Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
J Fungi (Basel) ; 10(9)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39330416

ABSTRACT

Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity disease caused by Aspergillus fumigatus (Af), prevalent in persons with cystic fibrosis (CF) or asthma. In ABPA, Af proteases drive a T-helper cell-2 (Th2)-mediated allergic immune response leading to inflammation that contributes to permanent lung damage. Corticosteroids and antifungals are the mainstays of therapies for ABPA. However, their long-term use has negative sequelae. The treatment of patients with CF (pwCF) has been revolutionized by the efficacy of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Pharmacological improvement in CFTR function with highly effective elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes of pwCF. The mechanism behind the improvement in patient outcomes is a continued topic of investigation as our understanding of the role of CFTR function evolves. As ETI therapy gains traction in CF management, understanding its potential impact on ABPA, especially on the allergic immune response pathways and Af infection becomes increasingly crucial for optimizing patient outcomes. This literature review aims to examine the extent of these findings and expand our understanding of the already published research focusing on the intersection between ABPA therapeutic approaches in CF and the rapid impact of the evolving CFTR modulator landscape. While our literature search yielded limited reports specifically focusing on the role of CFTR modulator therapy on CF-ABPA, findings from epidemiologic and retrospective studies suggest the potential for CFTR modulator therapies to positively influence pulmonary outcomes by addressing the underlying pathophysiology of CF-ABPA, especially by decreasing inflammatory response and Af colonization. Thus, this review highlights the promising scope of CFTR modulator therapy in decreasing the overall prevalence and incidence of CF-ABPA.

2.
Sci Total Environ ; 947: 174612, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38992382

ABSTRACT

Cydia pomonella granulovirus (CpGV) is a highly specific and environmentally friendly pathogenic virus successfully used as a biological insecticide against codling moth larvae. Continuous application of CpGV has led to high levels of resistance in codling moth, Cydia pomonella (C. pomonella). Nevertheless, the specific molecular mechanisms underlying the development of resistance in codling moths to CpGV have been rarely investigated. This study explored the potential antiviral immune roles of codling moth antimicrobial peptides (AMPs) against CpGV. A total of 11 AMP genes classified in cecropin, defensin, gloverin, and attacin subfamilies, were identified in the codling moth genome. The cecropin and gloverin subfamilies were found to be the ancestral genes of the AMP gene family. The expression of two AMP genes (CmGlo1 and CmAtt1) significantly increased following CpGV challenge, and CmGlo1 and CmAtt1 gene silencing resulted in a significant increase in CpGV replication in codling moth larvae. The hemolymph and fat body serve as major viral immune functional tissues in codling moth larvae. Moreover, zhongshengmycin significantly reduced the diversity and abundance of codling moth larvae gut microbiota, thereby suppressing the expression of CmAtt1 AMP gene. We also found that the combination of the virus with zhongshengmycin would enhance the insecticidal effects of CpGV. This study provides the first explanation of the molecular mechanisms driving CpGV immune function development in codling moths, approached from the perspective of the codling moth itself. Additionally, we introduced an alternative approach to combat codling moth in the field by combining antibiotics with biopesticides to amplify the insecticidal effects of the latter.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Granulovirus , Larva , Moths , Animals , Moths/drug effects , Granulovirus/genetics , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Anti-Bacterial Agents/pharmacology , Larva/drug effects
3.
Sci Rep ; 14(1): 13661, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871732

ABSTRACT

Over the past decades, the immune responses have been suspected of participating in the mechanisms for epilepsy. To assess the immune related pathway in temporal lobe epilepsy (TLE), we explored the altered immune pathways in TLE patients with and without hippocampal sclerosis (HS). We analyzed RNA-seq data from 3 TLE-HS and 3 TLE-nonHS patients, including identification of differentially expressed RNA, function pathway enrichment, the protein-protein interaction network and construction of ceRNA regulatory network. We illustrated the immune related landscape of molecules and pathways on human TLE-HS. Also, we identified several differential immune related genes like HSP90AA1 and SOD1 in TLE-HS patients. Further ceRNA regulatory network analysis found SOX2-OT connected to miR-671-5p and upregulated the target gene SPP1 in TLE-HS patients. Also, we identified both SOX2-OT and SPP1 were significantly upregulated in five different databases including TLE-HS patients and animal models. Our findings established the first immune related genes and possible regulatory pathways in TLE-HS patients and animal models, which provided a novel insight into disease pathogenesis in both patients and animal models. The immune related SOX2-OT/miR-671-5p/SPP1 axis may be the potential therapeutic target for TLE-HS.


Subject(s)
Epilepsy, Temporal Lobe , Gene Regulatory Networks , Hippocampal Sclerosis , MicroRNAs , SOXB1 Transcription Factors , Adult , Animals , Female , Humans , Male , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/immunology , Epilepsy, Temporal Lobe/physiopathology , Gene Expression Profiling , Hippocampal Sclerosis/immunology , Hippocampal Sclerosis/physiopathology , MicroRNAs/genetics , MicroRNAs/metabolism , Osteopontin/genetics , Osteopontin/metabolism , Protein Interaction Maps , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
4.
Vaccines (Basel) ; 12(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38932348

ABSTRACT

Porphyromonas gingivalis (Pg), a Gram-negative anaerobic bacterium found in dental plaque biofilm within periodontal pockets, is the primary pathogenic microorganism responsible for chronic periodontitis. Infection by Pg significantly impacts the development and progression of various diseases, underscoring the importance of eliminating this bacterium for effective clinical treatment. While antibiotics are commonly used to combat Pg, the rise of antibiotic resistance poses a challenge to complete eradication. Thus, the prevention of Pg infection is paramount. Research suggests that surface antigens of Pg, such as fimbriae, outer membrane proteins, and gingipains, can potentially be utilized as vaccine antigens to trigger protective immune responses. This article overviews these antigens, discusses advancements in mucosal adjuvants (including immunostimulant adjuvants and vaccine-delivery adjuvants), and their application in Pg vaccine development. Furthermore, the review examines the advantages and disadvantages of different immune pathways and common routes of Pg vaccine immunization. By summarizing the current landscape of Pg vaccines, addressing existing challenges, and highlighting the potential of mucosal vaccines, this review offers new insights for the advancement and clinical implementation of Pg vaccines.

5.
Annu Rev Immunol ; 42(1): 551-584, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941604

ABSTRACT

Poxviruses have evolved a wide array of mechanisms to evade the immune response, and we provide an overview of the different immunomodulatory strategies. Poxviruses prevent the recognition of viral DNA that triggers the immune responses and inhibit signaling pathways within the infected cell. A unique feature of poxviruses is the production of secreted proteins that mimic cytokines and cytokine receptors, acting as decoy receptors to neutralize the activity of cytokines and chemokines. The capacity of these proteins to evade cellular immune responses by inhibiting cytokine activation is complemented by poxviruses' strategies to block natural killer cells and cytotoxic T cells, often through interfering with antigen presentation pathways. Mechanisms that target complement activation are also encoded by poxviruses. Virus-encoded proteins that target immune molecules and pathways play a major role in immune modulation, and their contribution to viral pathogenesis, facilitating virus replication or preventing immunopathology, is discussed.


Subject(s)
Immune Evasion , Poxviridae Infections , Poxviridae , Humans , Poxviridae/immunology , Poxviridae/physiology , Animals , Poxviridae Infections/immunology , Cytokines/metabolism , Signal Transduction , Viral Proteins/metabolism , Viral Proteins/immunology , Antigen Presentation/immunology , Host-Pathogen Interactions/immunology
6.
J Cancer ; 15(11): 3547-3565, 2024.
Article in English | MEDLINE | ID: mdl-38817870

ABSTRACT

The innate immune system serves as the body's primary physiological defense against the intrusion of pathogenic microorganisms, playing a pivotal role in restricting viral infections. However, current research on the interplay between innate immune pathways and cancer is limited, with reported effects often inconsistent. Therefore, we aimed to elucidate the relationship between innate immune pathways and tumors through an amalgamation of bioinformatics and extensive data analysis. Conducting a pan-cancer analysis encompassing expression, genomic alterations, and clinical prognosis, we identified a close association between the innate immune pathway and cholangiocarcinoma. Subsequently, our focus shifted to unraveling the role of innate immune pathway proteins in cholangiocarcinoma. TIMER database analysis showed that the innate immune pathway predominantly influences the infiltration of macrophages and B cells in cholangiocarcinoma. Additionally, gene ontology (GO) and pathway analyses were performed for significantly differentially expressed genes correlated with the innate immune pathway in cholangiocarcinoma. Single-cell transcriptome analysis in cholangiocarcinoma demonstrated that genes in the innate immune pathway are primarily expressed in malignant cells, endothelial cells, monocytes and macrophages. To further validate the expression of proteins in the innate immune pathway in the tumor tissues of patients with cholangiocarcinoma, tumor tissue slices from patients with liver intrahepatic cholangiocarcinoma and normal tissue slices from the HPA database were analyzed. These results indicated pronounced activation of the innate immune pathway in the tumor tissues of patients with cholangiocarcinoma. Finally, proteomic data from patients with or without intrahepatic cholangiocarcinoma metastasis were analyzed. The results revealed a significant correlation between the expression and phosphorylation of IKKε and the occurrence of intrahepatic cholangiocarcinoma metastasis. These findings not only demonstrate the significance of the innate immune pathway in cholangiocarcinoma but also its potential as a prospective prognostic biomarker and therapeutic target for this malignancy.

7.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38536757

ABSTRACT

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Subject(s)
Arboviruses , Hemiptera , Oryza , Tenuivirus , Animals , Arboviruses/genetics , Hemiptera/physiology , Tenuivirus/physiology , Insect Vectors , Antiviral Agents/metabolism , Oryza/genetics , Plant Diseases
8.
Front Pharmacol ; 15: 1276551, 2024.
Article in English | MEDLINE | ID: mdl-38344171

ABSTRACT

The brain-gut axis plays a vital role in connecting the cognitive and emotional centers of the brain with the intricate workings of the intestines. An imbalance in the microbiota-mediated brain-gut axis extends far beyond conditions like Irritable Bowel Syndrome (IBS) and obesity, playing a critical role in the development and progression of various neurological disorders, including epilepsy, depression, Alzheimer's disease (AD), and Parkinson's disease (PD). Epilepsy, a brain disorder characterized by unprovoked seizures, affects approximately 50 million people worldwide. Accumulating evidence suggests that rebuilding the gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and ketogenic diets (KD) can benefit drug-resistant epilepsy. The disturbances in the gut microbiota could contribute to the toxic side effects of antiepileptic drugs and the development of drug resistance in epilepsy patients. These findings imply the potential impact of the gut microbiota on epilepsy and suggest that interventions targeting the microbiota, such as the KD, hold promise for managing and treating epilepsy. However, the full extent of the importance of microbiota in epilepsy treatment is not yet fully understood, and many aspects of this field remain unclear. Therefore, this article aims to provide an overview of the clinical and animal evidence supporting the regulatory role of gut microbiota in epilepsy, and of potential pathways within the brain-gut axis that may be influenced by the gut microbiota in epilepsy. Furthermore, we will discuss the recent advancements in epilepsy treatment, including the KD, fecal microbiota transplantation, and antiseizure drugs, all from the perspective of the gut microbiota.

9.
BMC Cancer ; 23(1): 1179, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041020

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the most common primary malignancy of bone tumors. More and more ARHGAP family genes have been confirmed are to the occurrence, development, and invasion of tumors. However, its significance in osteosarcoma remains unclear. In this study, we aimed to identify the relationship between ARHGAP family genes and prognosis in patients with OS. METHODS: OS samples were retrieved from the TCGA and GEO databases. We then performed LASSO regression analysis and multivariate COX regression analysis to select ARHGAP family genes to construct a risk prognosis model. We then validated this prognostic model. We utilized ESTIMATE and CIBERSORT algorithms to calculate the stroma and immune scores of samples, as well as the proportions of tumor infiltrating immune cells (TICs). Finally, we conducted in vivo and in vitro experiments to investigate the effect of ARHGAP28 on osteosarcoma. RESULTS: We selected five genes to construct a risk prognosis model. Patients were divided into high- and low-risk groups and the survival time of the high-risk group was lower than that of the low-risk group. The high-risk group in the prognosis model constructed had relatively poor immune function. GSEA and ssGSEA showed that the low-risk group had abundant immune pathway infiltration. The overexpression of ARHGAP28 can inhibit the proliferation, migration, and invasion of osteosarcoma cells and tumor growth in mice, and IHC showed that overexpression of ARHGAP28 could inhibit the proliferation of tumor cells. CONCLUSION: We constructed a risk prognostic model based on five ARHGAP family genes, which can predict the overall survival of patients with osteosarcoma, to better assist us in clinical decision-making and individualized treatment.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Animals , Mice , Prognosis , Osteosarcoma/genetics , Risk Factors , Algorithms , Bone Neoplasms/genetics
10.
mSystems ; 8(6): e0047123, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37966252

ABSTRACT

IMPORTANCE: African swine fever (ASF), caused by African swine fever virus (ASFV), has become a major crisis for the pork industry in recent years. The mechanism for ASFV pathology and the clinical symptoms difference of ASF between domestic pigs and reservoir hosts remain to be elucidated. We deciphered the comprehensive protein-protein interaction (PPI) network between ASFV and host immune pathways. The intensive PPI network contained both ASFV-host immune pathway PPI and ASFV-ASFV PPI information, providing a comprehensive ASFV-host interaction landscape. Furthermore, the ASFV-host PPI difference between domestic pigs and warthogs was explored, which will be instructive for exploring essential candidates involved in ASFV pathology. Moreover, we screened the inhibitory effect of ASFV proteins in the PPI with cGAS-STING pathway on IFN-I and NF-κB, further providing possible functions of ASFV-host PPI network in innate immune regulation.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Swine , Animals , African Swine Fever/metabolism , Sus scrofa , NF-kappa B/metabolism , Interferon Type I/metabolism
11.
Mol Cells ; 46(10): 637-653, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37853687

ABSTRACT

The physiology of most organisms, including Drosophila, is heavily influenced by their interactions with certain types of commensal bacteria. Acetobacter and Lactobacillus, two of the most representative Drosophila commensal bacteria, have stimulatory effects on host larval development and growth. However, how these effects are related to host immune activity remains largely unknown. Here, we show that the Drosophila development-promoting effects of commensal bacteria are suppressed by host immune activity. Mono-association of germ-free Drosophila larvae with Acetobacter pomorum stimulated larval development, which was accelerated when host immune deficiency (IMD) pathway genes were mutated. This phenomenon was not observed in the case of mono-association with Lactobacillus plantarum. Moreover, the mutation of Toll pathway, which constitutes the other branch of the Drosophila immune pathway, did not accelerate A. pomorum-stimulated larval development. The mechanism of action of the IMD pathway-dependent effects of A. pomorum did not appear to involve previously known host mechanisms and bacterial metabolites such as gut peptidase expression, acetic acid, and thiamine, but appeared to involve larval serum proteins. These findings may shed light on the interaction between the beneficial effects of commensal bacteria and host immune activity.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila melanogaster/physiology , Acetic Acid/pharmacology , Bacteria , Thiamine , Larva
12.
Gene ; 884: 147743, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37640116

ABSTRACT

Yak is one of the rare and unique cattle species on the Qinghai-Tibetan Plateau, which has strong adaptability to the extreme environment of the plateau. The spleens are important functional organs that enable animals to adapt to their external environment and are vital in the growth and development process. To further investigate changes in immune function during yak development, we compared the transcriptome profiles of spleen tissues among juvenile (1-day old), youth (15-months old), and prime (5-years old) yaks. Immunology of spleen development was evaluated based on histological analyses and global gene expression was examined by using RNA-sequencing (RNA-seq) technology. In this work, we found 6378 genes with significant differences between the spleen of juvenile yak and youth yak, with the largest difference between groups. There were 3144 genes with significant differences between the spleen of young yak and prime yak, with the smallest differences between groups. Further, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for the functional annotation of these genes. GO and KEGG analysis showed that some of them were related to growth, disease, immune, and metabolism. However, the genetic mechanism underlying the adaptability of yak spleens at different ages to harsh plateau environments remains unknown. These findings are important for studying the mechanisms of spleen development in yaks of different age groups.


Subject(s)
Spleen , Transcriptome , Animals , Cattle/genetics , Gene Expression Profiling , Gene Ontology
13.
Front Immunol ; 14: 1201619, 2023.
Article in English | MEDLINE | ID: mdl-37564655

ABSTRACT

Focal segmental glomerulosclerosis (FSGS) is a common glomerular disorder that manifests clinically with the nephrotic syndrome and has a propensity to recur following kidney transplantation. The pathophysiology and therapies available to treat FSGS currently remain elusive. Since the podocyte appears to be the target of apparent circulating factor(s) that lead to recurrence of proteinuria following kidney transplantation, this article is focused on the podocyte. In the context of kidney transplantation, the performance of pre- and post-reperfusion biopsies, and the establishment of in vitro podocyte liquid biopsies/assays allow for the development of clinically relevant studies of podocyte biology. This has given insight into new pathways, involving novel targets in innate and adaptive immunity, such as SMPDL3b, cGAS-STING, and B7-1. Elegant experimental studies suggest that the successful clinical use of rituximab and abatacept, two immunomodulating agents, in our case series, may be due to direct effects on the podocyte, in addition to, or perhaps distinct from their immunosuppressive functions. Thus, tissue biomarker-directed therapy may provide a rational approach to validate the mechanism of disease and allow for the development of new therapeutics for FSGS. This report highlights recent progress in the field and emphasizes the importance of kidney transplantation and recurrent FSGS (rFSGS) as a platform for the study of primary FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Nephrotic Syndrome , Podocytes , Humans , Podocytes/metabolism , Glomerulosclerosis, Focal Segmental/drug therapy , Kidney Glomerulus , Adaptive Immunity
14.
J Enzyme Inhib Med Chem ; 38(1): 2230388, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37439326

ABSTRACT

Recent studies on biphenyl-containing compounds, a type of PD-1/PD-L1 blocker which binds to PD-L1 and induces dimerisation, have focussed on its immune function. Herein, 10 novel biphenyl derivatives were designed and synthesised. The results of the CCK-8 showed that compounds have different anti-tumour activities for tumour cells in the absence of T cells. Particularly, 12j-4 can significantly induce the apoptosis of MDA-MB-231 cells (IC50 = 2.68 ± 0.27 µM). In further studies, 12j-4 has been shown to prevent the phosphorylation of AKT by binding to cytoplasmic PD-L1, which induces apoptosis in MDA-MB-231 cells through non-immune pathways. The inhibition of AKT phosphorylation restores the activity of GSK-3ß, ultimately resulting in the degradation of PD-L1. Besides, in vivo study indicated that 12j-4 repressed tumour growth in nude mice. As these biphenyls exert their anti-tumour effects mainly through non-immune pathways, they are worthy of further study as PD-L1 inhibitors.


Subject(s)
Biphenyl Compounds , Breast Neoplasms , Proto-Oncogene Proteins c-akt , Animals , Mice , B7-H1 Antigen , Glycogen Synthase Kinase 3 beta , Mice, Nude , Breast Neoplasms/drug therapy , Biphenyl Compounds/pharmacology
15.
Front Immunol ; 14: 1176966, 2023.
Article in English | MEDLINE | ID: mdl-37153604

ABSTRACT

The interaction between bacteria and insects can significantly impact a wide range of different areas because bacteria and insects are widely distributed around the globe. The bacterial-insect interactions have the potential to directly affect human health since insects are vectors for disease transmission, and their interactions can also have economic consequences. In addition, they have been linked to high mortality rates in economically important insects, resulting in substantial economic losses. MicroRNAs (miRNAs) are types of non-coding RNAs involved in regulating gene expression post-transcriptionally. The length of miRNAs ranges from 19 to 22 nucleotides. MiRNAs, in addition to their ability to exhibit dynamic expression patterns, have a diverse range of targets. This enables them to govern various physiological activities in insects, like innate immune responses. Increasing evidence suggests that miRNAs have a crucial biological role in bacterial infection by influencing immune responses and other mechanisms for resistance. This review focuses on some of the most recent and exciting discoveries made in recent years, including the correlation between the dysregulation of miRNA expression in the context of bacterial infection and the progression of the infection. Furthermore, it describes how they profoundly impact the immune responses of the host by targeting the Toll, IMD, and JNK signaling pathways. It also emphasizes the biological function of miRNAs in regulating immune responses in insects. Finally, it also discusses current knowledge gaps about the function of miRNAs in insect immunity, in addition to areas that require more research in the future.


Subject(s)
Bacterial Infections , MicroRNAs , Moths , Animals , Humans , MicroRNAs/metabolism , Host-Pathogen Interactions/genetics , Bacterial Infections/genetics , Insecta/genetics , Insecta/metabolism , Bacteria/genetics , Bacteria/metabolism
16.
Life Sci ; 324: 121734, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37105442

ABSTRACT

AIMS: Maternal immune activation (MIA) via infection during pregnancy is known to be an environmental risk factor for neurodevelopmental disorders and the development of autism spectrum disorders (ASD) in the offspring, but it still remains elusive that the molecular relevance between infection-induced abnormal neurodevelopmental events and an increased risk for ASD development. MAIN METHODS: Fully considering the extremely high genetic heterogeneity of ASD and the universality of risk-gene with minimal effect-sizes, the gene and pathway-based association analysis was performed with the transcriptomic and DNA methylation landscapes of temporal human embryonic brain development and ASD, and the time-course transcriptional profiling of MIA. We conducted the transcriptional profiling of mouse abnormal neurodevelopment two days following induced MIA via LPS injection at E10.5. KEY FINDINGS: A novel evidence was proved that illustrated altering four immune and metabolism-related risk pathways, including starch and sucrose metabolism, ribosome, protein processing in endoplasmic reticulum, and retrograde endocannabinoid signaling pathway, which were prominent involvement in the process of MIA regulating abnormal fetal brain development to induce an increased risk of ASD. Here, we have observed that almost all key genes within these risk pathways are significantly differentially expressed at embryonic days (E) 10.5-12.5, which is considered to be the optimal coincidence window of mouse embryonic brain development to study the intimate association between MIA and ASD using mouse animal models. SIGNIFICANCE: There search establishes that MIA causes dysregulation of immune and metabolic pathways, which leads to abnormal embryonic neurodevelopment, thus promoting development of ASD symptoms in offspring.


Subject(s)
Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Pregnancy , Female , Mice , Animals , Humans , Autism Spectrum Disorder/genetics , Behavior, Animal , Disease Models, Animal , Transcriptome , Prenatal Exposure Delayed Effects/genetics
17.
Genes (Basel) ; 14(4)2023 03 24.
Article in English | MEDLINE | ID: mdl-37107543

ABSTRACT

High-grade serous ovarian carcinoma (HGSOC) is a fatal gynecological malignancy. Somatic recombination occurring during T-cell receptor (TCR) development results in TCR diversity, and the TCR repertoire, thus produced, is associated with immune response. This study analyzed the difference in the TCR repertoire and their prognostic significance in 51 patients with HGSOC. The patient's clinical characteristics, gene expression pattern, TCR clonotypes, and degree of tumor-infiltrating leukocytes (TILs) were analyzed, and the patients were divided into groups depending on their recurrence pattern, tumor-infiltrating leukocyte (TIL) score, and homologous recombinant repair pathway deficiency (HRD)-associated mutations. The TCR repertoire was low in patients with recurrence and showed the expansion of eight TCR segments. Interestingly, a few genes correlated with the TCRs also showed a difference in expression according to the prognosis. Among them, seven genes were related to immune responses and KIAA1199 was up-regulated in ovarian cancer. Our study shows that the differences in the TCR repertoire in patients with ovarian cancer and their associated immune pathways could affect the prognosis of HGSOC.


Subject(s)
Ovarian Neoplasms , Female , Humans , Prognosis , Ovarian Neoplasms/pathology , Receptors, Antigen, T-Cell , Mutation
18.
Biomolecules ; 13(3)2023 02 21.
Article in English | MEDLINE | ID: mdl-36979341

ABSTRACT

The molecular mechanisms underlying unexplained recurrent implantation failure (RIF) remain unclear. This study aimed at identifying potential biomarkers, exploring relevant signaling pathways, and analyzing the contribution of immune cell infiltration in RIF. Microarray expression datasets were extracted from the Gene Expression Omnibus database to perform bioinformatic analyses. The results showed that ten hub genes may predict RIF with high specificity and sensitivity (area under the curve = 1.000). Protein-protein interaction analysis revealed close interactions between the hub genes and the endometrial receptivity array. The real-time quantitative polymerase chain reaction further validated three potential biomarkers (RAB32, TRIB2, and FAM155B). Functional enrichment analyses indicated that immune pathways were significantly downregulated and lipid metabolism pathways were significantly upregulated in RIF compared with the controls. Significant negative correlations were observed between fatty acid biosynthesis and the immune pathways. Immune cell infiltration, including those in CD56dim natural killer, dendritic, Th1, Th2, and regulatory T cells, as well as macrophages, was significantly reduced in RIF compared with the controls used herein. This study may provide a novel perspective on the diagnosis and treatment of RIF.


Subject(s)
Embryo Implantation , Endometrium , Female , Humans , Endometrium/metabolism , Proteins/metabolism , Microarray Analysis , Biomarkers/metabolism
19.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675090

ABSTRACT

Sjögren's syndrome is a chronic and insidious auto-immune disease characterized by lymphocyte infiltration of exocrine glands. The patients typically present with ocular surface diseases related to dry eye and other systemic manifestations. However, due to the high prevalence of dry eye disease and the lack of objective and clinically reliable diagnostic tools, discriminating Sjögren's syndrome dry eye (SSDE) from non-Sjögren's syndrome dry eye (NSSDE) remains a challenge for clinicians. Diagnosing SS is important to improve the quality of life of patients through timely referral for systemic workups, as SS is associated with serious systemic complications such as lymphoma and other autoimmune diseases. The purpose of this article is to describe the current molecular understanding of Sjögren's syndrome and its implications for novel diagnostic modalities on the horizon. A literature review of the pre-clinical and clinical studies published between 2016 and 2022 was conducted. The SSDE pathophysiology and immunology pathways have become better understood in recent years. Novel diagnostic modalities, such as tear and saliva proteomics as well as exosomal biomarkers, provide hope on the horizon.


Subject(s)
Dry Eye Syndromes , Sjogren's Syndrome , Humans , Quality of Life , Sjogren's Syndrome/complications , Sjogren's Syndrome/diagnosis , Dry Eye Syndromes/etiology , Dry Eye Syndromes/complications , Tears , Saliva
20.
Int J Rheum Dis ; 26(2): 383-385, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36324224

ABSTRACT

We present the case of a patient diagnosed with ankylosing spondylitis (AS) along with Kikuchi-Fujimoto disease (KFD), possibly triggered by infection or autoimmunity. Both AS and KFD involved a similar immune pathway. Hence, clinicians should consider the possibility of KFD when lymphadenopathy is observed, especially in patients with infection or underlying autoimmune diseases.


Subject(s)
Histiocytic Necrotizing Lymphadenitis , Spondylitis, Ankylosing , Humans , Histiocytic Necrotizing Lymphadenitis/complications , Histiocytic Necrotizing Lymphadenitis/diagnosis , Histiocytic Necrotizing Lymphadenitis/drug therapy , Spondylitis, Ankylosing/complications , Spondylitis, Ankylosing/diagnosis , Spondylitis, Ankylosing/drug therapy , Autoimmunity
SELECTION OF CITATIONS
SEARCH DETAIL