Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Small ; : e2403048, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708777

ABSTRACT

Silicon-based anodes heavily depend on the binder to preserve the unbroken electrode structure. In the present work, natural flaxseed gum (FG) is used as a binder of silicon nanoparticles (SiNPs) anode for the first time. Owing to a large number of polar groups and a rich branched structure, this material not only anchors tightly to the surface of SiNPs through bonding interactions but also formed a hydrogen bonding network structure among molecules. As a result, the FG binder can endow the silicon electrode with stable interfacial adhesion and outstanding mechanical properties. In addition, FG with a high viscosity facilitates the homogeneous dispersion of the electrode components. When FG is used as a binder, the cycling performance of the Si anode is greatly improved. After one hundred cycles at an applied current density of 1 A g-1, the electrode continues to display remarkable electrochemical properties with a significant cyclic capacity (2213 mA h g-1) and initial Coulombic efficiency (ICE) of 89.7%.

2.
Int J Biol Macromol ; 270(Pt 1): 132421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759854

ABSTRACT

This study examines the effects of flaxseed gum (FG) on the aggregate structure, pasting and rheological properties of waxy rice starch (WRS). Results display an increase in the ordered molecular structure (R1047/1024), relative crystallinity (RC), compactness (α), and microphase heterogeneity (ε, density degree of nanoaggregates, from 3.52 to 4.23) for WRS-FG complexes. These suggested FG facilitated the development of more organized molecular and crystalline structures of WRS, accompanied by the formation of ordered nanoaggregates with higher density (i.e., nano-aggregation structure). Also, FG addition resulted in the formation of enhanced gel network structure characterized by thicker layer walls and more uniform pores. These structural transformations contributed to a rise in gelatinization temperature (To, from 56.90 °C to 62.10 °C) and enthalpy (ΔH), as well as alterations in paste viscosities (PV, from 1285.00 mPa·s to 1734.00 mPa·s), and the rigidity of network structure (e.g., decreased loss tangent). These results indicate that FG could effectively regulate the techno-functional properties of WRS by rationally controlling the starch intrinsic structures of starch. And this study may improve the pasting and gelling properties of starch, thus driving the development of high-quality starchy foods and prolonging their shelf life, especially for glutinous rice flour products.


Subject(s)
Flax , Oryza , Rheology , Starch , Oryza/chemistry , Starch/chemistry , Flax/chemistry , Plant Gums/chemistry , Temperature , Viscosity
3.
Int J Biol Macromol ; 255: 128086, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981278

ABSTRACT

Chitosan (CS) based nanoparticles (NPs) were fabricated via an ionic gelation reaction modified by flaxseed gum (FG) or sodium tripolyphosphate (STPP). The average particle size, morphology, interfacial tension, and wettability of NPs were characterized. The particle size of CS-STPP-HA (hyaluronic acid)-FA (ferulic acid) NPs and CS-FG-HA-FA NPs was 400.8 nm and 262.4 nm, respectively under the optimized conditions of CS/STPP = 5:1 (w/w) or CS/FG = 1:1 (v/v) with HA concentration of 0.25 mg/mL and FA dosage of 25 µM. FG acted as a good alternative for STPP to form particles with CS in stabilizing Pickering emulsion with an internal diacylglycerol (DAG) phase of 50-80 % (v/v). The complex nanoparticles had high surface activity and contact angle close to 90 °C, being able to tightly packed at the droplet surface. The emulsions had high thermal, ionic and oxidative stability. With the aid of moisturizing polysaccharides and DAG oil, the emulsions had a good sustained-release ability for FA with deeper penetration and retention into the dermis of the skin. Thus, FG and HA-based NPs serve as green vehicles for the fabrication of novel Pickering emulsions and possess great potential to be applied as a delivery system for lipophilic active agents in functional food and cosmetic products.


