Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
2.
Front Neurosci ; 18: 1331677, 2024.
Article in English | MEDLINE | ID: mdl-38384484

ABSTRACT

Background: Frontotemporal dementia (FTD) represents a collection of neurobehavioral and neurocognitive syndromes that are associated with a significant degree of clinical, pathological, and genetic heterogeneity. Such heterogeneity hinders the identification of effective biomarkers, preventing effective targeted recruitment of participants in clinical trials for developing potential interventions and treatments. In the present study, we aim to automatically differentiate patients with three clinical phenotypes of FTD, behavioral-variant FTD (bvFTD), semantic variant PPA (svPPA), and nonfluent variant PPA (nfvPPA), based on their structural MRI by training a deep neural network (DNN). Methods: Data from 277 FTD patients (173 bvFTD, 63 nfvPPA, and 41 svPPA) recruited from two multi-site neuroimaging datasets: the Frontotemporal Lobar Degeneration Neuroimaging Initiative and the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration databases. Raw T1-weighted MRI data were preprocessed and parcellated into patch-based ROIs, with cortical thickness and volume features extracted and harmonized to control the confounding effects of sex, age, total intracranial volume, cohort, and scanner difference. A multi-type parallel feature embedding framework was trained to classify three FTD subtypes with a weighted cross-entropy loss function used to account for unbalanced sample sizes. Feature visualization was achieved through post-hoc analysis using an integrated gradient approach. Results: The proposed differential diagnosis framework achieved a mean balanced accuracy of 0.80 for bvFTD, 0.82 for nfvPPA, 0.89 for svPPA, and an overall balanced accuracy of 0.84. Feature importance maps showed more localized differential patterns among different FTD subtypes compared to groupwise statistical mapping. Conclusion: In this study, we demonstrated the efficiency and effectiveness of using explainable deep-learning-based parallel feature embedding and visualization framework on MRI-derived multi-type structural patterns to differentiate three clinically defined subphenotypes of FTD: bvFTD, nfvPPA, and svPPA, which could help with the identification of at-risk populations for early and precise diagnosis for intervention planning.

3.
Front Cell Neurosci ; 17: 1155929, 2023.
Article in English | MEDLINE | ID: mdl-37138765

ABSTRACT

The GGGGCC intronic repeat expansion within C9ORF72 is the most common genetic cause of ALS and FTD. This mutation results in toxic gain of function through accumulation of expanded RNA foci and aggregation of abnormally translated dipeptide repeat proteins, as well as loss of function due to impaired transcription of C9ORF72. A number of in vivo and in vitro models of gain and loss of function effects have suggested that both mechanisms synergize to cause the disease. However, the contribution of the loss of function mechanism remains poorly understood. We have generated C9ORF72 knockdown mice to mimic C9-FTD/ALS patients haploinsufficiency and investigate the role of this loss of function in the pathogenesis. We found that decreasing C9ORF72 leads to anomalies of the autophagy/lysosomal pathway, cytoplasmic accumulation of TDP-43 and decreased synaptic density in the cortex. Knockdown mice also developed FTD-like behavioral deficits and mild motor phenotypes at a later stage. These findings show that C9ORF72 partial loss of function contributes to the damaging events leading to C9-FTD/ALS.

4.
IBRO Neurosci Rep ; 14: 210-234, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36880056

ABSTRACT

Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.

