Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 670: 96-102, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38759272

ABSTRACT

Replacing the anodic oxygen evolution reaction (OER) in water splitting with 5-hydroxymethylfurfural oxidation reaction (HMFOR) can not only reduce the energy required for hydrogen production but also yield the valuable chemical 2,5-furandicarboxylic acid (FDCA). Co-based catalysts are known to be efficient for HMFOR, with high-valent Co being recognized as the main active component. However, efficiently promoting the oxidation of Co2+ to produce high-valent reactive species remains a challenge. In this study, Ni-doped CoTe (CoNiTe) nanorods were prepared as efficient catalysts for HMFOR, achieving a high HMFOR current density of 65.3 mA cm-2 at 1.50 V. Even after undergoing five successive electrolysis processes, the Faradaic efficiency (FE) remained at approximately 90.7 %, showing robust electrochemical durability. Mechanistic studies indicated that Ni doping changes the electronic configuration of Co, enhancing its charge transfer rate and facilitating the oxidation of Co2+ to high-valent CoO2 species. This work reveals the effect of Ni doping on the reconfiguration of the active phase during HMFOR.

2.
J Colloid Interface Sci ; 664: 400-408, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38484509

ABSTRACT

Currently, conversion-type transition metal sulfides have been extensively favored as the anodes for sodium-ion batteries due to their excellent redox reversibility and high theoretical capacity; however, they generally suffer from large volume expansion and structural instability during repeatedly Na+ de/intercalation. Herein, spatially dual-confined Ni-doped CoS2@NC@C microrods (Ni-CoS2@NC@C) are developed via structural design, heteroatom doping and carbon confinement to boost sodium storage performance of the material. The morphology of one-dimensional-structured microrods effectively enlarges the electrode/electrolyte contact area, while the confinement of dual-carbon layers greatly alleviates the volume change-induced stress, pulverization, agglomeration of the material during charging and discharging. Moreover, the introduction of Ni improves the electrical conductivity of the material by modulating the electronic structure and enlarges the interlayer distance to accelerate Na+ diffusion. Accordingly, the as-prepared Ni-CoS2@NC@C exhibits superb electrochemical properties, delivering the satisfactory cycling performance of 526.6 mA h g-1 after 250 cycles at 1 A g-1, excellent rate performance of 410.9 mA h g-1 at 5 A g-1 and superior long cycling life of 502.5 mA h g-1 after 1,500 cycles at 5 A g-1. This study provides an innovative idea to improve sodium storage performance of conversion-type transition metal sulfides through the comprehensive strategy of structural design, heteroatom doping and carbon confinement.

3.
J Colloid Interface Sci ; 662: 663-675, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38368824

ABSTRACT

To meet the requirements in air quality monitors for the public and industrial safety, sensors are required that can selectively detect the concentration of gaseous pollutants down to the parts per million (ppm) and ppb (parts per billion) levels. Herein, we report a remarkable NH3 sensor using Ni-doped CeO2 octahedral nanostructure which efficiently detects NH3 as low as 45 ppb at room temperature. The Ni-doped CeO2 sensor exhibits the maximum response of 42 towards 225 ppm NH3, which is ten-fold higher than pure CeO2. The improved sensing performance is caused by the enhancement of oxygen vacancy, bandgap narrowing, and redox property of CeO2 caused by Ni doping. Density functional theory confirms that O vacancy with Ni at Ce site (VONiCe) augments the sensing capabilities. The Bader charge analysis predicts the amount of charge transfer (0.04 e) between the Ni-CeO2 surface and the NH3 molecule. As well, the high negative adsorption energy (≈750 meV) and lowest distance (1.40 Å) of the NH3 molecule from the sensor surface lowers the detection limit. The present work enlightens the fabrication of sensing elements through defect engineering for ultra-trace detection of NH3 to be useful further in the field of sensor applications.

4.
Small Methods ; 8(3): e2300811, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37997184

ABSTRACT

Simultaneous electrochemical reduction of nitrite and carbon dioxide (CO2 ) under mild reaction conditions offers a new sustainable and low-cost approach for urea synthesis. However, the development of urea electrosynthesis thus far still suffers from low selectivity due to the high energy barrier of * CO formation and the subsequent C─N coupling. In this work, a highly active dendritic Cu99 Ni1 catalyst is developed to enable the highly selective electrosynthesis of urea from co-reduction of nitrite and CO2 , reaching a urea Faradaic efficiency (FE) and production rate of 39.8% and 655.4 µg h-1  cm-2 , respectively, at -0.7 V versus reversible hydrogen electrode (RHE). In situ Fourier-transform infrared spectroscopy (FT-IR) measurements together with density functional theory (DFT) calculations demonstrate that Ni doping into Cu can significantly enhance the adsorption energetics of the key reaction intermediates and facilitate the C─N coupling. This work not only provides a new strategy to design efficient electrocatalysts for urea synthesis but also offers deep insights into the mechanism of C─N coupling during the co-reduction of nitrite and CO2 .

5.
Small ; 20(6): e2304969, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37771192

ABSTRACT

Magnesium-ion batteries are widely studied for its environmentally friendly, low-cost, and high volumetric energy density. In this work, the solvothermal method is used to prepare titanium dioxide bronze (TiO2 -B) nanoflowers with different nickel (Ni) doping concentrations for use in magnesium ion batteries as cathode materials. As Ni doping enhances the electrical conductivity of TiO2 -B and promotes magnesium ion diffusion, the band gap of TiO2 -B host material can be significantly reduced, and as Ni content increases, diffusion contributes more to capacity. According to the electrochemical test, TiO2 -B exhibits excellent electrochemical performance when the Ni element doping content is 2 at% and it is coated with reduced graphene oxide@carbon nanotube (RGO@CNT). At a current density of 100 mA g-1 , NT-2/RGO@CNT discharge specific capacity is as high as 167.5 mAh g-1 , which is 2.36 times of the specific discharge capacity of pure TiO2 -B. It is a very valuable research material for magnesium ion battery cathode materials.

6.
Small ; 20(23): e2308011, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38152965

ABSTRACT

Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries for large-scale energy storage systems due to the abundance and low price of sodium. Until recently, the low theoretical capacities of intercalation-type cathodes less than 250 mAh g-1 have limited the energy density of SIBs. On the other hand, iron oxyfluoride (FeOF) has a high theoretical capacity of ≈885 mAh g-1 as a conversion-type cathode material for SIBs. However, FeOF suffers from poor cycling stability, rate capability, and low initial Coulombic efficiency caused by its low electrical conductivity and slow ionic diffusion kinetics. To solve these problems, doping aliovalent Ni2+ on FeOF electrodes is attempted to improve the electronic conductivity without using a carbon matrix. The ionic conductivity of FeOF is also enhanced due to the formation of oxygen defects in the FeOF crystal structure. The FeOF-Ni1 electrode shows an excellent cycling performance with a reversible discharge capacity of 450.4 mAh g-1 at 100 mAh g-1 after 100 cycles with a fading rate of 0.20% per cycle. In addition, the FeOF-Ni1//hard carbon full cell exhibited a high energy density of 876.9 Wh kg-1 cathode with a good cycling stability.

7.
Chemistry ; 29(69): e202302774, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37682016

ABSTRACT

Iron oxides have emerged as a very promising and cost-effective alternative to precious metal catalysts for hydrogen production. However, the inert basal plane of iron oxides needs to be activated to enhance their catalytic efficiency. In this study, we employed heterostructure engineering and doped nickel to cooperatively activate the basal planes of iron oxide (Ni-Fe2 O3 /CeO2 HSs) to achieve high hydrogen evolution reaction (HER) activity. The Ni-Fe2 O3 /CeO2 HSs electrocatalyst demonstrates excellent basic HER activity and stability, such as an extremely low overpotential of 43 mV at 10 mA cm-2 current density and corresponding Tafel slope of 58.6 mV dec-1 . The increase in electrocatalyst activity and acceleration of hydrogen precipitation kinetics arises from the dual modulation of Ni doping and heterostructure, which not only modulates the electrocatalyst's electronic structure, but also increases the number and exposure of active sites. Remarkably, the generation of heterogeneous structure makes the catalyst se. The Ni-doped catalyst has not only increased HER activity but also low-temperature resistance. These results suggest that the synergistic activation of inert iron oxide basal planes through heterostructure formation and doping is a feasible strategy. Furthermore, for efficient electrocatalytic water splitting, this technique can be extended to other non-noble metal oxides.

8.
Chemosphere ; 340: 139890, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37619747

ABSTRACT

Organic dyes present in industrial wastewater are the major contributor to water pollution, which harm human health and the environment. Photocatalytic dye degradation is an effective strategy for water remediation by converting these organic dyes waste into non-harmful by-products. Therefore, in this study, Ni-doped LaFeO3 (NLFO) perovskite nanoparticles were extensively explored for photocatalytic degradation of cationic and anionic dyes and their mixture. The NLFO nanoparticles were successfully synthesized by surfactant assisted hydrothermal method under controlled Ni doping. The X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) revealed the variation in size (40-70 nm) of orthorhombic crystalline LFO nanoparticles with Ni doping and hence the size of microspheres (0.78. to 1.78 µm). The kinetic studies revealed that the LaFe0·6Ni0·4O3 performed well by providing degradation efficiency of 99.2% in 210 min, 99.1% in 100 min, and 98.4% in 70 min for Crystal Violet (CV), Congo Red (CR), and their mixture with rate constant of 0.019, 0.039, and 0.055 min-1 respectively. The radical scavenger tests indicated the synergetic contributions of O2- and •OH- active radicals in faster degradation of CV and CR dye mixture. The stepwise fragmentation of dye molecule during the photocatalytic degradation identified from the LCMS indicates the degradation of CV dye through de-alkylation and benzene ring breaking, whereas azo bond cleavage and oxidation lead to low molecular weight intermediates for CR dye, which all together helped to degrade their dye mixture (50 mg L-1 and 100 mg L-1) in significantly lesser time (70 min). Overall, the Ni-doped LFO microsphere consisting of nanoparticles acts as a superior catalyst for the more efficient and faster degradation of binary dye mixture.


Subject(s)
Coloring Agents , Oxides , Humans , Kinetics , Water , Congo Red , Cations , Gentian Violet
9.
Nanotechnology ; 34(40)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37406614

ABSTRACT

Photocatalytic CO2reduction is considered to be an appealing way of alleviating environmental pollution and energy shortages simultaneously under mild condition. However, the activity is greatly limited by the poor separation of the photogenerated carriers. Ion doping is a feasible strategy to facilitate the charge transfer. In this work, Ni-doped Bi4O5I2photocatalyst is successfully fabricated using a one-pot hydrothermal method. A few doping levels appear in the energy band of Bi4O5I2after Ni doping, which are used as springboards for electrons transition, thus promoting photoexcited electrons and holes separation. As a consequence, a remarkably enhanced yield of CO and CH4(6.2 and 1.9µmol g-1h-1) is obtained over the optimized Bi4O5I2-Ni15, which is approximately 2.1 and 3.8 times superior to pure Bi4O5I2, respectively. This work may serve as a model for the subsequent research of Bi-based photocatalysts to implement high-performance CO2photoreduction.

10.
Small ; 19(25): e2301235, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36922746

ABSTRACT

Here, an ultra-highly active Ni-MOF-5 catalyst with high Ni loading for ethylene dimerization is reported. The Ni-MOF-5 catalysts are synthesized by a facile one-pot co-precipitation method at room temperature, where Ni2+ replaces Zn2+ in MOF-5. Unlike Zn2+ with tetrahedral coordination in MOF-5, Ni2+ is coordinated with extra solvent molecules except for four-oxygen from the framework. After removing coordinated solvent molecules, Ni-MOF-5 achieves an ethylene turnover frequency of 352 000 h-1 , corresponding to 9040 g of product per gram of catalyst per hour, at 35 °C and 50 bar, far exceeding the activities of all reported heterogeneous catalysts. The high Ni loading and full exposure structure account for the excellent catalytic performance. Isotope labeling experiments reveal that the catalytic process follows the Cossee-Arlman mechanism, rationalizing the high activity and selectivity of the catalyst. These results demonstrate that Ni-MOF-5 catalysts are very promising for industrial catalytic ethylene dimerization.

11.
Materials (Basel) ; 16(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36769934

ABSTRACT

A thermoelectric generator, as a solid-state device, is considered a potential candidate for recovering waste heat directly as electrical energy without any moving parts. However, thermoelectric materials limit the application of thermoelectric devices due to their high costs. Therefore, in this work, we attempt to improve the thermoelectric properties of a low-cost material, iron silicide, by optimizing the Ni doping level. The influence of Ni substitution on the structure and electrical and thermoelectric characteristics of bulk ß-FexNi1-xSi2 (0 ≤ x ≤ 0.03) prepared by the conventional arc-melting method is investigated. The thermoelectric properties are reported over the temperature range of 80-800 K. At high temperatures, the Seebeck coefficients of Ni-substituted materials are higher and more uniform than that of the pristine material as a result of the reduced bipolar effect. The electrical resistivity decreases with increasing x owing to the increases in metallic ε-phase and carrier density. The ε-phase increases with Ni substitution, and solid solution limits of Ni in ß-FeSi2 can be lower than 1%. The highest power factor of 200 µWm-1K-2 at 600 K is obtained for x = 0.001, resulting in the enhanced ZT value of 0.019 at 600 K.

12.
J Colloid Interface Sci ; 629(Pt B): 847-858, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36202028

ABSTRACT

Improving the separation efficiency and transfer ability of photoinduced electrons/holes in pyrite (FeS2)-based photocatalytic materials is significant for the photoreduction of hexavalent chromium (Cr(VI)) but still remains a challenge. Herein, a novel homojunction was prepared through in-situ growth of nickel (Ni) doped FeS2 nanoparticles on FeS2 nanobelts (denoted as Ni-FeS2/FeS2). Systematical characterizations revealed that Ni doped FeS2 nanoparticles have been successfully in situ grown along the lattice of FeS2 nanobelts. Photoreduction experiments demonstrated that the Ni-FeS2/FeS2 homojunction with 2 mmol Ni doping contents (denoted as 2Ni-FeS2/FeS2) exhibited the optimum Cr(VI) reduction efficiency among the studied catalysts. Density Functional Theory (DFT) calculated results verified that Ni doping could not only be advantageous for the formation of sulfur vacancies but also modify the band gap and band structure of FeS2 nanoparticles. Moreover, several doping energy levels caused by Ni doping have also appeared near the Fermi level of FeS2 nanoparticles. The migration paths of electrons and the existence of internal electric field (IEF) in homojunction were further verified by the calculation of work function. To sum up, the doping energy levels and IEF that produced by homojunction played important roles in accelerating the separation efficiency of its photogenerated carriers.

13.
J Colloid Interface Sci ; 628(Pt A): 745-757, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35961243

ABSTRACT

In our work, poly(3,4-ethylenedioxythiophene) (PEDOT) granules supported Cu/Ni-doped Pd electrocatalysts (PdCu/PEDOT and PdNi/PEDOT) were synthesized for ethylene glycol (EG) oxidation in alkaline medium. The amorphous PEDOT granules as the catalyst supports provide plenty of attachment sites for PdCu and PdNi nanoparticles. The optimized Pd1Cu3/PEDOT and Pd7Ni3/PEDOT catalysts both perform superior mass-based activity, area-based activity and intrinsic activity for EG oxidation as compared to other control samples. Moreover, chronoamperometry and long-term cyclic voltammetry tests demonstrate that the Pd1Cu3/PEDOT catalyst performs optimal anti-poisoning capability and catalytic durability. The outstanding electrocatalytic performance can be attributed to the favourable dispersion of Pd1Cu3 and Pd7Ni3 nanoparticles on the PEDOT granules and the synergistic effects between Pd, Cu/Ni atoms and the electron-rich conjugated structure of PEDOT. In summary, this work synthesized two Pd/PEDOT-based electrocatalysts with promising catalytic application prospect in direct ethylene glycol fuel cell (DEGFC), which may provide some theoretical support for the design and synthesis of competent electrocatalysts for DEGFC.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Polymers , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Catalysis , Ethylene Glycols , Polymers/chemistry
14.
ChemSusChem ; 15(15): e202200752, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35618698

ABSTRACT

Electrochemical reduction of CO2 (CO2 RR) to value-added chemicals is an effective way to harvest renewable energy and utilize carbon dioxide. However, the electrocatalysts for CO2 RR suffer from insufficient activity and selectivity due to the limitation of CO2 activation. In this work, a Ni-doped Bi nanosheet (Ni@Bi-NS) electrocatalyst is synthesized for the electrochemical reduction of CO2 to HCOOH. Physicochemical characterization methods are extensively used to investigate the composition and structure of the materials. Electrochemical results reveal that for the production of HCOOH, the obtained Ni@Bi-NS exhibits an equivalent current density of 51.12 mA cm-2 at -1.10 V, which is much higher than the pure Bi-NS (18.00 mA cm-2 at -1.10 V). A high Faradaic efficiency over 92.0 % for HCOOH is achieved in a wide potential range from -0.80 to -1.10 V, and particularly, the highest efficiency of 98.4 % is achieved at -0.90 V. Both experimental and theoretical results reveal that the superior activity and selectivity are attributed to the doping effect of Ni on the Bi nanosheet. The density functional theory calculation reveals that upon doping, the charge is transferred from Ni to the adjacent Bi atoms, which shifts the p-orbital electronic density states towards the Fermi level. The resultant strong orbital hybridization between Bi and the π* orbitals of CO2 facilitates the formation of *OCHO intermediates and favors its activation. This work provides an effective strategy to develop active and selective electrocatalysts for CO2 RR by modulating the electronic density state.

15.
ACS Appl Mater Interfaces ; 14(15): 17273-17281, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35388700

ABSTRACT

Facilitating the efficient activation of N2 molecules and inhibiting the competing hydrogen evolution reaction remain a challenge in the nitrogen reduction reaction (NRR). A heteroatom doping strategy is an effective way to optimize the energy barrier during the NRR process to improve the catalytic efficiency. Herein, we report Ni-doped Mo2C anchored on graphitized porous conductive carbon for regulating the electronic structure and catalytic properties of electrocatalysts toward NRR. Benefiting from the porous structure and graphitization features of the carbon matrix, more active sites and high electronic conductivity were achieved. Meanwhile, with the doping of Ni atoms, the electronic configuration near the Ni-Mo active sites was optimized and the adsorption of N2 on them was also promoted due to the increased electron transfer. Moreover, the lowered energy barrier of the NRR process and the suppressed hydrogen adsorption on the active site all resulted in the high catalytic activity and selectivity of the catalyst. Therefore, a high NH3 yield rate of 46.49 µg h-1 mg-1 and a faradic efficiency of 29.05% were achieved. This work not only validates the important role of heteroatom doping on the regulation of NRR catalytic activity but also provides a promising avenue for the green synthesis of NH3.

16.
J Hazard Mater ; 424(Pt C): 127655, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34773795

ABSTRACT

In this work, a novel Ni-doped PbO2 anode (Ni-PbO2) was prepared via a co-electrodeposition method and used to remove Ni-ethylenediaminetetraacetic acid (Ni-EDTA) from solutions typical of electroless nickel plating wastewater. Compared with a pure PbO2 electrode, Ni doping increased the oxygen evolution potential as well as the reactive surface area and reactive site concentration and reduced the electron transfer resistance thereby resulting in superior Ni-EDTA degradation performance. The 1% Ni-doped PbO2 electrode exhibited the best electrochemical oxidation activity with a Ni-EDTA removal efficiency of 96.5 ± 1.2%, a Ni removal efficiency of 52.1 ± 1.4% and an energy consumption of 2.6 kWh m-3. Further investigations revealed that 1% Ni doping enhanced both direct oxidation and hydroxyl radical mediated oxidation processes involved in Ni-EDTA degradation. A mechanism for Ni-EDTA degradation is proposed based on the identified products. The free nickel ion concentration initially increased as a result of the degradation of Ni-EDTA complexes and subsequently decreased as a consequence of nickel electrodeposition on the cathode surface. Further characterization of the cathode deposits by X-ray diffraction and X-ray photoelectron spectra indicated that the deposition products were a mixture of Ni0, NiO and Ni(OH)2 with elemental Ni accounting for roughly 80% of the deposited nickel. Results of this study pave the way for the application of anodic oxidation processes for efficient degradation of Ni-containing complexes and recovery of Ni from nickel-containing wastewaters.

17.
J Hazard Mater ; 425: 127779, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-34823954

ABSTRACT

This study investigates the impacts of Ni doping on technetium-99 (Tc) sequestration in aqueous solutions through transformation of Fe(OH)2(s) to iron spinel (magnetite) under alkaline conditions. Extensive solid characterization was performed for the mineral phases produced, as well as the Tc/Ni speciation and distribution within these phases. X-ray diffraction results show that iron spinel was the dominant mineral product without detectable Ni incorporation. The doped Ni ions mainly precipitated as fine Fe/Ni oxide/hydroxide particles, including strongly reduced nanometer-sized spheroidal Ni-rich and metallic Ni phases. High-resolution analytical scanning transmission electron microscopy using energy dispersive X-ray spectroscopy and electron energy loss spectroscopy on the produced solid samples (focused ion beam-prepared specimens) revealed three Tc distribution domains dominated by nanocrystals and, especially, a Tc-rich metallic phase. Instances of metallic Tc were specifically found in spheroidal, Ni-rich and metallic nanoparticles exhibiting a core/shell microstructure that suggests strong reduction and sequential precipitation of Ni-Tc-Ni. Mass balance analysis showed nearly 100% Tc removal from the 4.8 × 10-4 M Tc solutions. The finding of the metallic Tc encapsulation indicates that Tc sequestration through Ni-doped Fe(OH)2(s)-to-iron spinel transformation process likely provides an alternative treatment pathway for Tc removal and could be combined into further waste treatment approaches.

18.
Materials (Basel) ; 14(13)2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34199094

ABSTRACT

Herein, the effect of Ni-doping amount on microstructure, magnetic and mechanical properties of Fe-based metallic microwires was systematically investigated further to reveal the influence mechanism of Ni-doping on the microstructure and properties of metallic microwires. Experimental results indicate that the rotated-dipping Fe-based microwires structure is an amorphous and nanocrystalline biphasic structure; the wire surface is smooth, uniform and continuous, without obvious macro- and micro-defects that have favorable thermal stability; and moreover, the degree of wire structure order increases with an increase in Ni-doping amount. Meanwhile, FeSiBNi2 microwires possess the better softly magnetic properties than the other wires with different Ni-doping, and their main magnetic performance indexes of Ms, Mr, Hc and µm are 174.06 emu/g, 10.82 emu/g, 33.08 Oe and 0.43, respectively. Appropriate Ni-doping amount can effectively improve the tensile strength of Fe-based microwires, and the tensile strength of FeSiBNi3 microwires is the largest of all, reaching 2518 MPa. Weibull statistical analysis also indicates that the fracture reliability of FeSiBNi2 microwires is much better and its fracture threshold value σu is 1488 MPa. However, Fe-based microwires on macroscopic exhibit the brittle fracture feature, and the angle of sideview fracture θ decreases as Ni-doping amount increases, which also reveals the certain plasticity due to a certain amount of nanocrystalline in the microwires structure, also including a huge amount of shear bands in the sideview fracture and a few molten drops in the cross-section fracture. Therefore, Ni-doped Fe-based metallic microwires can be used as the functional integrated materials in practical engineering application as for their unique magnetic and mechanical performances.

19.
ACS Appl Mater Interfaces ; 13(29): 34308-34319, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34279892

ABSTRACT

This study highlights the facet structure control of regular NixCo3-xO4 nanoplates and interfacial modulation through elemental doping and morphologically fitted assembly of Ti3C2Tx nanosheets for high performances in OER/HER and overall water splitting. Over the resulting Ni0.09Co2.91O4/Ti3C2Tx-HT in a solution of 1 M KOH, the OER and HER overpotentials of 262 and 210 mV, respectively, are achievable at a current density of 10 mA cm-2. In the case of the overall water splitting by using Ni0.09Co2.91O4/Ti3C2Tx-HT as anode and cathode catalysts, only a potential of 1.66 V is needed to obtain a current density of 10 mA cm-2, and the catalysts can stand for a period of 70 h, remarkably outperforming the RuO2-Pt/C-based catalyst and benefiting from the intensive association and interfacial function between the Ti3C2Tx and NixCo3-xO4 nanosheets. Interestingly, a surface reconstruction from the (112) to (111) facet structure occurred upon the fine-tuned Ni doping of regular NixCo3-xO4 hexagonal nanoplates and led to a highly active catalyst surface. At x = 0.09, the amount of Ni3+ becomes the highest, which is favorable for the generation of the critical OH intermediates on NixCo3-xO4/Ti3C2Tx-HT. The current study documented the significance of the well-controlled interfacial assembly of transition-metal oxide/MXenes as an effective electrocatalyst in the OER/HER and overall water splitting processes and provided the insights into the structure-performance correlation over such kinds of precious metal-free catalysts.

20.
Nanotechnology ; 32(33)2021 May 24.
Article in English | MEDLINE | ID: mdl-33957616

ABSTRACT

All inorganic perovskite nanocrystals CsPbX3(X = Cl, Br, I) are the great potential candidates for the application of high-performance light emitting diodes (LED) due to their high Photoluminescence Quantum Yield (PLQY), high defect tolerance, narrow full-width half-maximum and tunable wavelength of 410-700 nm. However, the application of red-emitting (630-650 nm) CsPbBrxI3-xnanocrystals are perplexed by phase segregation due to the composition of mixed halides and the difference in halide ion mobility. Herein, we provide an effective strategy to suppressing the migration of Br/I ions through Ni2+doping via a facile Hot-Injection method and the PLQY was improved as well. DFT calculations show that the introduction of Ni2+causes a slight contraction of the host crystal structure, which improves the bond energy between Pb and halides and reduces the level of surface defects. Therefore, the phase stability is improved by Ni2+doping because the phase segregation caused by ion migration in the mixed phase is effectively inhibited. Meanwhile, the non-radiative recombination in the exciton transition process is reduced and the PLQY is improved. What's more, benefiting from the suppressed ion migration and enhanced PLQY, we combine the Ni2+-doped CsPbBrxI3-xnanocrystals with different Br/I ratios and YAG: Ce3+phosphors as color conversion layers to fabricate high efficiency WLED. When the ratio of Br/I is 9:11, WLED has a color coordinate of (0.3621, 0.3458), the color temperature of 4336 K and presents a high luminous efficiency of 113.20 lm W-1, color rendering index of 94.9 under the driving current of 20 mA and exhibits excellent stability, which shows great potential in the application of LED.

SELECTION OF CITATIONS
SEARCH DETAIL
...