperature X-ray diffraction analyses were carried out up to 1050 °C on a 5 µm coating deposited by the pulsed laser deposition (PLD) technique on a 316L steel substrate. The experiments involved the in-situ examination of structural changes in the material under increasing temperature, along with ex-situ Raman imaging of the surface and cross-section of the coating after thermal treatments of different lengths. As it was expected, the presence of α-alumina was detected with the addition of other polymorphs, γ- and θ-Al2O3, found in the material after longer high-temperature exposure. The use of two structural analysis methods and two lasers excitation wavelengths with Raman spectroscopy allowed us to detect all the mentioned phases despite different mode activity. Alumina analysis was based on the emission spectra, while substrate oxidation products were identified through the structural bands. The experiments depicted a dependence of the phase composition of oxidation products and alumina's degree of crystallization on the length of the treatment. Nevertheless, the observed structural changes did not occur rapidly, and the coating's integrity remained intact. Moreover, oxidation signs occurred locally at temperatures exceeding the LFR reactor's working temperature, confirming the material's great potential as a protective coating in the operational conditions of LFR nuclear reactors.

6.
Sci Total Environ ; : 174474, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964407

ABSTRACT

The current demand for composites reinforced with renewable fibers is greater than it has ever been. In comparison to glass fibers, natural fibers yield the advantages of lesser density and cost. Although comparable specific properties exist between glass and natural fibers, the latter shows lower strength. However, with the copper coating and chemical treatment of natural fibers, the strength of the composites can be increased nowadays. The current research investigation focuses on the life cycle assessment of the raw, chemically treated, and copper coated fiber reinforced bagasse and banana composites to compare the emissions on the environment of these samples to prove their applicability. The study includes all the processes, from the extraction of fibers to the formation of composites, i.e., from cradle to gate, and detailed inventory. The ReCiPe H midpoint method has been utilized in SimaPro software to quantify the emissions. The results indicate that the maximum global warming emission is due to the energy consumption used during the manufacturing of these composites. Electricity contribution for chemically treated and copper coated composites in global warming contribution is slightly greater than that of raw composites i.e., 73.275 % in C- BG/P, 73.06 % in Cu- BG/P, 73.65 % in C- BN/P and 74.28 % in Cu- BN/P which is comparatively higher than 63.8 % in R- BG/P and 64.97 % in R- BN/P. The next major contributions come from polylactic acid for all the three samples of bagasse fiber reinforced PLA composite and banana fiber reinforced PLA composite. The raw samples also show improved fiber strength compared to chemical and copper coated samples.

7.
Angew Chem Int Ed Engl ; : e202403196, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972846

ABSTRACT

Photoactive formamidinium lead triiodide (α-FAPbI3) perovskite has dominated the prevailing high-performance perovskite solar cells (PSCs), normally for those spin-coated, conventional n-i-p structured devices. Unfortunately, α-FAPbI3 has not been made full use of its advantages in inverted p-i-n structured PSCs fabricated via blade-coating techniques owing to uncontrollable crystallization kinetics and complicated phase evolution of FAPbI3 perovskites. Herein, a customized crystal surface energy regulation strategy has been innovatively developed by incorporating 0.5 mol% of N-aminoethylpiperazine hydroiodide (NAPI) additive into α-FAPbI3 crystal-derived perovskite ink, which enabled the formation of phase-pure, highly-oriented α-FAPbI3 films. We deciphered the phase transformation mechanisms and crystallization kinetics of blade-coated α-FAPbI3 perovskite films via combining a series of in-situ characterizations. Interestingly, the strong chemical interactions between the NAPI and inorganic Pb-I framework help to reduce the surface energy of (100) crystal plane by 42%, retard the crystallization rate and lower the formation energy of α-FAPbI3. The resultant blade-coated inverted PSCs based on (100)-oriented α-FAPbI3 perovskite films realized promising efficiencies up to 24.16% (~26.5% higher than that of the randomly-oriented counterparts), accompanied by improved operational stability. This result represented one of the best performances reported to date for FAPbI3-based inverted PSCs fabricated via scalable deposition methods.