5.
Comput Struct Biotechnol J ; 20: 4251-4256, 2022.
Article in English | MEDLINE | ID: mdl-36051868

ABSTRACT

Telomere length (TL) is a biomarker of biological aging. Shorter telomeres have been associated with mortality and increased rates of age-related diseases. However, observational studies are unable to conclude whether TL is causally associated with those outcomes. Mendelian randomization (MR) was developed for assessing causality using genetic variants in epidemiological research. The objective of this study was to test the potential causal role of TL in neurodegenerative disorders and life expectancy through MR analysis. Summary level data were extracted from the most recent genome-wide association studies for TL, Alzheimer's disease (AD), Parkinson's disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, Progressive Supranuclear Palsy and life expectancy. MR estimates revealed that longer telomeres inferred a protective effect on risk of AD (OR = 0.964; adjusted p-value = 0.039). Moreover, longer telomeres were significantly associated with increased life expectancy (ßIVW  = 0.011; adjusted p-value = 0.039). Sensitivity analyses suggested evidence for directional pleiotropy in AD analyses. Our results showed that genetically predicted longer TL may increase life expectancy and play a protective causal effect on AD. We did not observe significant causal relationships between longer TL and other neurodegenerative diseases. This suggests that the involvement of TL on specific biological mechanisms might differ between AD and life expectancy, with respect to that in other neurodegenerative diseases. Moreover, the presence of pleiotropy may reflect the complex interplay between TL homeostasis and AD pathophysiology. Further observational studies are needed to confirm these results.

6.
Front Mol Neurosci ; 14: 767041, 2021.
Article in English | MEDLINE | ID: mdl-34970118

ABSTRACT

Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.

7.
Cereb Circ Cogn Behav ; 2: 100033, 2021.
Article in English | MEDLINE | ID: mdl-34950896

ABSTRACT

Vascular cognitive impairment (VCI), encompassing vascular dementia, has been claimed as the "second-most common dementia" after Alzheimer Disease. Whether or not this is true, the clinical picture of most dementia in older people includes vascular disease. There are no validated pharmacological targets for prevention or treatment of VCI. This has inspired a multitude of potential treatment approaches, reflected by the articles in this Special Issue. These include in vitro testing of the novel oral anticoagulant dabigatran for protection against ß-amyloid neurotoxicity, and an overview of neuroinflammation in VCI and the role of circulating markers (PIGF, VEGF-D) identified by the MarkVCID study. There are reviews of potential therapeutics, including adrenomedullin and nootropic preparations (exemplified by cerebrolysin). The role of sleep is reviewed, with possible therapeutic targets (5HT2A receptors). There is a clinical study protocol (INVESTIGATE-SVD) and a feasibility analysis for a secondary prevention trial in small vessel disease. Clinical data include secondary analyses of blood pressure and cerebral blood flow from a longitudinal clinical trial (NILVAD), differences between methylphenidate and galantamine responders and non-responders (STREAM-VCI), appraisal of treatment approaches in India, and primary outcomes from a randomised trial of Argentine tango dancing to preserve cognition in African American women (ACT). Treating vascular disease has great potential to improve global cognitive health, with public health impacts alongside individual benefit. Vascular disease burden varies across populations, offering the possibility of proactively addressing health inequity in dementia using vascular interventions. The next 5-10 years will witness cost-effective lifestyle interventions, repurposed drugs and novel therapeutics.

8.
Front Cell Neurosci ; 15: 770937, 2021.
Article in English | MEDLINE | ID: mdl-34744635

ABSTRACT

An intronic hexanucleotide (GGGGCC) expansion in the C9orf72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In the decade following its discovery, much progress has been made in enhancing our understanding of how it precipitates disease. Both loss of function caused by reduced C9orf72 transcript levels, and gain of function mechanisms, triggered by the production of repetitive sense and antisense RNA and dipeptide repeat proteins, are thought to contribute to the toxicity. Drosophila models, with their unrivaled genetic tractability and short lifespan, have played a key role in developing our understanding of C9orf72-related FTD/ALS. There is no C9orf72 homolog in fly, and although this precludes investigations into loss of function toxicity, it is useful for elucidating mechanisms underpinning gain of function toxicity. To date there are a range of Drosophila C9orf72 models, encompassing different aspects of gain of function toxicity. In addition to pure repeat transgenes, which produce both repeat RNA and dipeptide repeat proteins (DPRs), RNA only models and DPR models have been generated to unpick the individual contributions of RNA and each dipeptide repeat protein to C9orf72 toxicity. In this review, we discuss how Drosophila models have shaped our understanding of C9orf72 gain of function toxicity, and address opportunities to utilize these models for further research.

9.
Internet Interv ; 25: 100390, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33996507

ABSTRACT

Young-onset dementia (YOD) poses specific challenges for caregivers involved. However, most available support does not address their specific needs. Previously, the web-based Partner in Balance intervention showed promising results and facilitated role adaptation in dementia caregivers. Although the web-based format proved a good fit for YOD caregivers, the evaluation showed a need for tailored content on YOD. Therefore, new content was iteratively developed respectively for spouses and other family caregivers of persons with YOD. This study evaluates how caregivers perceived the tailored content. METHODS: A pre-post design was used to prospectively evaluate how end-users perceived two tailored versions of the Partner in Balance intervention, one for spouses and one for other family members of people with YOD. After the intervention, participants were interviewed for approximately 60 min in-person or by telephone using the Program Participation Questionnaire. A qualitative deductive content analysis was used to evaluate (1) usability, (2) feasibility and acceptability, (3) perceptions on intervention content. To evaluate if the intervention facilitated role adaptation, preliminary effects were examined using pre-post questionnaires on self-efficacy, mastery, stress, anxiety and depression. RESULTS: Spouses (n = 11) and other family members (n = 14) both positively evaluated the tailored content on YOD and valued that the web-based approach could easily be integrated in daily life. Participants perceived the intervention as usable, feasible and acceptable. Participants valued the recognizability of the content. Goal-setting helped participants to translate the intervention to daily life, although for some participants setting goals was difficult. Caregivers of persons with frontotemporal dementia suggested incorporating specific content to further increase recognizability. After participation, participants felt better equipped for the caregiving role. In line with previously demonstrated effects on generic modules of Partner in Balance, the tailored version increased levels of self-efficacy in the group of other family caregivers, t(12) = 3.37, p = .006. CONCLUSION: The tailored Partner in Balance intervention was positively evaluated by YOD caregivers. Offering participants more guidance on goal-setting and adding content about frontotemporal dementia may facilitate implementation.

10.
Acta Pharm Sin B ; 11(2): 373-393, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33643818

ABSTRACT

The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.

11.
Front Aging Neurosci ; 13: 791679, 2021.
Article in English | MEDLINE | ID: mdl-35145392

ABSTRACT

The microtubule-associated protein tau plays an important role in tauopathic diseases such as Alzheimer's disease and primary tauopathies such as progressive supranuclear palsy and corticobasal degeneration. Tauopathy animal models, such as transgenic, knock-in mouse and rat models, recapitulating tauopathy have facilitated the understanding of disease mechanisms. Aberrant accumulation of hyperphosphorylated tau contributes to synaptic deficits, neuroinflammation, and neurodegeneration, leading to cognitive impairment in animal models. Recent advances in molecular imaging using positron emission tomography (PET) and magnetic resonance imaging (MRI) have provided valuable insights into the time course of disease pathophysiology in tauopathy animal models. High-field MRI has been applied for in vivo imaging in animal models of tauopathy, including diffusion tensor imaging for white matter integrity, arterial spin labeling for cerebral blood flow, resting-state functional MRI for functional connectivity, volumetric MRI for neurodegeneration, and MR spectroscopy. In addition, MR contrast agents for non-invasive imaging of tau have been developed recently. Many preclinical MRI indicators offer excellent translational value and provide a blueprint for clinical MRI in the brains of patients with tauopathies. In this review, we summarized the recent advances in using MRI to visualize the pathophysiology of tauopathy in small animals. We discussed the outstanding challenges in brain imaging using MRI in small animals and propose a future outlook for visualizing tau-related alterations in the brains of animal models.