Subject(s)
Chitosan , Flax , Nanoparticles , Hyaluronic Acid , Emulsions , Particle Size
4.
Int J Biol Macromol ; 256(Pt 2): 127964, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951423

ABSTRACT

Doxorubicin is a powerful chemotherapy medicine that is frequently used to treat cancer, but because of its extremely destructive side effects on other healthy cells, its applications have been severely constrained. With the aim of using lower therapeutic doses of doxorubicin while maintaining the same anti-cancerous activity as those of higher doses, the present study designs nano-encapsulation of doxorubicin by acrylamide grafted melanin as core and acrylic acid grafted flax seed gum as shell (DOX@AAM-g-ML/AA-g-FSG-NPs) for studies in-vivo and in-vitro anticancer activity. For biological studies, the cytotoxicity of DOX@AAM-g-ML/AA-g-FSG-NPs was examined on a cancerous human cell line (HCT-15) and it was observed that DOX@AAM-g-ML/AA-g-FSG-NPs exhibited very high toxicity towards HCT-15. In-vivo investigation in colon cancer-inflicted rat model also showed that DOX@AAM-g-ML/AA-g-FSG-NPs showed better anticancer activity against cancerous cells as compared to free doxorubicin. The drug release behavior of DOX@GML-GFS-NPs was studied at several pH and maximum drug release (95 %) was recorded at pH -7.2, and kinetic data of drug release was follows the Higuchi (R2 = 0.9706) kinetic model. Our study is focussed on reducing the side effects of doxorubicin by its nano-encapsulation in acrylamide grafted melanin as core and acrylic acid grafted flax seed gum that will also enhance its efficiency.


Subject(s)
Acrylates , Flax , Nanoparticles , Neoplasms , Rats , Humans , Animals , Melanins , Nanoparticles/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neoplasms/drug therapy , Acrylamides , Drug Carriers , Drug Delivery Systems
5.
BMC Chem ; 17(1): 168, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012742

ABSTRACT

The low mechanical strength, water deficiency, and oxidative protection of organic membranes impede their use as food-grade packaging materials. Cinnamaldehyde (CIN) tends to lose its activity owing to its instability. In this study, CIN was added to flaxseed gum (FG)/chitosan (CS) films prepared in a "sandwich" structure. The influence of CIN dosage on the properties of the composite films was studied, and the film formation mechanism of the membrane was explored. The elongation at break, water vapor permeability, oxygen permeability, and light transmittance of the composite film with 1.5% CIN were lower than those of the FG/CS/FG film. Supplementation of the composite membrane with CIN generated new hydrogen bonds, electrostatic interactions, and C-O-C bonds, which converted the structure of the composite film into a sheet and increased its crystallinity without markedly affecting its thermal stability. Therefore, CIN is an extremely useful additive for improving the applicability of flaxseed gum/CS membranes as food-grade packaging films.

6.
Materials (Basel) ; 16(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37763595

ABSTRACT

The growing awareness of the environment and sustainable development has prompted the search for solutions involving the development of bio-based composite materials for insulating applications, offering an alternative to traditional synthetic materials such as glass- and carbon-reinforced composites. In this study, we investigate the thermal and microstructural properties of new biocomposite insulating materials derived from flaxseed-gum-filled epoxy, with and without the inclusion of reinforced flax fibers. A theoretical approach is proposed to estimate the thermal conductivity, while the composite's microstructure is characterized using X-ray Computed Tomography and image analysis. The local thermal conductivity of the flax fibers and the flaxseed gum matrix is identified by using effective thermal conductivity measurements and analytical models. This study provides valuable insight into the thermal behavior of these biocomposites with varying compositions of flaxseed gum and epoxy resin. The results obtained could not only contribute to a better understanding the thermal properties of these materials but are also of significant interest for advanced numerical modeling applications.

7.
Gels ; 9(9)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37754440

ABSTRACT

In the present study, flaxseed gum (FG), Arabic gum (GA) and Tween 80 were used to prepare oleogels through an emulsion-templated method, and the obtained oleogels were designed for the partial substitution of pork fat in emulsified sausage. An increment in FG concentrations enhanced the viscoelasticity of emulsions, which resulted in the improved stability of emulsion systems, with smaller droplet sizes. In addition, increased FG concentrations contributed to higher mechanical strength, denser network structure and lower oil loss of oleogels. As a fat substitute, the prepared oleogels improved the textural properties and nutritional quality of emulsified sausages. With the increase in the substitution level of oleogels, the hardness and chewiness of the emulsified sausage increased, and the cooking loss decreased. Meanwhile, the reformulation with oleogels decreased the saturated fat from 57.04 g/100 g lipid to 12.05 g/100 g lipid, while increasing the ratio of omega-6 to omega-3 essential fatty acids from 0.10 to 0.39. The obtained results demonstrated that the flaxseed gum/Arabic gum/Tween 80-based oleogels had huge potential to successfully replace pork fat in emulsified sausage products.