8.
J Food Sci Technol ; 61(8): 1492-1502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966786

ABSTRACT

In this study, the impact of formulated emulsion was studied on strawberries which were coated using dip and electrostatic spray coating methods. The coated strawberries were kept at room temperature for a period of 12 days. A significant level of chargeability of w/o emulsion was achieved in terms of charge-to-mass ratio of 2.81 mC/kg at an applied high voltage of 2.0 kV, applied air pressure of 0.3 MPa, and liquid flow rate of 33.6 ml/min. The distance of 170 mm from the nozzle tip to Faraday cage was maintained during the measurements. As compared to uncoated and dip coated strawberries, the water-in-oil based electrostatically charged sprays considerably (p < 0.05) reduced the weight loss, decay rate, pH, titrable acidity, TSS, and antioxidant activity. In both the cases, i.e. strawberries coated with dip and electrostatic spray coating methods, the same weight loss was observed, however, there was a considerably less weight loss as compared to uncoated samples. The textures of the uncoated (9.02 N) and dip coated (12.58 N) samples were significantly different from the electrostatic spray coated (15.85 N) samples. Since, the coating formulation had no impact on the sensory attributes, the samples were considered as acceptable at the end of the storage. Furthermore, compared to uncoated, water-in-oil based electrostatically charged spray coating was more effective at delaying the decay by 12 days.

9.
J Food Sci Technol ; 61(8): 1417-1427, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966790

ABSTRACT

Deep fat fried food products have been considered as a vital dietary contributor to certain chronic diseases, including the risk of atherosclerosis, cancer and hypertension. Hence, many food industries are focusing on low fat fried products to attract consumers. In general, oil is absorbed during deep fat frying, and this century old process is used for preparing various kinds of fried food products such as potato chips, banana chips, savory snacks, etc. Vacuum frying, electric field frying and two-stage frying technologies have been developed as an alternatives to traditional frying. These two technologies are suitable for most fried products; however, they may not be suitable for sugar based fruits as they can lead to the formation of browning reactions, which are generally considered unacceptable. This review aims to cover recent work done in the area of vacuum frying and two-stage frying, including the role of pre-treatment and post-treatment novel methods. Additionally, emphasis has been given on recent innovations to improve the quality of vacuum and two-stage frying, particularly concerning the reduction of oil uptake in fried food products.

10.
J Colloid Interface Sci ; 675: 226-235, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38968639

ABSTRACT

Although Li metal is considered the most potential anode for Li based batteries, the repeatedly large volume variation and low Coulombic efficiency (CE) are still serious challenges for commercial application. Herein, the interconnect closed hollow graphene spheres with electronic-ionic bi-functional conduction network containing Li4.4Sn nanoparticles loaded internally and ß-Li3PS4 solid electrolyte layer coated externally (ß-LPS/SG/Li4.4Sn) is proposed to achieve uniform and dense Li deposition. Density functional theory (DFT) calculation and experimental results show that Li4.4Sn owns larger Li binding energy and lower nucleation overpotential than spherical graphene (SG), thus being able to guide Li traversing and depositing inside the hollow spheres. The Tafel curves, Li+ diffusion activation energy and experimental results reveal that the ß-Li3PS4 coating layer significantly improves the ionic conductivity of the negative skeleton, covers the defect sites on the SG surface, provides continuous ion transmission channels and accelerates Li+ migration rate. The synergy of both can inhibit the formation of dendritic Li and reduce side reaction between freshly deposited lithium and the organic electrolyte. It's found that Li is preferentially deposited within the SG, evenly deposited on the spherical shell surface until it's completely filled to obtain a dense lithium layer without tip effect. As a result, the ß-LPS/SG/Li4.4Sn anode exhibits a long life of up to 2800 h, an extremely low overpotential (∼13 mV) and a high CE of 99.8 % after 470 cycles. The LiFePO4-based full cell runs stably with a high capacity retention of 86.93 % after 800 cycles at 1C. It is considered that the novel structure design of Li anode skeleton with electron-ionic bi-functional conduction is a promising direction to construct long-term stable lithium metal anodes.

11.
Int J Biol Macromol ; : 133641, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969046

ABSTRACT

Okra is susceptible to browning during storage. The effects of konjac glucomannan/microcapsule of thymol edible coating (TKL) on antioxidant activity and reactive oxygen (ROS) synthesis of okra during low-temperature storage were investigated. Thymol edible coating of thymol concentration 40 mg/mL (TKL40) had a regulatory effect on okra browning. After 14 days of storage, compared with the control group, the weight loss rate of TKL was reduced by 5.26 %, the hardness was increased by 24.14 %, and the L⁎ value was increased by 31 %. Moreover, TKL40 increased the scavenging capacity of okra for DPPH and ABTS free radicals, and activated catalase and superoxide dismutase activities by promoting the accumulation of total phenolics and flavonoids. TKL40 also reduced the cell membrane damage of okra during low-temperature storage by reducing the increase of malondialdehyde and H2O2 during okra storage. Meanwhile, it delayed the increase of relative conductivity and the production of O2.-, inhibited the activity of polyphenol oxidase in the late stage, so reduced the combination of polyphenol oxidase and phenolics to reduce the browning. Therefore, TKL40 reduces okra pericarp browning by regulating antioxidant activity and ROS synthesis.

12.
Mater Today Bio ; 27: 101108, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948091

ABSTRACT

The complex biological process of osseointegration and the bio-inertness of bone implants are the major reasons for the high failure rate of long-term implants, and have also promoted the rapid development of multifunctional implant coatings in recent years. Herein, through the special design of peptides, we use layer-by-layer assembly technology to simultaneously display two peptides with different biological functions on the implant surface to address this issue. A variety of surface characterization techniques (ellipsometry, atomic force microscopy, photoelectron spectroscopy, dissipation-quartz crystal microbalance) were used to study in detail the preparation process of the dual peptide functional coating and the physical and chemical properties, such as the composition, mechanical modulus, stability, and roughness of the coating. Compared with single peptide functional coatings, dual-peptide functionalized coatings had much better performances on antioxidant, cellular adhesion in early stage, proliferation and osteogenic differentiation in long term, as well as in vivo osteogenesis and osseointegration capabilities. These findings will promote the development of multifunctional designs in bone implant coatings, as a coping strategy for the complexity of biological process during osteointegration.

13.
J Colloid Interface Sci ; 674: 663-676, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38950465

ABSTRACT

HYPOTHESIS: Engineering plant-based microgel particles (MPs) at a molecular scale is meaningful to prepare functional fat analogues. We hypothesize that oat protein isolate (OPI) and κ-carrageenan (CA) have synergy in MPs formation, using MPs with controllable structure, and further to fabricate fat analogues with adjustable characteristics is feasible. Their digestion fate will also be possibly modulated by interfacial coatings. EXPERIMENTS: OPI-based conjugated MPs with tunable rigidities by changing crosslinking densities were designed. The relationship between microgel structures, and emulsion gel properties was explored through spectroscopy, microstructure, rheology and tribology. The delivery to lycopene, as well as inhibiting digestion behaviors of fat analogues was evaluated in a simulated gastro-intestinal tract. FINDINGS: The rigidity of conjugated MPs could be tailored to optimize the performance of fat analogues. OPI-1 %CA MPs could stabilize emulsions up to 95 % oil fraction with fine texture. Tribological behaviors had a dependence on microgel elasticity and interfacial coatings, medium hard MP-stabilized emulsion was less disrupted without coalescence after oral processing. Digestion was delayed by denser and harder MPs by softening the interfacial particle layer or limiting lipase accessibility. Softer conjugated MPs possessed better flexibility and were broken down more easily leading to a higher rate of lipid digestion.

14.
Small ; : e2403234, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963174

ABSTRACT

Manganese halides are one of the most potential candidates for large-area flat-panel detection owing to their biological safety and all-solution preparation. However, reducing photon scattering and enhancing the efficient luminescence of scintillator screens remains a challenge due to their uncontrollable crystallization and serious nonradiative recombination. Herein, an organic cation modulation is reported to control the crystallization process and enhance the luminescence properties of manganese halides. Given the industrial requirements of the X-ray flat-panel detector, the large-area A2MnBr4 screen (900 cm2) with excellent uniformity is blade-coated at 60 °C. Theoretical calculations and in situ measurements reveal that organic cations with larger steric hindrance can slow down the crystallization of the screen, thus neatening the crystal arrangement and reducing the photon scattering. Moreover, larger steric hindrance can also endow the material with higher exciton binding energy, which is beneficial for restraining nonradiative recombination. Therefore, the BPP2MnBr4 (BPP = C25H22P+) screen with larger steric hindrance exhibits a superior spatial resolution (>20 lp mm-1) and ultra-low detection limit (< 250 nGyair s-1). This is the first time steric hindrance modulation is used in blade-coated scintillator screens, and it believes this study will provide some guidance for the development of high-performance manganese halide scintillators.

15.
Int J Biol Macromol ; : 133693, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971277

ABSTRACT

The development of new polymer nanocomposites or antibacterial coatings is crucial in combating drug-resistant infections, particularly bacterial infections. In this study, a new chitosan polymer based nanocomposite reinforced with magnesium oxide nanopowders and carbon quantum dots was fabricated by sol-gel technique and coated on 316 L stainless steel. In order to gaining the optimal amount of components to achieve the maximum antibacterial properties, the effect of concentration of nanocomposite components on its antibacterial properties was investigated. Crystal structure, microstructure, elemental dispersion, size distribution, chemical composition and morphology of nanocomposite and coating were characterized with various analyses. The obtained results exhibited that the carbon quantum dot and magnesium oxide nanopowders were distributed uniformly and without agglomeration in the chitosan matrix and created a uniform coating. The antibacterial properties of the synthesized samples against Staphylococcus aureus bacteria (gram positive) were evaluated using disk diffusion and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) antibacterial tests. The inhibition growth zone formed around the antibiotic and nanocomposite 25 mg/ml under dark and light was about 32 and 14, 11 mm, respectively. Also, MIC and MBC values for final nanocomposite were 62.5 and 125 µg/ml, respectively.

16.
Methods Enzymol ; 700: 275-294, 2024.
Article in English | MEDLINE | ID: mdl-38971603

ABSTRACT

Synthetic model membranes are important tools to elucidate lipid domain and protein interactions due to predefined lipid compositions and characterizable biophysical properties. Here, we introduce a model membrane with multiple lipid bilayers (multi-bilayers) stacked on a mica substrate that is prepared through a spin-coating technique. The spin-coated multi-bilayers are useful in the study of phase separated membranes with a high cholesterol content, mobile lipids, microscopic and reversible phase separation, and easy conjugation with proteins, which make them a good model to study interactions between proteins and membrane domains.


Subject(s)
Lipid Bilayers , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Cholesterol/chemistry , Cholesterol/metabolism , Aluminum Silicates/chemistry , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Protein Binding
17.
Int J Biol Macromol ; 275(Pt 2): 133534, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950805

ABSTRACT

This study presents a novel hybrid mesoporous material for degrading drug pollutants in water. The hybrid materials, derived from UiO-66 metal-organic framework and chitosan, coated on nano-silica, showed excellent drug adsorption through hydrogen-bonding interactions and efficient photodegradation of antibiotics. The hybrid material's enhanced conductivity and reduced band gap significantly improved pollution reduction by minimising electron-hole recombination. This allows for more efficient charge transport and better light absorption, boosting the material's ability to break down pollutants. Structural and morphological analyses were conducted using various techniques, including scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Optimising the adsorption-photodegradation process involved investigating pH, catalyst dose, and radiation time. Non-linear optimisation revealed an efficiency exceeding 85 % for 400 mg/L tetracycline and doxycycline, the model antibiotics. The optimal parameters for maximal elimination were determined as pH = 4.3, hybrid mesosphere dose = 4.0 mg/mL, and radiation time = 10 min. Kinetic studies favored pseudo-second-order diffusion models over pseudo-first-order models. The hybrid mesosphere showed sustained efficiency after three cycles and performed well in real aqueous samples, removing over 80 % of each antibiotic. This study demonstrates the potential of the hybrid mesoporous material for removing pharmaceutical pollutants in water systems.

18.
J Colloid Interface Sci ; 675: 429-437, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981252

ABSTRACT

Aqueous sodium-ion batteries (ASIBs) show great promise as candidates for large-scale energy storage. However, the potential of ASIB is impeded by the limited availability of suitable anode types and the occurrence of dissolution side reactions linked to hydrogen evolution. In this study, we addressed these challenges by developing a Bi-coating modified anode based on a sodium titanium phosphate (NTP)-carbon fibers (CFs) hybrid electrode (NTP-CFs/Bi). The Bi-coating effectively mitigates the localized enrichment of hydroxyl anion (OH-) near the NTP surface, thus addressing the dissolution issue. Notably, the Bi-coating not only restricts the local abundance of OH- to inhibit dissolution but also ensures a higher capacity compared with other NTP-based anodes. Consequently, the NTP-CFs/Bi anode demonstrates an impressive specific capacity of 216.8 mAh/g at 0.2 mV/s and maintains a 90.7 % capacity retention after 1000 cycles at 6.3 A/g. This achievement sets a new capacity record among NTP-based anodes for sodium storage. Furthermore, when paired with a cathode composed of hydroxy nickel oxide directly grown on Ni foam, we assembled a seawater-based cell exhibiting high energy and power densities, surpassing the most recently reported ASIBs. This groundbreaking work lays the foundation for a potential method to develop long-life NTP-based anodes.

19.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Article in English | MEDLINE | ID: mdl-38952675

ABSTRACT

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Escherichia coli , Osteogenesis , Polylactic Acid-Polyglycolic Acid Copolymer , Rats, Sprague-Dawley , Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Osteogenesis/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Mice , Staphylococcus aureus/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Escherichia coli/drug effects , Cell Differentiation/drug effects , Prostheses and Implants , Alloys/pharmacology , Alloys/chemistry , Rats , Titanium/chemistry , Titanium/pharmacology , Silver/chemistry , Silver/pharmacology , Cell Proliferation/drug effects , Copper/chemistry , Copper/pharmacology , Male , X-Ray Microtomography , Cell Line , Metal Nanoparticles/chemistry
20.
ACS Appl Bio Mater ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954747

ABSTRACT

In the realm of clinical applications, the concern surrounding biomedical device-related infections (BDI) is paramount. To mitigate the risk associated with BDI, enhancing surface characteristics such as lubrication and antibacterial efficacy is considered as a strategic approach. This study delineated the synthesis of a multifunctional copolymer, embodying self-adhesive, lubricating, and antibacterial properties, achieved through free radical polymerization and a carbodiimide coupling reaction. The copolymer was adeptly modified on the surface of stainless steel 316L (SS316L) substrates by employing a facile dip-coating technique. Comprehensive characterizations were performed by using an array of analytical techniques including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, optical interferometry, scanning electron microscopy, and atomic force microscopy. Nanoscale tribological assessments revealed a notable reduction in the value of the friction coefficient of the copolymer-coated SS316L substrates compared to bare SS316L samples. The coating demonstrated exceptional resistance to protein adsorption, as evidenced in protein contamination models employing bovine serum albumin and fibrinogen. The bactericidal efficacy of the copolymer-modified surfaces was significantly improved against pathogenic strains such as Staphylococcus aureus and Escherichia coli. Additionally, in vitro evaluations of blood compatibility and cellular compatibility underscored the remarkable anticoagulant performance and biocompatibility. Collectively, these findings indicated that the developed copolymer coating represented a promising candidate, with its facile modification approach, for augmenting lubrication and antifouling properties in the field of biomedical implant applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...