12.
Front Cell Neurosci ; 15: 784833, 2021.
Article in English | MEDLINE | ID: mdl-34975412

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by degeneration of upper and lower motor neurons and neurons of the prefrontal cortex. The emergence of the C9ORF72 hexanucleotide repeat expansion mutation as the leading genetic cause of ALS and FTD has led to a progressive understanding of the multiple cellular pathways leading to neuronal degeneration. Disturbances in neuronal function represent a major subset of these mechanisms and because such functional perturbations precede degeneration, it is likely that impaired neuronal function in ALS/FTD plays an active role in pathogenesis. This is supported by the fact that ALS/FTD patients consistently present with neurophysiological impairments prior to any apparent degeneration. In this review we summarize how the discovery of the C9ORF72 repeat expansion mutation has contributed to the current understanding of neuronal dysfunction in ALS/FTD. Here, we discuss the impact of the repeat expansion on neuronal function in relation to intrinsic excitability, synaptic, network and ion channel properties, highlighting evidence of conserved and divergent pathophysiological impacts between cortical and motor neurons and the influence of non-neuronal cells. We further highlight the emerging association between these dysfunctional properties with molecular mechanisms of the C9ORF72 mutation that appear to include roles for both, haploinsufficiency of the C9ORF72 protein and aberrantly generated dipeptide repeat protein species. Finally, we suggest that relating key pathological observations in C9ORF72 repeat expansion ALS/FTD patients to the mechanistic impact of the C9ORF72 repeat expansion on neuronal function will lead to an improved understanding of how neurophysiological dysfunction impacts upon pathogenesis.

13.
Clin Mass Spectrom ; 14 Pt B: 66-73, 2019 Nov.
Article in English | MEDLINE | ID: mdl-34917762

ABSTRACT

Transactive response DNA-binding protein 43 kDa (TDP-43) is a highly conserved and widely expressed protein in human tissues that regulates nucleic acid processing. In frontotemporal dementia and amyotrophic lateral sclerosis, however, TDP-43 forms insoluble aggregates in central nervous tissues. These pathological deposits of TDP-43 have been primarily studied by ligand binding, namely western blot analysis, and, thus, methods with greater structural resolution are needed to aid in our understanding of the pathological processes associated with TDP-43 misfolding and aggregation. Toward this goal, we have developed a selective and multiplex method for the detection and characterization of TDP-43 using liquid chromatography tandem mass spectrometry. As proof-of-concept, the method was applied to the detection and characterization of TDP-43 in human cell lines and human brain tissue.

14.
Neuroimage Clin ; 19: 675-682, 2018.
Article in English | MEDLINE | ID: mdl-30023173

ABSTRACT

Amyotrophic lateral sclerosis (ALS) can be associated with a spectrum of cognitive and behavioural symptoms, but the related patterns of focal cortical atrophy in non-demented ALS patients remain largely unknown. We enrolled 48 non-demented ALS patients and 26 healthy controls for a comprehensive neuropsychological assessment and a magnetic resonance exam. Behavioural and cognitive impairment was defined on the basis of a data-driven multi-domain approach in 21 ALS patients. Averaged cortical thickness of 74 bilateral brain regions was used as a measure of cortical atrophy. Cortical thinning in a fronto-parietal network, suggesting a disease-specific pattern of neurodegeneration, was present in all patients, independent of cognitive and behavioural status. Between-group and correlational analyses revealed that inferior frontal, temporal, cingular and insular thinning are markers for cognitive and behavioural deficits, with language impairment mainly related to left temporal pole and insular involvement. These specific correlates support the concept of a spectrum of deficits, with an overlap between the ALS cognitive phenotypes and the syndromes of frontotemporal dementia.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Cognition Disorders/diagnostic imaging , Aged , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/pathology , Atrophy/diagnostic imaging , Atrophy/pathology , Cerebral Cortex/pathology , Cognition Disorders/etiology , Cognition Disorders/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests
15.
Neuroimage Clin ; 18: 167-177, 2018.
Article in English | MEDLINE | ID: mdl-29387532

ABSTRACT

Background/aims: In this multicentre study in clinical settings, we assessed the accuracy of optimized procedures for FDG-PET brain metabolism and CSF classifications in predicting or excluding the conversion to Alzheimer's disease (AD) dementia and non-AD dementias. Methods: We included 80 MCI subjects with neurological and neuropsychological assessments, FDG-PET scan and CSF measures at entry, all with clinical follow-up. FDG-PET data were analysed with a validated voxel-based SPM method. Resulting single-subject SPM maps were classified by five imaging experts according to the disease-specific patterns, as "typical-AD", "atypical-AD" (i.e. posterior cortical atrophy, asymmetric logopenic AD variant, frontal-AD variant), "non-AD" (i.e. behavioural variant FTD, corticobasal degeneration, semantic variant FTD; dementia with Lewy bodies) or "negative" patterns. To perform the statistical analyses, the individual patterns were grouped either as "AD dementia vs. non-AD dementia (all diseases)" or as "FTD vs. non-FTD (all diseases)". Aß42, total and phosphorylated Tau CSF-levels were classified dichotomously, and using the Erlangen Score algorithm. Multivariate logistic models tested the prognostic accuracy of FDG-PET-SPM and CSF dichotomous classifications. Accuracy of Erlangen score and Erlangen Score aided by FDG-PET SPM classification was evaluated. Results: The multivariate logistic model identified FDG-PET "AD" SPM classification (Expß = 19.35, 95% C.I. 4.8-77.8, p < 0.001) and CSF Aß42 (Expß = 6.5, 95% C.I. 1.64-25.43, p < 0.05) as the best predictors of conversion from MCI to AD dementia. The "FTD" SPM pattern significantly predicted conversion to FTD dementias at follow-up (Expß = 14, 95% C.I. 3.1-63, p < 0.001). Overall, FDG-PET-SPM classification was the most accurate biomarker, able to correctly differentiate either the MCI subjects who converted to AD or FTD dementias, and those who remained stable or reverted to normal cognition (Expß = 17.9, 95% C.I. 4.55-70.46, p < 0.001). Conclusions: Our results support the relevant role of FDG-PET-SPM classification in predicting progression to different dementia conditions in prodromal MCI phase, and in the exclusion of progression, outperforming CSF biomarkers.


Subject(s)
Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Brain/diagnostic imaging , Cognitive Dysfunction/diagnosis , Frontotemporal Dementia/diagnosis , tau Proteins/cerebrospinal fluid , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Disease Progression , Female , Fluorodeoxyglucose F18 , Frontotemporal Dementia/cerebrospinal fluid , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/psychology , Humans , Male , Middle Aged , Neuropsychological Tests , Phosphorylation , Positron-Emission Tomography , Prognosis , Sensitivity and Specificity
16.
Ir J Med Sci ; 187(2): 515-520, 2018 May.
Article in English | MEDLINE | ID: mdl-28803271

ABSTRACT

AIMS: Creutzfeldt-Jakob disease (CJD) risk precautions are required when performing brain biopsies on patients with a dementing illness and in 'risk' groups. The impact on a diagnostic neuropathology service is considerable. We sought to determine if better case selection might reduce the necessity for application of CJD risk precautions. METHODS: We reviewed the clinical information, contributory investigations and final neuropathologic diagnosis in a cohort of patients (n = 21), referred to the National CJD Surveillance Centre between January 1, 2005, and December 31, 2016. RESULTS: Of this 21-patient cohort, five were positive for CJD, four belonged to the 'at risk of CJD' category requiring brain surgery, while the remaining 12 were referred to the National CJD Surveillance Unit with CJD as part of their differential diagnosis. CJD was confirmed in 5/21 (three sporadic [s]CJD, one variant [v]CJD and one iatrogenic [i] CJD). CJD was clinically probable in 4/5 proven CJD patients (80%). The patients (n = 4) in the 'at risk of CJD' group were diagnosed with tumour (n = 2), inflammation (n = 1) and non-specific changes (n = 1). Of the remaining 12 patients (in whom CJD was included in the differential diagnosis), the final neuropathologic diagnoses included tumour (n = 2), neurodegenerative (n = 2), inflammatory (n = 1), metabolic (n = 2), vascular (n = 2) and non-specific gliosis (n = 3). CONCLUSIONS: More often than not, the clinical suspicion of CJD was not borne out by the final neuropathological diagnosis. Failure by clinicians to adhere to the recommended CJD investigation algorithm impacts adversely on the neuropathology workload and causes unnecessary concern among operating theatre, laboratory and nursing personnel.


Subject(s)
Biopsy/methods , Brain/pathology , Creutzfeldt-Jakob Syndrome/diagnosis , Adult , Female , History, 21st Century , Humans , Ireland , Male , Middle Aged , Risk Factors
17.
Neuroimage Clin ; 15: 171-180, 2017.
Article in English | MEDLINE | ID: mdl-28529873

ABSTRACT

Genetic frontotemporal dementia is most commonly caused by mutations in the progranulin (GRN), microtubule-associated protein tau (MAPT) and chromosome 9 open reading frame 72 (C9orf72) genes. Previous small studies have reported the presence of cerebral white matter hyperintensities (WMH) in genetic FTD but this has not been systematically studied across the different mutations. In this study WMH were assessed in 180 participants from the Genetic FTD Initiative (GENFI) with 3D T1- and T2-weighed magnetic resonance images: 43 symptomatic (7 GRN, 13 MAPT and 23 C9orf72), 61 presymptomatic mutation carriers (25 GRN, 8 MAPT and 28 C9orf72) and 76 mutation negative non-carrier family members. An automatic detection and quantification algorithm was developed for determining load, location and appearance of WMH. Significant differences were seen only in the symptomatic GRN group compared with the other groups with no differences in the MAPT or C9orf72 groups: increased global load of WMH was seen, with WMH located in the frontal and occipital lobes more so than the parietal lobes, and nearer to the ventricles rather than juxtacortical. Although no differences were seen in the presymptomatic group as a whole, in the GRN cohort only there was an association of increased WMH volume with expected years from symptom onset. The appearance of the WMH was also different in the GRN group compared with the other groups, with the lesions in the GRN group being more similar to each other. The presence of WMH in those with progranulin deficiency may be related to the known role of progranulin in neuroinflammation, although other roles are also proposed including an effect on blood-brain barrier permeability and the cerebral vasculature. Future studies will be useful to investigate the longitudinal evolution of WMH and their potential use as a biomarker as well as post-mortem studies investigating the histopathological nature of the lesions.


Subject(s)
Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Intercellular Signaling Peptides and Proteins/genetics , White Matter/pathology , Adult , Aged , C9orf72 Protein/genetics , Cohort Studies , Female , Frontotemporal Dementia/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Progranulins , White Matter/diagnostic imaging , tau Proteins/genetics
18.
Neuroimage Clin ; 14: 286-297, 2017.
Article in English | MEDLINE | ID: mdl-28337409

ABSTRACT

Hexanucleotide repeat expansions in C9ORF72 are the most common known genetic cause of familial and sporadic frontotemporal dementia and amyotrophic lateral sclerosis. Previous work has shown that patients with behavioral variant frontotemporal dementia due to C9ORF72 show salience and sensorimotor network disruptions comparable to those seen in sporadic behavioral variant frontotemporal dementia, but it remains unknown how early in the lifespan these and other changes in brain structure and function arise. To gain insights into this question, we compared 15 presymptomatic carriers (age 43.7 ± 10.2 years, nine females) to matched healthy controls. We used voxel-based morphometry to assess gray matter, diffusion tensor imaging to interrogate white matter tracts, and task-free functional MRI to probe the salience, sensorimotor, default mode, and medial pulvinar thalamus-seeded networks. We further used a retrospective chart review to ascertain psychiatric histories in carriers and their non-carrier family members. Carriers showed normal cognition and behavior despite gray matter volume and brain connectivity deficits that were apparent as early as the fourth decade of life. Gray matter volume deficits were topographically similar though less severe than those in patients with behavioral variant frontotemporal dementia due to C9ORF72, with major foci in cingulate, insula, thalamus, and striatum. Reduced white matter integrity was found in the corpus callosum, cingulum bundles, corticospinal tracts, uncinate fasciculi and inferior longitudinal fasciculi. Intrinsic connectivity deficits were detected in all four networks but most prominent in salience and medial pulvinar thalamus-seeded networks. Carrier and control groups showed comparable relationships between imaging metrics and age, suggesting that deficits emerge during early adulthood. Carriers and non-carrier family members had comparable lifetime histories of psychiatric symptoms. Taken together, the findings suggest that presymptomatic C9ORF72 expansion carriers exhibit functionally compensated brain volume and connectivity deficits that are similar, though less severe, to those reported during the symptomatic phase. The early adulthood emergence of these deficits suggests that they represent aberrant network patterning during development, an early neurodegeneration prodrome, or both.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Proteins/genetics , Adult , Asymptomatic Diseases , Brain/diagnostic imaging , C9orf72 Protein , Diffusion Tensor Imaging , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Neuropsychological Tests , Oxygen/blood
19.
Neuroimage Clin ; 12: 1035-1043, 2016.
Article in English | MEDLINE | ID: mdl-27995069

ABSTRACT

Expansion mutations in the C9orf72 gene may cause amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), or mixtures of the two clinical phenotypes. Different imaging findings have been described for C9orf72-associated diseases in comparison with sporadic patients with the same phenotypes, but it is uncertain whether different phenotypes have a common genotype-associated imaging signature. To address this question, 27 unrelated C9orf72 expansion mutation carriers (C9 +) with varied phenotypes, 28 age-matched healthy controls and 22 patients with sporadic ALS (sALS) underwent 3T MRI scanning and clinical phenotyping. Measures of brain volumes and cortical thickness were extracted from T1 images. Compared to healthy controls and sALS patients, symptomatic C9 + subjects had greater ventricular volume loss and thalamic atrophy for age, with diffuse, patchy cortical thinning. Asymptomatic carriers did not differ from controls. C9 + ALS and ALS-FTD patients had less thinning of the motor cortex than sALS patients, but more thinning in extramotor regions, particularly in frontal and temporal lobes. C9 + ALS patients differed from sporadic ALS patients in the thickness of the superior frontal gyrus and lateral orbitofrontal cortex. Thickness of the precentral gyrus was weakly correlated with the revised ALS functional rating scale. Thickness of many cortical regions, including several frontal and temporal regions, was moderately correlated with letter fluency scores. Letter fluency scores were weakly correlated with ventricular and thalamic volume. To better understand how imaging findings are related to disease progression, nineteen C9 + subjects and 23 healthy controls were scanned approximately 6 months later. Ventricular volume increased in C9 + patients with FTD and ALS-FTD phenotypes and remained stable in asymptomatic C9 + subjects. We conclude that diffuse atrophy is a common underlying feature of disease associated with C9orf72 mutations across its clinical phenotypes. Ventricular enlargement can be measured over a 6-month time frame, and appears to be faster in patients with cognitive impairment.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , Cerebral Cortex/pathology , Cerebral Ventricles/pathology , Disease Progression , Frontotemporal Dementia/pathology , Adult , Aged , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Atrophy/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Ventricles/diagnostic imaging , Female , Follow-Up Studies , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Heterozygote , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Phenotype
20.
Neuroimage Clin ; 12: 666-672, 2016.
Article in English | MEDLINE | ID: mdl-27761397

ABSTRACT

PURPOSE: Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS. MATERIAL AND METHODS: Interhemispheric homotopic rs-FC was assessed in 31 patients and 30 healthy controls (HCs) for 8 cortical sites, from prefrontal to occipital cortex, using NIRS. DTI was performed in a subgroup of 21 patients. All patients were evaluated for cognitive dysfunction in the executive, memory, and visuospatial domains. RESULTS: ALS patients displayed an altered spatial pattern of correlation between homotopic rs-FC values when compared to HCs (p = 0.000013). In patients without executive dysfunction a strong correlation existed between the rate of motor decline and homotopic rs-FC of the anterior temporal lobes (ATLs) (ρ = - 0.85, p = 0.0004). Furthermore, antero-temporal homotopic rs-FC correlated with fractional anisotropy in the central corpus callosum (CC), corticospinal tracts (CSTs), and forceps minor as determined by DTI (p < 0.05). CONCLUSIONS: The present study further supports involvement of non-motor areas in ALS. Our results render homotopic rs-FC as assessed by NIRS a potential clinical marker for disease progression rate in ALS patients without executive dysfunction and a potential anatomical marker for ALS-specific degeneration of the CC and CSTs.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Aged , Amyotrophic Lateral Sclerosis/diagnostic imaging , Cross-Sectional Studies , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , Neural Pathways/pathology , Neural Pathways/physiopathology , Spectroscopy, Near-Infrared , White Matter/diagnostic imaging , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL