Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.111
Filter
1.
Chemistry ; : e202402153, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004609

ABSTRACT

Efficient recognition and extraction of hazardous anionic pollutants from water medium is of great significance for environmental concerns, representing a challenging area of research in supramolecular chemistry. In this study, we present, for the first time, a comprehensive demonstration of the ability of chalcogen bonding (ChB) to recognize and remove the ReO4- from 100% water medium. The anion recognition ability is well elucidated through solution phase NMR and ITC studies, which clearly reveal the selective binding of ReO4- over other oxo-anions. Moreover, the selenoimidazolium scaffold effectively engages in Se•••O ChB interaction with ReO4- as confirmed by X-ray crystal structure and XPS analysis. More importantly, the binding of ReO4- with different prolongations of the σ-holes, along with Se•••Se chalcogen bonding interactions, lead to the formation of a 1D supramolecular assembly. Eventually, ChB receptor Se4Me-Br exhibits ~62% ReO4- extraction efficiency through precipitation as the extraction method. Furthermore, in efforts to enhance efficiency, a hydrophobic ChB receptor Se4Do-PF6 has been prepared, achieving an efficiency of up to ~93% at a very low concentration (~5ppm) by liquid-liquid extraction.

2.
MethodsX ; 12: 102728, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948242

ABSTRACT

Chromatography combined with mass spectrometry is a gold standard technique for steroid measurement, however the type of sample preparation, the dynamic range and reliability of the calibration curve, the chromatographic separation and mass spectrometry settings ultimately determine the success of the method. The steroid biosynthetic pathway is conserved in higher mammals and literature demonstrates that the concentration ranges of different steroid groups are relatively comparable across species. We sought to develop a robust and reliable multi steroid targeted analysis method for blood that would have wide application across higher mammals. The method was developed following bioanalytical method validation guidelines to standards typically applied to human clinical studies, including isotopically labelled internal standards where at all possible. Here we describe the practical approach to a 96-well supported liquid extraction (SLE) method of extraction from plasma (200 µL) using an Extrahera liquid handling robot (Biotage, Sweden), including quality control samples, followed by a comprehensive separation and targeted LC-MS/MS analysis of 18 steroids in plasma (pregnenolone, progesterone, 17α-hydroxyprogesterone, 11-deoxycorticosterone, corticosterone, 11-dehydrocorticosterone, aldosterone, 11-deoxycortisol, 21-deoxycortisol, cortisol, cortisone, androstenedione, testosterone, 5α-dihydrotestosterone, dehydroepiandrosterone, estrone, 17ß-estradiol and estriol). •SLE in a 96-well format of up to 74 biological plasma samples, enriched with multiple isotopically labelled internal standards, a 12-point aqueous calibration curve, and 6 serum quality controls, designed to monitor long-term performance of the method•Chromatographic separation of multiple steroids along the gradient, with ammonium fluoride mobile phase additive to improve sensitivity, followed by electrospray ionisation and constant polarity switching•Aqueous calibration standards that cover physiologically relevant ranges - high nanomolar glucocorticoids, low nanomolar androgens and picomolar ranges for estrogens and steroid intermediates.

3.
Arch Toxicol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951190

ABSTRACT

Snake venoms are complex mixtures majorly composed of proteins with well-studied biological effects. However, the exploration of non-protein components, especially lipids, remains limited despite their potential for discovering bioactive molecules. This study compares three liquid-liquid lipid extraction methods for both chemical and biological analyses of Bothrops moojeni snake venom. The methods evaluated include the Bligh and Dyer method (methanol, chloroform, water), considered standard; the Acunha method, a modification of the Bligh and Dyer protocol; and the Matyash method (MTBE/methanol/water), featuring an organic phase less dense than the aqueous phase. Lipidomic analysis using liquid chromatography with high-resolution mass spectrometry (LC-HRMS) system revealed comparable values of lipid constituents' peak intensity across different extraction methods. Our results show that all methods effectively extracted a similar quantity of lipid species, yielding approximately 17-18 subclasses per method. However, the Matyash and Acunha methods exhibited notably higher proportions of biologically active lipids compared to the Bligh and Dyer method, particularly in extracting lipid species crucial for cellular structure and function, such as sphingomyelins and phosphatidylinositol-phosphate. In conclusion, when selecting a lipid extraction method, it is essential to consider the study's objectives. For a biological approach, it is crucial to evaluate not only the total quantity of extracted lipids but also their quality and biological activity. The Matyash and Acunha methods show promise in this regard, potentially offering a superior option for extracting biologically active lipids compared to the Bligh and Dyer method.

4.
Biomed Chromatogr ; : e5955, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973552

ABSTRACT

Ceftriaxone (CTRX) is a commonly used cephalosporin antibiotic. It is suggested that monitoring plasma/serum concentrations is helpful for its safe use. This study aimed to develop and validate an analytical method for measuring CTRX concentrations in human serum according to International Conference on Harmonization guideline M10. Ten microliters of serum sample was purified using a salting-out assisted liquid-liquid extraction procedure with magnesium sulfate. The upper layer was then diluted threefold and analyzed using a liquid chromatography-tandem mass spectrometry-based method with a total run time of 12 min. The linear calibration curve was obtained over the concentration range 5-500 µg/ml. The within-run accuracy varied from 0.2 to 6.5%, and the precision was ≤8.0%. The between-run accuracy and precision ranged from 0.7% to 5.6% and ≤6.4%, respectively. Significant carryover was resolved by injecting four blanks after high-concentration CTRX samples. The recovery rates from spiked serum at low and high concentrations were 44.4 and 43.4%, respectively. Other factors, including selectivity, matrix effects, stability, dilution integrity and reinjection reproducibility also met the acceptance criteria. Serum concentrations in 14 samples obtained from two participants receiving 2 g/day of CTRX were successfully determined using this method.

5.
Anal Bioanal Chem ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877147

ABSTRACT

Organophosphate flame retardants (OPFRs) are widely used as substitutes for traditional brominated flame retardants, necessitating a reliable and sensitive method for biomonitoring their urinary metabolites to assess human exposure. This study conducted biomonitoring of 10 metabolites of OPFRs in 152 adults and assessed their association with oxidative stress biomarkers 8-hydroxydeoxyguanosine and 8-hydroxyguanosine. Urinary metabolites of OPFRs were released via enzymatic deconjugation. The addition of sodium chloride to the urine samples increases the ionic strength, inducing a salting-out effect that reduces the solubility of these compounds, thereby facilitating their extraction with a mixture of ethyl acetate and acetonitrile. Then, the metabolites of OPFRs were quantified by ultra-high performance liquid chromatography-tandem mass spectrometry, and we validated the method for linear range, precision, matrix effect, and method detection limit. The detection limit of the metabolites of OPFRs ranged from 0.01 to 0.2 µg/L, and these metabolites were detected with high frequencies ranging from 25.0 to 98.68% in the urine samples. The concentration of bis (2-chloroethyl) phosphate was significantly higher in males than in females, with the geometric mean concentration of 0.88 µg/L for males and 0.53 µg/L for females, respectively. Spearman correlation analysis revealed weak but statistically significant positive correlations among the urinary metabolites. Bayesian kernel machine regression analysis showed a significant positive association between elevated urinary concentrations of metabolites of OPFRs and increased oxidative stress levels. Di-n-butyl phosphate was identified as the metabolite that significantly contributed to the elevated level of 8-hydroxyguanosine.

6.
J Pharm Biomed Anal ; 248: 116319, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908235

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants of great concern due to their carcinogenicity and mutagenicity. Their determination in human serum, particularly in at-risk populations, is necessary but difficult because they are distributed over a wide range of polarity and are present at trace level. A new method combining salting-out assisted liquid-liquid extraction (SALLE) and dispersive liquid-liquid microextraction with solidification of floating organic drop (DLLME-SFO) adapted to a reduced volume of sample (100 µl) was developed to determine 24 PAHs in human serum. Some key parameters of DLLME-SFO (volume of extraction solvent, ratio of extraction/dispersive solvent volumes, and salt addition) were first studied by applying it to spiked pure water. For its application to serum, a sample treatment step involving SALLE was optimized in terms of nature and content of salts and applied upstream of DLLME-SFO. It was applied to the extraction of 24 regulated PAHs from spiked serum followed by an analysis by liquid chromatography coupled with UV and fluorescence detection. The extraction recoveries ranged from 48.2 and 116.0 % (relative standard deviations: 2.0-14.6 %, n=5-9), leading to limits of quantification of PAHs in human serum from 0.04 to 1.03 µg/L using fluorescence detection and from 10 to 40 µg/L using UV detection. This final method combining SALLE and DLLME-SFO showed numerous advantages such as no evaporation step, high efficiency and low solvent-consumption and will be useful for monitoring PAHs in low volumes of serum.

7.
Molecules ; 29(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893321

ABSTRACT

Owing to the important role of and increasing demand for lithium resources, lithium extraction is crucial. The use of molecular extractants is a promising strategy for selective lithium recovery, in which the interaction between lithium and the designed extractant can be manipulated at the molecular level. Herein, we demonstrate that anion receptors of tripodal hexaureas can selectively extract Li2SO4 solids into water containing DMSO (0.8% water) compared to other alkali metal sulfates. The hexaurea receptor with terminal hexyl chains displays the best Li+ extraction selectivity at 2-fold over Na+ and 12.5-fold over K+. The driving force underpinning selective lithium extraction is due to the combined interactions of Li+-SO42- electrostatics and the ion-dipole interaction of the lithium-receptor (carbonyl groups and N atoms); the latter was found to be cation size dependent, as supported by computational calculations. This work indicates that anion binding receptors could drive selective cation extraction, thus providing new insights into the design of receptors for ion recognition and separation.

8.
Ann Pharm Fr ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823440

ABSTRACT

A sensitive and accurate LC/MS method for the determination of elbasvir (ELB) and grazoprevir (GZP) in human plasma was established using daclatasvir (DCT) as an internal standard. The analytes were separated on a Waters Spherisorb phenyl column (150mm×4.6mm ID, 5µm particle size) maintained at 40°C±2°C. Gradient elution, at a flow rate of 0.8mLmin-1, was used. The mobile phase consists of 90% of acetonitrile mixed to 10% of a 5mM ammonium formate buffer (+0.1% v/v of trimethylamine, pH was adjusted to 3.2 by formic acid) as phase A and 10% of acetonitrile mixed to 90% of the same buffer as phase B. Liquid-liquid extraction with ethyl acetate solvent was used to recuperate compounds from plasma. The method was validated over a concentration range of 2 and 100ng/mL for GZP and between 1 and 50ng/mL for ELB. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels exhibited relative standard deviations (RSD)<15%, and the accuracy values ranged from 94.2 to 107.8%. The robustness of the method was established using a two-level full factorial design.

9.
J Environ Manage ; 362: 121306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833918

ABSTRACT

Integrated circuits (ICs) and central processing units (CPUs), essential components of electrical and electronic equipment (EEE), are complex composite materials rich in recyclable high-value strategic and critical metals, with many in concentrations higher than in their natural ores. With gold the most valuable metal present, increase in demand for gold for EEE and its limited availability have led to a steep rise in the market price of gold, making gold recycling a high priority to meet demand. To overcome the limitations associated with conventional technologies for recycling e-waste, the use of greener technologies (ionic liquids (ILs) as leaching agents), offers greater potential for the recovery of gold from e-waste components. While previous studies have demonstrated the efficiency and feasibility of using ILs for gold recovery, these works predominantly concentrate on the extraction stage and often utilise simulated solutions, lacking the implementation of a complete process validated with real samples to effectively assess its overall effectiveness. In this work, a simulated Model Test System was used to determine the optimal leaching and extraction conditions before application to real samples. With copper being the most abundant metal in the e-waste fractions, to access the gold necessitated a two-stage pre-treatment (nitric acid leaching followed by aqua regia leaching) to ensure complete removal of copper and deliver a gold-enriched leach liquor. Gold extraction from the leach liquor was achieved by liquid-liquid extraction using Cyphos 101 (0.1 M in toluene with an O:A = 1:1, 20 °C, 150 rpm, and 15 min) and as a second process by sorption extraction with loaded resins (Amberlite XAD-7 with 300 mg of Cyphos 101/g of resins at 20 °C, 150 rpm and 3 h). In both processes, complete stripping and desorption of gold was achieved (0.5 M thiourea in 0.5 M HCl) and gold recovered, as nanoparticles of purity ≥95%, via a reduction step using a sodium borohydride solution (0.1 M NaBH4 in 0.1 M NaOH). These two hydrometallurgical processes developed can achieve overall efficiencies of ≥95% for gold recovery from real e-waste components, permit the reuse of the IL and resins up to five consecutive times, and offer a promising approach for recovery from any e-waste stream rich in gold.


Subject(s)
Gold , Ionic Liquids , Recycling , Ionic Liquids/chemistry , Gold/chemistry , Recycling/methods , Electronic Waste
10.
Sci Total Environ ; 944: 173857, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38871333

ABSTRACT

Spatiotemporal monitoring of pesticide residues in river water is urgently needed due to its negative environmental and human health consequences. The present study is to investigate the occurrence of multiclass pesticide residue in the surface water of the Feni River, Bangladesh, using an optimized salting-out assisted liquid-liquid microextraction (SALLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimized SALLME method was developed and validated following the SANTE/11312/2021 guidelines. A total of 42 water samples were collected and analyzed to understand the spatiotemporal distribution of azoxystrobin (AZ), buprofezin (BUP), carbofuran (CAR), pymetrozine (PYM), dimethoate (DMT), chlorantraniliprole (CLP), and difenoconazole (DFN). At four spike levels (n = 5) of 20, 40, 200, and 400 µg/L, the recovery percentages were satisfactory, ranging between 71.1 % and 107.0 % (RSD ≤13.8 %). The residues ranged from below the detection level (BDL) to 14.5 µg/L. The most frequently detected pesticide was DMT (100 %), followed by CLP (52.3809-57.1429), CAR (4.7619-14.2867), and PYM (4.7619-9.5238). However, AZ and BUP were below the detection limit in the analyzed samples of both seasons. Most pesticides and the highest concentrations were detected in March 2023, while the lowest concentrations were present in August 2023.Furthermore, ecological risk assessment based on the general-case scenario (RQm) and worst-case scenario (RQex) indicated a high (RQ > 1) risk to aquatic organisms, from the presence of PYM and CLP residue in river water. Human health risk via dietary exposure was estimated using the hazard quotient (HQ). Based on the detected residues, the HQ (<1) value indicated no significant health risk. This report provides the first record of pesticide residue occurrences scenario and their impact on the river environment of Bangladesh.


Subject(s)
Environmental Monitoring , Pesticide Residues , Rivers , Water Pollutants, Chemical , Bangladesh , Water Pollutants, Chemical/analysis , Rivers/chemistry , Pesticide Residues/analysis , Risk Assessment , Humans , Tandem Mass Spectrometry , Chromatography, Liquid , Spatio-Temporal Analysis , Liquid Phase Microextraction
11.
J Chromatogr A ; 1725: 464944, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38703459

ABSTRACT

Investigating pesticide exposure and oxidative stress in preschool children is essential for elucidating the determinants of environmental health in early life, with human biomonitoring of urinary pesticide metabolites serving as a critical strategy for achieving this objective. This study demonstrated biomonitoring of 2 phenoxyacetic acid herbicides, 2 organophosphorus pesticide metabolites, and 4 pyrethroid pesticide metabolites in 159 preschool children and evaluated their association with oxidative stress biomarker 8-hydroxydeoxyguanosine. An enzymatic deconjugation process was used to release urinary pesticide metabolites, which were then extracted and enriched by supported liquid extraction, and quantified by ultra-high performance liquid chromatography-tandem mass spectrometry with internal standard calibration. Dichloromethane: methyl tert­butyl ether (1:1, v/v) was optimized as the solvent for supported liquid extraction, and we validated the method for linear range, recovery, matrix effect and method detection limit. Method detection limit of the pesticide metabolites ranged from 0.01 µg/L to 0.04 µg/L, with satisfactory recoveries ranging from 70.5 % to 95.5 %. 2,4,5-Trichlorophenoxyacetic acid was not detected, whereas the other seven pesticide metabolites were detected with frequencies ranging from 10.1 % to 100 %. The concentration of urinary pesticide metabolites did not significantly differ between boys and girls, with the median concentrations being 9.39 µg/L for boys and 4.90 µg/L for girls, respectively. Spearman correlation analysis indicated that significant positive correlations among urinary metabolites. Bayesian kernel machine regression revealed a significant positive association between urinary pesticide metabolites and 8-hydroxydeoxyguanosine. Para-nitrophenol was the pesticide metabolite that contributed significantly to the elevated level of oxidative stress.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Biological Monitoring , Oxidative Stress , Pesticides , Tandem Mass Spectrometry , Humans , Child, Preschool , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Female , Male , Biological Monitoring/methods , Pesticides/urine , Pesticides/metabolism , 8-Hydroxy-2'-Deoxyguanosine/urine , Limit of Detection , Biomarkers/urine , Liquid-Liquid Extraction/methods , Child
12.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731845

ABSTRACT

Moringa oleifera leaves are rich sources of bioactive compounds with potential health benefits, including antioxidants and anti-inflammatory agents. Pressurized liquid extraction (PLE) stands out as a promising technique for effectively extracting valuable compounds from natural sources. In this study, we aimed to optimize PLE parameters, such as temperature, extraction duration, and pressure, to maximize bioactive compound (polyphenols, flavonoids, and ascorbic acid) yield from M. oleifera leaves and evaluate their antioxidant and anti-inflammatory activities. According to the outcomes of this research, the maximum achieved total polyphenol content was 24.10 mg gallic acid equivalents (GAE)/g of dry weight (dw), and the total flavonoid content was increased up to 19.89 mg rutin equivalents (RtE)/g dw. Moreover, after HPLC-DAD analysis, neochlorogenic and chlorogenic acids, catechin and epicatechin, rutin, and narirutin were identified and quantified. As far as the optimum ascorbic acid content is concerned, it was found to be 4.77 mg/g dw. The antioxidant activity was evaluated by three different methods: ferric reducing antioxidant power (FRAP), the DPPH method, and the anti-hydrogen peroxide activity (AHPA) method, resulting in 124.29 µmol ascorbic acid equivalent (AAE)/g dw, 131.28 µmol AAE/g dw, and 229.38 µmol AAE/g dw values, respectively. Lastly, the albumin denaturation inhibition was found to be 37.54%. These findings underscore the potential of PLE as an efficient extraction method for preparing extracts from M. oleifera leaves with the maximum content of bioactive compounds.


Subject(s)
Antioxidants , Moringa oleifera , Plant Extracts , Plant Leaves , Moringa oleifera/chemistry , Plant Leaves/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/isolation & purification , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Polyphenols/isolation & purification , Polyphenols/pharmacology , Polyphenols/analysis , Polyphenols/chemistry , Ascorbic Acid/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Chromatography, High Pressure Liquid/methods , Pressure , Liquid-Liquid Extraction/methods , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification
13.
Chemosphere ; 358: 142227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704046

ABSTRACT

The widespread detection of perfluorooctanoic acid (PFOA) in the environment has raised significant concerns. The standard PFOA analytical method relies on expensive solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) instruments, making routine use prohibitive. We herein proposed a cost-effective yet novel enrichment method for determining PFOA at ng L-1 level. This method entailed a two-step sample preparation process: firstly, PFOA was extracted and enriched using a forward-extraction under acidic conditions, followed by a backward-extraction and enrichment step utilizing alkaline water. The enriched samples were subsequently subjected to a common ion chromatography (IC). Results reveal that maintaining a forward-extraction pH below its pKa value (2.8) is essential, as protonated PFOA proves effective in enhancing the enrichment factor (EF). The challenge lied in driving PFOA from forward-extractant to aqueous backward-extractant due to the decreased hydrophobicity of deprotonated PFOA (log Kow2 = 1.0). In addition, we found that evaporating forward-extractant with alkaline backward-extractant (containing 5% methanol) reduced potential analytical uncertainties associated with PFOA evaporation and sorption. Under optimal conditions, the method achieved a detection limit of 9.2 ng L-1 and an impressive EF value of 719. Comparison with SPE-LC-MS/MS confirmed the proposed method as a promising alternative for PFOA determination. Although initially targeted for PFOA, the novel methodology is likely applicable to preconcentration of other poly-fluoroalkyl substances.


Subject(s)
Caprylates , Fluorocarbons , Liquid-Liquid Extraction , Tandem Mass Spectrometry , Water Pollutants, Chemical , Caprylates/analysis , Caprylates/chemistry , Fluorocarbons/analysis , Fluorocarbons/isolation & purification , Fluorocarbons/chemistry , Water Pollutants, Chemical/analysis , Tandem Mass Spectrometry/methods , Liquid-Liquid Extraction/methods , Chromatography, Liquid/methods , Solid Phase Extraction/methods , Water/chemistry , Environmental Monitoring/methods
14.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731611

ABSTRACT

Solvents prepared from natural terpenes (menthol and thymol), as H-bond acceptors, and a series of organic acids (chain lengths of 8, 10, and 14 C atoms), as H-bond donors, were characterized and tested as reaction media for liquid-liquid extraction purposes. Due to their high hydrophobicity, they seem to be promising alternatives to conventional (nonpolar and toxic) solvents, since they possess relatively less toxic, less volatile, and consequently, more environmentally friendly characteristics. Assuming that the equilibrium is established between solvent and analyte during a ligandless procedure, it can be concluded that those nonpolar solvents can efficiently extract nonpolar analytes from the aqueous environment. Previous investigations showed a wide range of applications, including their use as solvents in extractions of metal cations, small molecules, and bioactive compounds for food and pharmaceutical applications. In this work, hydrophobic solvents based on natural terpenes, which showed chemical stability and desirable physicochemical and thermal properties, were chosen as potential reaction media in the liquid-liquid extraction (LLE) procedure for Pb(II) removal from aqueous solutions. Low viscosities and high hydrophobicities of prepared solvents were confirmed as desirable properties for their application. Extraction parameters were optimized, and chosen solvents were applied. The results showed satisfactory extraction efficiencies in simple and fast procedures, followed by low solvent consumption. The best results (98%) were obtained by the thymol-based solvent, thymol-decanoic acid (Thy-DecA) 1:1, followed by L-menthol-based solvents: menthol-octanoic acid (Men-OctA) 1:1 with 97% and menthol-decanoic acid (Men-DecA) 1:1 with 94.3% efficiency.

15.
Molecules ; 29(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792118

ABSTRACT

A study of the liquid-liquid extraction of ReO4- anions from hydrochloric acid solutions using the ionic liquid Aliquat 336 (QCl: trialkyl(C8-C10)methylammonium chloride) via the well-known method of slope analysis along with the determination of the process parameters is presented. This study employs CCl4, CHCl3 and C6H12 as diluents. This study was carried out at room temperature (22 ± 2) °C and an aqueous/organic volumetric ratio of unity. The ligand effect on the complexation properties of ReO4- is quantitatively assessed in different organic media. The organic extract in chloroform media is examined through 1H, 13C and 15N NMR analysis as well as the HRMS technique and UV-Vis spectroscopy in order to view the anion exchange and ligand coordination in the organic phase solution. Final conclusions are given highlighting the role of the molecular diluent in complexation processes and selectivity involving ionic liquid ligands and various metal s-, p-, d- and f-cations. ReO4- ions have shown one of the best solvent extraction behaviors compared to other ions. For instance, the Aliquat 336 derivative bearing Cl- functions shows strongly enhanced extraction as well as pronounced separation abilities towards ReO4-.

16.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792176

ABSTRACT

Utilizing online gradient pressure liquid extraction (OGPLE) coupled with a high-performance liquid chromatography antioxidant analysis system, we examined the antioxidative active components present in both the aerial parts and roots of dandelion. By optimizing the chromatographic conditions, we identified the ferric reducing-antioxidant power system as the most suitable for online antioxidant reactions in dandelion. Compared to offline ultrasonic extraction, the OGPLE method demonstrated superior efficiency in extracting chemical components with varying polarities from the samples. Liquid chromatography-mass spectrometry revealed twelve compounds within the dandelion samples, with nine demonstrating considerable antioxidant efficacy. Of these, the aerial parts and roots of dandelion contained nine and four antioxidant constituents, respectively. Additionally, molecular docking studies were carried out to investigate the interaction between these nine antioxidants and four proteins associated with oxidative stress (glutathione peroxidase, inducible nitric oxide synthase, superoxide dismutase, and xanthine oxidase). The nine antioxidant compounds displayed notable binding affinities below -5.0 kcal/mol with the selected proteins, suggesting potential receptor-ligand interactions. These findings contribute to enhancing our understanding of dandelion and provide a comprehensive methodology for screening the natural antioxidant components from herbs.


Subject(s)
Antioxidants , Molecular Docking Simulation , Plant Extracts , Taraxacum , Antioxidants/chemistry , Chromatography, High Pressure Liquid/methods , Taraxacum/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Plant Components, Aerial/chemistry
17.
Chirality ; 36(6): e23682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807280

ABSTRACT

Obtaining optically pure compounds in an eco-friendly and cost-efficient manner plays an important role in human health and pharmaceutical industry. Racemic separation using multistage stereoselective liquid-liquid extraction has become one of the most practical and effective approach to access homochiral enantiomers. Currently, chiral ionic liquids (CILs) with structural designability have become a promising chiral additive and enable them as adjustable candidates for racemic separation. Herein, a high-effective stereoselective liquid-liquid extraction process composed of imidazolium cations and amino acid-derived anions as the chiral additive was established for racemic 2-cyclohexylmandelic acid (CHMA) separation. We have systematically investigated the choice of organic solvent, concentration of CIL, extraction temperature, and the pH of aqueous phase. For three-stage stereoselective extraction, the maximum enantiomeric excess (e.e.) for CHMA was reached up to 40.6%. Furthermore, the mechanism of steric effect and stereoselective capacity between the CILs and racemic CHMA was discussed and simulated. We envision that the work will facilitate the development of CILs in multistage liquid-liquid extraction and promote the large-scale production of optically pure enantiomers.

18.
Food Res Int ; 183: 114240, 2024 May.
Article in English | MEDLINE | ID: mdl-38760119

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic organic pollutants found in various environments, notably aquatic ecosystems and the food chain, posing significant health risks. Traditional methods for detecting PAHs in food involve complex processes and considerable reagent usage, raising environmental concerns. This study explores eco-friendly approaches suing solid phases derived from natural sources in matrix solid phase dispersion. We aimed to develop, optimize, and validate a sample preparation technique for seafood, employing natural materials for PAH analysis. Ten natural phases were compared with a commercial reference phase. The methodology involved matrix solid phase dispersion and pressurized liquid extraction, followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Three solid phases (perlite, sweet manioc starch, and barley) showed superior performance in LC-MS/MS and were further evaluated with gas chromatography-tandem mass spectrometry (GC-MS/MS), confirming perlite as the most effective phase. Validation followed Brazilian regulatory guidelines and European Community Regulation 2021/808/EC. The resulting method offered advantages in cost-effectiveness, reduced environmental impact, cleaner extracts, and enhanced analytical performance compared to the reference solid phase and LC-MS/MS. Proficiency analysis confirmed method reliability, with over 50% alignment with green analytical chemistry principles. In conclusion, this study developed an environmentally sustainable sample preparation technique for seafood analysis using natural solid phases, particularly perlite, for PAH determination.


Subject(s)
Food Contamination , Gas Chromatography-Mass Spectrometry , Polycyclic Aromatic Hydrocarbons , Seafood , Tandem Mass Spectrometry , Polycyclic Aromatic Hydrocarbons/analysis , Seafood/analysis , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Chromatography, Liquid/methods , Food Contamination/analysis , Solid Phase Extraction/methods , Reproducibility of Results , Brazil , Green Chemistry Technology/methods
19.
Mar Drugs ; 22(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38667763

ABSTRACT

Marine microalgae Schizochytrium sp. have a high content of docosahexaenoic acid (DHA), an omega-3 fatty acid that is attracting interest since it prevents certain neurodegenerative diseases. The obtention of a bioactive and purified DHA fatty acid ester using a whole-integrated process in which renewable sources and alternative methodologies are employed is the aim of this study. For this reason, lyophilized Schizochytrium biomass was used as an alternative to fish oil, and advanced extraction techniques as well as enzymatic modification were studied. Microalgal oil extraction was optimized via a surface-response method using pressurized liquid extraction (PLE) obtaining high oil yields (29.06 ± 0.12%) with a high concentration of DHA (51.15 ± 0.72%). Then, the enzymatic modification of Schizochytrium oil was developed by ethanolysis using immobilized Candida antarctica B lipase (Novozym® 435) at two reaction temperatures and different enzymatic loads. The best condition (40 °C and 200 mg of lipase) produced the highest yield of fatty acid ethyl ester (FAEE) (100%) after 8 h of a reaction attaining a cost-effective and alternative process. Finally, an enriched and purified fraction containing DHA-FAEE was obtained using open-column chromatography with a remarkably high concentration of 93.2 ± 1.3% DHA. The purified and bioactive molecules obtained in this study can be used as nutraceutical and active pharmaceutical intermediates of marine origin.


Subject(s)
Docosahexaenoic Acids , Esters , Lipase , Microalgae , Stramenopiles , Docosahexaenoic Acids/chemistry , Lipase/metabolism , Lipase/chemistry , Stramenopiles/chemistry , Microalgae/chemistry , Esters/chemistry , Enzymes, Immobilized/chemistry , Fungal Proteins , Biomass , Fish Oils/chemistry , Lipids/chemistry , Oils/chemistry , Aquatic Organisms , Fatty Acids/chemistry , Fatty Acids/analysis
20.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675467

ABSTRACT

An ultra-performance liquid chromatography with photodiode array (UPLC-PDA) UV detection method was developed here for the first time for simple, rapid, selective and sensitive quantification of the commonly prescribed selective cyclooxygenase-2 (COX-2) inhibitor etoricoxib in low plasma volumes (50 µL). The method includes protein precipitation followed by liquid-liquid extraction, evaporation and reconstitution. A gradient mobile phase of 75:25 going to 55:45 (v/v) water:acetonitrile (1 mL/min flow rate) was applied. Total run time was 8 min, representing a significant improvement relative to previous reports. Excellent linearity (r2 = 1) was obtained over a wide (0.1-12 µg/mL) etoricoxib concentration range. Short retention times for etoricoxib (4.9 min) and the internal standard trazodone (6.4 min), as well as high stability, recovery, accuracy, precision and reproducibility, and low etoricoxib LOD (20 ng/mL) and LOQ (100 ng/mL), were achieved. Finally, the method was successfully applied to a pharmacokinetic study (single 20 mg/kg orally administered etoricoxib mini-capsule) in rats. In conclusion, the advantages demonstrated in this work make this analytical method both time- and cost-efficient for drug monitoring in pre-clinical/clinical settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...