8.
Int J Biol Macromol ; 249: 126121, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37541467

ABSTRACT

Polysaccharide-based nanoparticles formed by the polyelectrolyte complexation between chitosan (CS) and flaxseed gum (FG) was developed in this work, and it was further used as a carrier for bighead carp peptide (BCP) delivery. The CS molecular weight (MW) of 50 kDa and CS/FG mass ratio of 1:2 at pH 3.5 were optimal conditions for the NP preparation, with the minimum particle size (∼155.1 nm) and the maximum BCP encapsulation efficiency (60.3 %). The BCP-loaded CS/FG NPs exhibited the smallest particle size (175.8 nm). Both CS/FG NPs and CS/FG-BCP NPs exhibited roughly uniform spherical shape. FT-IR spectra confirmed the existence of hydrogen bonds and electrostatic interactions in the nanoparticles. The BCP-loaded NPs displayed a higher thermal stability than BCP. Moreover, the release of BCP was controllable and dose-dependent, following a first-order kinetics model. These findings suggested that our CS/FG NPs are a promising carrier for bioactive peptide delivery.


Subject(s)
Carps , Chitosan , Flax , Nanoparticles , Animals , Drug Carriers/chemistry , Polyelectrolytes , Chitosan/chemistry , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Polysaccharides , Peptides/chemistry , Particle Size
9.
Polymers (Basel) ; 15(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37447480

ABSTRACT

This study aimed to investigate the effects of incorporating different concentrations of flaxseed gum (FG) into acid-induced soy protein isolate (SPI) gels. The investigation focused on assessing the effects of FG on the textural, rheological, and tribological properties of the resultant SPI gels. The results showed that adding a small amount of FG (0.05%) to the SPI gel system increased the storage modulus (G') and enhanced gelation while improving textural properties including hardness, viscosity, elasticity, and adhesion. Moreover, these gels exhibited strong water-holding capacity, a desirable property in various food products. However, when the concentration was increased to 0.3%, the WHC of the gel decreased, as did the hardness and cohesiveness. The particle size of the gel also increased with increasing concentration. Tribological investigations revealed that at 0.05-0.2% FG addition, the coefficient of friction (µ) of the composite gel was decreased compared to the pure SPI gel. In the sliding speed range of 1-100 mm/s, the coefficient of friction gradually increased with increasing concentration. When the FG concentration was 0.05%, the µ of the gel system was the lowest. In summary, low concentration of FG (0.05%) was found to play an important role in improving the properties of SPI gel, including enhancing textural, rheological, and lubricating properties.

10.
Gels ; 9(4)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37102930

ABSTRACT

In this study, flaxseed gum (FG) was extracted using hot water extraction and ultrasonic-assisted extraction. The yield, molecular weight distribution, monosaccharide composition, structure, and rheological properties of FG were analyzed. The FG yield (9.18) achieved using ultrasound-assisted extraction (this sample was labeled as UAE) was higher than the yield (7.16) achieved with hot water extraction (this sample was labeled as HWE). The polydispersity, monosaccharide composition, and characteristic absorption peaks of the UAE were similar to that of the HWE. However, the UAE had a lower molecular weight and looser structure than the HWE. Moreover, zeta potential measurements indicated that the UAE exhibited better stability. An analysis of the rheological properties showed that the viscosity of the UAE was lower. Thus, the UAE had an effectively better yield of FG, preliminarily modified structure, and rheological properties, and provided a theoretical basis for its application in food processing.

11.
Food Sci Biotechnol ; 32(2): 181-192, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36647527

ABSTRACT

In this study, a natural-based gelling agent comprised of blended flax seed gum (FSG), konjac glucomannan (KG), and agar gel (AG) was developed for application to control the textural properties of foods. The compound gels, including FSG, KG, and AG, were investigated to determine their moisture affinity, including minimum gelling concentration, water binding capacity, water soluble index, and swelling power. In addition, we analyzed the rheological properties of the compound gel through texture analysis, frequency sweep, and creep and recovery. The microstructure of the compound gel was identified and compared with the viscoelastic properties of the gel. Overall, these results showed that the F4K6 (4:6:2 of FSG:KG:AG) could serve as an excellent gelling agent, which endowed food gel with the promoted elastic properties, water capacity, and rigid surface morphology. This work suggests that novel gelling agents, including FSG, KGM, and AG, successfully prepared food gels with improved physicochemical properties. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01179-9.

12.
Int J Biol Macromol ; 232: 123455, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36709802

ABSTRACT

To understand the heat treatment and flaxseed gum (FG) on the properties of commercial spray dried soy protein isolate (SPI), SPI dispersions were prepared with mass ratio of 6 %, 9 %, and 12 % in water and the corresponding protein concentrations of 2.2 %, 3.61 % and 5.23 % were reached after centrifugation. The solutions were treated at different temperatures (25, 75 and 100 °C) and the particle characteristics and physical properties of the resulted samples were determined. The influence of different concentrations (0.05 % to 0.3 %) of FG addition was evaluated in the SPI solution at 5 % protein concentration. The results showed that heating caused decrease of particle size of the SPI proteins and 100 °C heat treatment caused decrease of hydrophobicity and viscosity of the protein dispersions, and increase of their physical stability, and the effect was more marked at high protein concentration; while heat treatment at 75 °C caused substantial increase in protein hydrophobicity and viscosity, and decrease of stability. Addition of FG resulted in increase of particle size, absolute value of zeta potential and hydrophobicity of the protein solutions. The viscosity of the solution was decreased with addition of FG, but higher FG concentration could lead to higher viscosity. The physical stability of the mixed system was improved at low FG concentrations, but decreased at concentration higher than 0.2 %, which was more significant after 100 °C heat treatment. FG incorporation could improve the boundary lubrication of the protein solutions.


Subject(s)
Flax , Hyperthermia, Induced , Soybean Proteins , Heating , Rheology , Particle Size
13.
Food Chem ; 402: 134080, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36137383

ABSTRACT

Multiple emulsions have drawn great attentions from researchers in the production of low-fat foods. The Monascus pigment W/O/W multiple emulsions were prepared by a two-step emulsification procedure with Monascus pigment as inner water phase, flaxseed gum (FG) as internal water phase gel, soybean oil as oil phase, and pea protein isolate (PPI) as outer water phase. We aimed to investigate the quality of pork emulsion systems in which pork fat was replaced by W/O/W emulsions. The results revealed that addition of W/O/W emulsions reduced lipid contents from 11.22% to 5.09%, enhanced protein level from 15.77% to 17.02%, increased polyunsaturated fatty acid composition from 23.36% to 59.63%, improved water-holding capacity and oxidative stability compared to the control samples with pork fat. It was demonstrated that meat systems could achieve dual functions including decreasing the total fat content without affecting the hardness of the meat systems and color retention.


Subject(s)
Meat Products , Monascus , Pea Proteins , Pork Meat , Red Meat , Animals , Swine , Emulsions , Water , Meat Products/analysis , Soybean Oil
14.
Food Chem ; 403: 134320, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36162267

ABSTRACT

A novel film composed of Polygonatum cyrtonema extracts (PCE), xanthan gum (XG), flaxseed gum (FG) and carboxymethyl cellulose (CMC) was prepared (XFCP). Addition of PCE has decreased the light transmittance, while enhanced the UV blocking performance, antioxidant activity, tensile strength and elongation at break of XFCP due to polysaccharides, polyphenols, and flavonoid in PCE. Structural analyses by FTIR and XRD indicated the hydrogen-bonding interaction between PCE, XG, FG and CMC. It was found that compared with the control sample, XFCP2.5% with the lowest WVTR was able to prolong the shelf life of mango. The overall quality of mango was also improved in terms of lower decay rate, weight loss rate, total soluble solid, and polyphenol oxidase, higher titratable acidity, Vc, and superoxide dismutase than control mango upon 8 days of storage. This effectively expanded the application of PCE into food packaging in addition to merely as Chinese traditional medicine herbs.


Subject(s)
Flax , Mangifera , Polygonatum , Carboxymethylcellulose Sodium/chemistry , Antioxidants/chemistry , Polysaccharides, Bacterial/chemistry , Food Packaging , Plant Extracts
15.
Materials (Basel) ; 15(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500187

ABSTRACT

Mucilage-based flocculants are an alternative to synthetic flocculants and their use in sustainable water treatment relates to their non-toxic and biodegradable nature. Mucilage extracted from flaxseed (FSG) and fenugreek seed (FGG) was evaluated as natural flocculants in a coagulation-flocculation (CF) process for arsenic removal, and were compared against a commercial xanthan gum (XG). Mucilage materials were characterized by spectroscopy (FT-IR, 13C NMR), point-of-zero charge (pHpzc) and thermogravimetric analysis (TGA). Box-Behnken design (BBD) with response surface methodology (RSM) was used to determine optimal conditions for arsenic removal for the CF process for three independent variables: coagulant dosage, flocculant dosage and settling time. Two anionic systems were tested: S1, roxarsone (organic arsenate 50 mg L-1) at pH 7 and S2 inorganic arsenate (inorganic arsenate 50 mg L-1) at pH 7.5. Variable arsenic removal (RE, %) was achieved: 92.0 (S1-FSG), 92.3 (S1-FGG), 92.8 (S1-XG), 77.0 (S2-FSG), 69.6 (S2-FGG) and 70.6 (S2-XG) based on the BBD optimization. An in situ kinetic method was used to investigate arsenic removal, where the pseudo-first-order model accounts for the kinetic process. The FSG and FGG materials offer a sustainable alternative for the controlled removal of arsenic in water using a facile CF treatment process with good efficiency, as compared with a commercial xanthan gum.

16.
Foods ; 11(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36429149

ABSTRACT

Both DHA and astaxanthin, with multiple conjugated double bonds, are considered as health-promoting molecules. However, their utilizations into food systems are restricted due to their poor water solubility and high oxidizability, plus their certain off-smell. In this study, the interactions between perilla protein isolate (PPI) and flaxseed gum (FG) were firstly investigated using multiple spectroscopies, suggesting that hydrophobic, electrostatic force and hydrogen bonds played important roles. Additionally, double-layer emulsion was constructed by layer-by-layer deposition technology and exhibited preferable effects on masking the fishy smell of algae oil. Calcium ions also showed an improving effect on the elasticity modulus of O/W emulsions and was managed to significantly protect the stability of co-delivered astaxanthin and DHA, without additional antioxidants during storage for 21 days. The vegan system produced in this study may, therefore, be suitable for effective delivery of both ω-3 fatty acid and carotenoids for their further incorporation into food systems, such as plant-based yoghourt, etc.

17.
Foods ; 11(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35954070

ABSTRACT

Flaxseed is an excellent source of valuable nutrients and is also considered a functional food. There are two types of hydrocolloids in flaxseed: flaxseed gum and proteins. Flaxseed gum exhibits emulsifying and foaming activities or can be used as a thickening and gelling agent. Due to its form of soluble fiber, flaxseed gum is related to many health benefits. Flaxseed proteins have various functional properties based on their physicochemical properties. While albumins possess the emulsion-forming ability, globulins better serve as foaming agents. Flaxseed proteins may also serve as a source of functional peptides with interesting biological and health-related activities. Functional properties and health-related benefits predetermine the application of these hydrocolloids, mainly in the food industry or medicine. Although these properties of flaxseed hydrocolloids have been recently and extensively studied, they are still not widely used on the industrial scale compared to other popular plant gums and proteins. The aim of this review was to present, discuss and highlight the recent discoveries in the structural characteristics and functional and biological properties of these versatile hydrocolloids with respect to factors affecting their characteristics and offer new insights into their potential applications as comparable alternatives to the other natural hydrocolloids or as the sources of novel functional products.

18.
J Food Sci ; 87(5): 2058-2071, 2022 May.
Article in English | MEDLINE | ID: mdl-35411576

ABSTRACT

Influence of different concentrations (0.5, 1.0, 2.0, and 3.0% w/v) and temperatures (4, 25, 50, and 75°C) on particle size distribution (PSD) and rheological and tribological characteristics of flaxseed gum (FSG) solutions was investigated. Besides, FSG dispersions (0.5, 1.0, and 2.0% w/v) were used as edible coating and their influence on the quality parameters (oil uptake, moisture loss, texture, and sensory properties) of fried potato chips was studied. All FSG dispersions revealed shear-thinning nature and viscous properties (as G″ > G') that were more dominant at higher concentrations and lower temperatures. The power-law model presented a good fit in demonstrating the flow behavior of FSG dispersions. Concentration was the variable that affected the tribology of FSG dispersions, while temperature had little effect on the tribology. Particle size distribution was increased with the increasing concentration of FSG. FSG dispersions as an edible coating effectively reduced the moisture loss, oil uptake, and hardness properties of potato chips. Practical Application Profiling the influence of concentration and temperature on the rheology and tribology of flaxseed gum is particularly valuable during food processing. The results predict the physical properties of coated potato chips that can support the potential application of flaxseed gum as a coating agent. Today's consumers prefer healthier food products with low caloric, higher fiber content, functional properties, and sensory qualities. Food industries can use FSG as a low-cost natural coating material in terms of economic benefits, consumer acceptance, and providing an inordinate potential both for its protective effect and carrying functional compounds such as antioxidants in their coating matrix.


Subject(s)
Flax , Plant Gums , Rheology , Temperature , Viscosity
19.
Foods ; 11(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35159434

ABSTRACT

Flaxseed gum (FG) and whey protein microparticles (WPMs) were used to substitute fats in model mayonnaises. WPMs were prepared by grinding the heat-set whey protein gel containing 10 mM CaCl2 into small particles (10-20 µm). Then, 3 × 4 low-fat model mayonnaises were prepared by varying FG (0.3, 0.6, 0.9 wt%) and WPM (0, 8, 16, 24 wt%) concentrations. The effect of the addition of FG and WPMs on rheology, instrumental texture and sensory texture and their correlations were investigated. The results showed that all samples exhibited shear thinning behavior and 'weak gel' properties. Although both FG and WPMs enhanced rheological (e.g., viscosity and storage modulus) and textural properties (e.g., hardness, consistency, adhesiveness, cohesiveness) and kinetic stability, this enhancement was dominated by FG. FG and WPMs affected bulk properties through different mechanisms, (i.e., active filler and entangled polysaccharide networks). Panellists evaluated sensory texture in three stages: extra-oral, intra-oral and after-feel. Likewise, FG dominated sensory texture of model mayonnaises. With increasing FG concentration, sensory scores for creaminess and mouth-coating increased, whereas those of firmness, fluidity and spreadability decreased. Creaminess had a linear negative correlation with firmness, fluidity and spreadability (R2 > 0.985), while it had a linear positive correlation with mouth-coating (R2 > 0.97). A linear positive correlation (R2 > 0.975) was established between creaminess and viscosity at different shear rates/instrumental texture parameters. This study highlights the synergistic role of FG and WPMs in developing low-fat mayonnaises.

20.
Int J Biol Macromol ; 194: 510-520, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34822827

ABSTRACT

Plant essential oils lose their activity due to unstable chemical properties and volatility, and the coating can improve their stability by encapsulating. The three-layer coatings were prepared by tape casting method with flaxseed gum (FG) and chitosan (CS) as film-forming materials, eugenol (EG) and laurel essential oil (LEO) as preservatives. The composite coatings were characterized, and their physicochemical properties, release properties, antibacterial and antioxidant properties were determined. Meanwhile, the protective effect of the composite coatings on rainbow trout fillets myofibril protein was studied. The mechanical properties of the FG/CS/FG coatings are better than FG coating. The release of EG and LEO from the coatings are followed simple diffusion mechanism. After added essential oils, the antibacterial and antioxidant properties of the composite coatings are significantly enhanced. In the preservation process of the rainbow trout fillets, the composite coatings can reduce the carbonyl content, increase the sulfhydryl content and Ca2+-ATPase activity. The ß-sheet content is 6.09%-15.63% higher than that of control, indicating the coatings are helpful to maintain the order of myofibril protein. The composite coatings slowed down the decrease of antioxidant enzyme activity, thus delay the protein oxidation. Because of long-term antibacterial and antioxidant properties, the composite coatings have potential value in food preservation or food packaging materials.


Subject(s)
Food Packaging/methods , Food Preservation/methods , Food Quality , Oncorhynchus mykiss/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Chitosan/pharmacology , Flax/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL