Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 344
Filter
1.
ACS Appl Mater Interfaces ; 16(30): 38893-38904, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39013021

ABSTRACT

Thermal inactivation is a major bottleneck to the scalable production, storage, and transportation of protein-based reagents and therapies. Failures in temperature control both compromise protein bioactivity and increase the risk of microorganismal contamination. Herein, we report the rational design of fluorochemical additives that promiscuously bind to and coat the surfaces of proteins to enable their stable dispersion within fluorous solvents. By replacing traditional aqueous liquids with fluorinated media, this strategy conformationally rigidifies proteins to preserve their structure and function at extreme temperatures (≥90 °C). We show that fluorous protein formulations resist contamination by bacterial, fungal, and viral pathogens, which require aqueous environments for survival, and display equivalent serum bioavailability to standard saline samples in animal models. Importantly, by designing dispersants that decouple from the protein surface in physiologic solutions, we deliver a fluorochemical formulation that does not alter the pharmacologic function or safety profile of the functionalized protein in vivo. As a result, this nonaqueous protein storage paradigm is poised to open technological opportunities in the design of shelf-stable protein reagents and biopharmaceuticals.


Subject(s)
Hot Temperature , Animals , Mice , Proteins/chemistry , Proteins/metabolism , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology
2.
Drug Deliv ; 31(1): 2381340, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39041383

ABSTRACT

Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N2 adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71-91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to in vitro lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.


Subject(s)
Lung , Muramidase , Particle Size , Powders , Silicon Dioxide , Silicon Dioxide/chemistry , Muramidase/administration & dosage , Muramidase/chemistry , Lung/metabolism , Lung/drug effects , Porosity , Powders/chemistry , Drug Carriers/chemistry , Administration, Inhalation , Drug Delivery Systems/methods , Nanoparticles/chemistry , Humans , Excipients/chemistry , Animals , Chemistry, Pharmaceutical/methods , Spectroscopy, Fourier Transform Infrared , Freeze Drying
3.
J Pharm Sci ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810881

ABSTRACT

This article evaluates the current gaps around the impact of post-manufacturing processes on the product qualities of protein-based biologics, with a focus on user centricity. It includes the evaluation of the regulatory guidance available, describes a collection of scientific literature and case studies to showcase the impact of post-manufacturing stresses on product and dosing solution quality. It also outlines the complexity of clinical handling and the need for communication, and alignment between drug providers, healthcare professionals, users, and patients. Regulatory agencies provide clear expectations for drug manufacturing processes, however, guidance supporting post-product manufacturing handling is less defined and often misaligned. This is problematic as the pharmaceutical products experience numerous stresses and processes which can potentially impact drug quality, safety and efficacy. This article aims to stimulate discussion amongst pharmaceutical developers, health care providers, device manufacturers, and public researchers to improve these processes. Patients and caregivers' awareness can be achieved by providing relevant educational material on pharmaceutical product handling.

4.
J Pharm Sci ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38768756

ABSTRACT

This paper reviews the structure and properties of amorphous active pharmaceutical ingredients (APIs), including small molecules and proteins, in the glassy state (below the glass transition temperature, Tg). Amorphous materials in the neat state and formulated with excipients as miscible amorphous mixtures are included, and the role of absorbed water in affecting glass structure and stability has also been considered. We defined the term "structure" to indicate the way the various molecules in a glass interact with each other and form distinctive molecular arrangements as regions or domains of varying number of molecules, molecular packing, and density. Evidence is presented to suggest that such systems generally exist as heterogeneous structures made up of high-density domains surrounded by a lower density arrangement of molecules, termed the microstructure. It has been shown that the method of preparation and the time frame for handling and storage can give rise to variable glass structures and varying physical properties. Throughout this paper, examples are given of theoretical, computer simulation, and experimental studies which focus on the nature of intermolecular interactions, the size of heterogeneous higher density domains, and the impact of such systems on the relative physical and chemical stability of pharmaceutical systems.

5.
J Pharm Sci ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38772451

ABSTRACT

Polysorbate (PS) degradation in monoclonal antibody (mAb) formulations poses a significant challenge in the biopharmaceutical industry. PS maintains protein stability during drug product's shelf life but is vulnerable to breakdown by low-abundance residual host cell proteins (HCPs), particularly hydrolytic enzymes such as lipases and esterases. In this study, we used activity-based protein profiling (ABPP) coupled with mass spectrometry to identify acyl-protein thioesterase-1 (APT-1) as a polysorbate-degrading HCP in one case of mAb formulation with stability problems. We validated the role of APT1 by matching the polysorbate degradation fingerprint in the mAb formulation with that of a recombinant APT1 protein. Furthermore, we found an agreement between APT1 levels and PS degradation rates in the mAb formulation, and we successfully halted PS degradation using APT1-specific inhibitors ML348 and ML211. APT1 was found to co-purify with a specific mAb via hitchhiking mechanism. Our work provides a streamlined approach to identifying critical HCPs in PS degradation, supporting quality-by-design principles in pharmaceutical development.

6.
J Pharm Sci ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692487

ABSTRACT

Antibacterial therapy with phage-encoded endolysins or their modified derivatives with improved antibacterial, biochemical and pharmacokinetic properties is one of the most promising strategies that can supply existing antibacterial drugs array. Gram-negative bacteria-induced infections treatment is especially challenging because of rapidly spreading bacterial resistance. We have developed modified endolysin LysECD7-SMAP with a significant antibacterial activity and broad spectra of action against gram-negative bacteria. Endolysin was formulated in a bactericidal gel for topical application with pronounced effectivity in local animal infectious models. Here we present preclinical safety studies and pharmacokinetics of LysECD7-SMAP-based gel. We have detected LysECD7-SMAP in the skin and underlying muscle at therapeutic concentrations when the gel is applied topically to intact or injured skin. Moreover, the protein does not enter the bloodstream, and has no systemic bioavailability, assuming no systemic adverse effects. In studies of general toxicology, local tolerance, and immunotoxicology it was approved that LysECD7-SMAP gel local application results in the absence of toxic effects after single and multiple administration. Thus, LysECD7-SMAP-containing gel has appropriate pharmacokinetics and can be considered as safe that supports the initiation of the phase I clinical trials of novel antibacterial drug intending to treat acute wound infections caused by resistant gram-negative bacteria.

7.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675488

ABSTRACT

Monoclonal antibodies require careful formulation due to their inherent stability limitations. Polysorbates are commonly used to stabilize mAbs, but they are prone to degradation, which results in unwanted impurities. KLEPTOSE® HPßCD (hydroxypropyl beta-cyclodextrin) has functioned as a stable stabilizer for protein formulations in our previous research. The current study investigates the collaborative impact of combining polysorbates and HPßCD as excipients in protein formulations. The introduction of HPßCD in formulations showed it considerably reduced aggregation in two model proteins, bevacizumab and ipilimumab, following exposure to various stress conditions. The diffusion interaction parameter revealed a reduction in protein-protein interactions by HPßCD. In bevacizumab formulations, the subvisible particle counts per 0.4 mL of samples in commercial formulations vs. formulations containing both HPßCD and polysorbates subjected to distinct stressors were as follows: agitation, 87,308 particles vs. 15,350 particles; light, 25,492 particles vs. 6765 particles; and heat, 1775 particles vs. 460 particles. Isothermal titration calorimetry (ITC) measurement indicated a weak interaction between PS 80 and HPßCD, with a KD value of 74.7 ± 7.5 µM and binding sites of 5 × 10-3. Surface tension measurements illustrated that HPßCD enhanced the surface activity of polysorbates. The study suggests that combining these excipients can improve mAb stability in formulations, offering an alternative for the biopharmaceutical industry.

8.
J Pharm Sci ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679234

ABSTRACT

Cyclodextrins (CDs) are versatile agents used to solubilize small drugs and stabilize proteins. This dual functionality may be particularly beneficial for antibody-drug conjugates (ADCs), as CDs may "mask" the hydrophobicity of the drug payloads. In this study, we explored the effect of CDs on the physical stability of ADCs composed of the same antibody but with different payloads (maytansinoid, auristatin, and fluorophore payloads). The aggregation of ADCs was evaluated under shaking stress conditions and elevated temperatures using size-exclusion chromatography, turbidity, and backgrounded membrane imaging. Our results showed that hydroxypropyl-(HP)-CDs effectively stabilized all ADCs during shaking stress, with increasing stabilization in the order of HPαCD < HPγCD < HPßCD at concentrations of 7.5 mM and (near) complete stabilization at 75 mM. Native CDs without surface activity also stabilized certain ADCs, although less effectively than HP-CDs under agitation stress. During quiescent incubation, the HP-CD effects were small for most ADCs. However, for an ADC with a fluorophore payload that rapidly aggregated after conjugation, HPγCD substantially reduced aggregate levels, in line with fluorescence data supporting CD-ADC interactions. In contrast, sulfobutylether-ß-CD (SBEßCD) increased the aggregation rates in all ADCs under all stress conditions. In conclusion, this study highlights the potential of appropriate CD formulations to improve the physical stability of ADCs.

9.
J Anim Sci Biotechnol ; 15(1): 55, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528636

ABSTRACT

BACKGROUND: Low crude protein (CP) formulations with supplemental amino acids (AA) are used to enhance intestinal health, reduce costs, minimize environmental impact, and maintain growth performance of pigs. However, extensive reduction of dietary CP can compromise growth performance due to limited synthesis of non-essential AA and limited availability of bioactive compounds from protein supplements even when AA requirements are met. Moreover, implementing a low CP formulation can increase the net energy (NE) content in feeds causing excessive fat deposition. Additional supplementation of functional AA, coupled with low CP formulation could further enhance intestinal health and glucose metabolism, improving nitrogen utilization, and growth performance. Three experiments were conducted to evaluate the effects of low CP formulations with supplemental AA on the intestinal health and growth performance of growing-finishing pigs. METHODS: In Exp. 1, 90 pigs (19.7 ± 1.1 kg, 45 barrows and 45 gilts) were assigned to 3 treatments: CON (18.0% CP, supplementing Lys, Met, and Thr), LCP (16.0% CP, supplementing Lys, Met, Thr, Trp, and Val), and LCPT (16.1% CP, LCP + 0.05% SID Trp). In Exp. 2, 72 pigs (34.2 ± 4.2 kg BW) were assigned to 3 treatments: CON (17.7% CP, meeting the requirements of Lys, Met, Thr, and Trp); LCP (15.0% CP, meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and VLCP (12.8% CP, meeting Lys, Thr, Trp, Met, Val, Ile, Phe, His, and Leu). In Exp. 3, 72 pigs (54.1 ± 5.9 kg BW) were assigned to 3 treatments and fed experimental diets for 3 phases (grower 2, finishing 1, and finishing 2). Treatments were CON (18.0%, 13.8%, 12.7% CP for 3 phases; meeting Lys, Met, Thr, and Trp); LCP (13.5%, 11.4%, 10.4% CP for 3 phases; meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and LCPG (14.1%, 12.8%, 11.1% CP for 3 phases; LCP + Glu to match SID Glu with CON). All diets had 2.6 Mcal/kg NE. RESULTS: In Exp. 1, overall, the growth performance did not differ among treatments. The LCPT increased (P < 0.05) Claudin-1 expression in the duodenum and jejunum. The LCP and LCPT increased (P < 0.05) CAT-1, 4F2hc, and B0AT expressions in the jejunum. In Exp. 2, overall, the VLCP reduced (P < 0.05) G:F and BUN. The LCP and VLCP increased (P < 0.05) the backfat thickness (BFT). In Exp. 3, overall, growth performance and BFT did not differ among treatments. The LCPG reduced (P < 0.05) BUN, whereas increased the insulin in plasma. The LCP and LCPG reduced (P < 0.05) the abundance of Streptococcaceae, whereas the LCP reduced (P < 0.05) Erysipelotrichaceae, and the alpha diversity. CONCLUSIONS: When implementing low CP formulation, CP can be reduced by supplementation of Lys, Thr, Met, Trp, Val, and Ile without affecting the growth performance of growing-finishing pigs when NE is adjusted to avoid increased fat deposition. Supplementation of Trp above the requirement or supplementation of Glu in low CP formulation seems to benefit intestinal health as well as improved nitrogen utilization and glucose metabolism.

10.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38551918

ABSTRACT

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Subject(s)
Calorimetry, Differential Scanning , Excipients , Freeze Drying , Poloxamer , Trehalose , Freeze Drying/methods , Poloxamer/chemistry , Excipients/chemistry , Trehalose/chemistry , Calorimetry, Differential Scanning/methods , Sucrose/chemistry , X-Ray Diffraction , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Crystallization/methods , Chemistry, Pharmaceutical/methods , Proteins/chemistry , Drug Compounding/methods , Freezing
11.
Mol Pharm ; 21(3): 1414-1423, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38386020

ABSTRACT

Protein self-interactions measured via second osmotic virial coefficients (B22) and dynamic light scattering interaction parameter values (kD) are often used as metrics for assessing the favorability of protein candidates and different formulations during monoclonal antibody (MAb) product development. Model predictions of B22 or kD typically do not account for glycans, though glycosylation can potentially impact experimental MAb self-interactions. To the best of our knowledge, the impact of MAb glycosylation on the experimentally measured B22 and kD values has not yet been reported. B22 and kD values of two fully deglycosylated MAbs and their native (i.e., fully glycosylated) counterparts were measured by light scattering over a range of pH and ionic strength conditions. Significant differences between B22 and kD of the native and deglycosylated forms were observed at a range of low to high ionic strengths used to modulate the effect of electrostatic contributions. Differences were most pronounced at low ionic strength, indicating that electrostatic interactions are a contributing factor. Though B22 and kD values were statistically equivalent at high ionic strengths where electrostatics were fully screened, we observed protein-dependent qualitative differences, which indicate that steric interactions may also play a role in the observed B22 and kD differences. A domain-level coarse-grained molecular model accounting for charge differences was considered to potentially provide additional insight but was not fully predictive of the behavior across all of the solution conditions investigated. This highlights that both the level of modeling and lack of inclusion of glycans may limit existing models in making quantitatively accurate predictions of self-interactions.


Subject(s)
Antibodies, Monoclonal , Polysaccharides , Antibodies, Monoclonal/chemistry , Glycosylation , Dynamic Light Scattering , Models, Molecular , Hydrogen-Ion Concentration , Osmolar Concentration
12.
Int J Biol Macromol ; 259(Pt 2): 129295, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211914

ABSTRACT

Lyme disease, caused by Lyme Borrelia spirochetes, is the most common vector-borne illness in the United States. Despite its global significance, with an estimated 14.5 % seroprevalence, there is currently no licensed vaccine. Previously, we demonstrated that CspZ-YA protein conferred protection against Lyme Borrelia infection, making it a promising vaccine candidate. However, such a protein was tagged with hexahistidine, and thus not preferred for vaccine development; furthermore, the formulation to stabilize the protein was understudied. In this work, we developed a two-step purification process for tag-free E. coli-expressed recombinant CspZ-YA. We further utilized various bioassays to analyze the protein and determine the suitable buffer system for long-term storage and formulation as a vaccine immunogen. The results indicated that a buffer with a pH between 6.5 and 8.5 stabilized CspZ-YA by reducing its surface hydrophobicity and colloidal interactions. Additionally, low pH values induced a change in local spatial conformation and resulted in a decrease in α-helix content. Lastly, an optimal salinity of 22-400 mM at pH 7.5 was found to be important for its stability. Collectively, this study provides a fundamental biochemical and biophysical understanding and insights into the ideal stabilizing conditions to produce CspZ-YA recombinant protein for use in vaccine formulation and development.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Humans , Lyme Disease Vaccines , Escherichia coli/genetics , Seroepidemiologic Studies , Lyme Disease/prevention & control , Bacterial Outer Membrane Proteins/chemistry
13.
Eur J Pharm Sci ; 192: 106625, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37918545

ABSTRACT

Saccharides are a popular group of stabilizers in liquid, frozen and freeze dried protein formulations. The current work reviewed the stabilization mechanisms of three groups of saccharides: (i) Disaccharides, specifically sucrose and trehalose; (ii) cyclodextrins (CDs), a class of cyclic oligosaccharides; and (iii) dextrans, a class of polysaccharides. Compared to sucrose, trehalose exhibits a more pronounced preferential exclusion effect in liquid protein formulations, due to its stronger interaction with water molecules. However, trehalose obtains higher phase separation and crystallization propensity in frozen solutions, resulting in the loss of its stabilization function. In lyophilized formulations, sucrose has a higher crystallization propensity. Besides, its glass matrix is less homogeneous than that of trehalose, thus undermining its lyoprotectant function. Nevertheless, the hygroscopic nature of trehalose may result in high water absorption upon storage. Among all the CDs, the ß form is believed to have stronger interactions with proteins than the α- and γ-CDs. However, the stabilization effect, brought about by CD-protein interactions, is case-by-case - in some examples, such interactions can promote protein destabilization. The stabilization effect of hydroxypropyl-ß-cyclodextrin (HPßCD) has been extensively studied. Due to its amphiphilic nature, it can act as a surface-active agent in preventing interfacial stresses. Besides, it is a dual functional excipient in freeze dried formulations, acting as an amorphous bulking agent and lyoprotectant. Finally, dextrans, when combined with sucrose or trehalose, can be used to produce stable freeze dried protein formulations. A strong stabilization effect can be realized by low molecular weight dextrans. However, the terminal glucose in dextrans yields protein glycation, which warrants extra caution during formulation development.


Subject(s)
Cyclodextrins , Trehalose , Trehalose/chemistry , Sucrose/chemistry , Cyclodextrins/chemistry , Dextrans/chemistry , Excipients/chemistry , Water/chemistry , Freeze Drying
14.
J Pharm Sci ; 113(4): 891-899, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37926233

ABSTRACT

During biopharmaceutical development, particle monitoring and characterization are crucial. Notably, particles can be impurities considered as critical quality attribute, or active pharmaceutical ingredient (e.g., viral vectors) or drug delivery system (e.g., lipid nanoparticles) itself. Three-dimensional homodyne light detection (3D-HLD) is a novel technique that can characterize particles in the ∼0.2 µm to 2.0 µm size range. We evaluated 3D-HLD for the analysis of high concentration protein formulations (up to 200 mg/mL), where formulation refractive index and background noise became limiting factors with increasing protein concentration. Sample viscosity however did not impact 3D-HLD results, in contrast to comparative analyses with NTA and MRPS. We also applied 3D-HLD in high-throughput screenings at high protein concentration or of lipid nanoparticle and viral vector formulations, where impurities were analyzed in the presence of a small (<0.2 µm) particulate active pharmaceutical ingredient. 3D-HLD turned out to be in good agreement with or a good complement to other state-of-the-art particle characterization techniques, including BMI, MRPS, and DLS. The main application of 3D-HLD is high-throughput particle analysis at low sample volume. Follow-up investigation of the optimized particle sizing approach and of detection settings could further improve the understanding of the method and potentially increase ease of operation.


Subject(s)
Biological Products , Nanoparticles , Bulk Drugs , Proteins/analysis , Nanoparticles/analysis , High-Throughput Screening Assays , Particle Size
15.
J Pharm Sci ; 113(3): 735-743, 2024 03.
Article in English | MEDLINE | ID: mdl-37722452

ABSTRACT

Protein products in hospitals often have to be compounded before administration to the patient. This may comprise reconstitution of lyophilizates, dilution, storage, and transport. However, the operations for compounding and administration in the hospital may lead to changes in product quality and possibly even impact patient safety. We surveyed healthcare practitioners from three clinical units using a questionnaire and open dialogue to document common procedures and their justification and to document differences in handling procedures. The survey covered dose compounding, transportation, storage and administration. One key observation was that drug vial optimization procedures were used for some products, e.g., use of one single-use vial for several patients. This included the use of spikes and needles or closed system transfer devices (CSTDs). Filters or light protection aids were used only when specified by the manufacturer. A further observation was a different handling of the overfill in pre-filled infusion containers, possibly impacting total dose. Lastly, we documented the complexity of infusion administration setups for administration of multiple drugs. In this case, flushing procedures or the placement and use of filters in the setup vary. Our study has revealed important differences in handling and administration practice. We propose that drug developers and hospitals should collaborate to establish unified handling procedures.


Subject(s)
Hospitals , Protective Devices , Humans , Switzerland , Pharmaceutical Preparations , Surveys and Questionnaires , Drug Compounding
16.
J Pharm Sci ; 113(4): 990-998, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37813303

ABSTRACT

Residual volumes of infusion solutions vary greatly due to container and dimensional variances. Manufacturers use overfill to compensate, but the exact amounts vary significantly. This variability in overfill - when carrier solutions are used to dilute other parenteral preparations - may lead to variable concentrations and dosing, hence, potential risk for patients. We analyzed the overfill and residual volume of 22 pre-filled infusion containers and evaluated the impact on the (simulated) dosing accuracy of a therapeutic drug product for different handling scenarios. In addition, compendial properties of the diluents (i.e. sub-visible particles, pH, color and opalescence) were assessed. The overfill and residual volume between different containers for the same diluent varied. As container size increased, the relative volume of overfill decreased while the residual volume remained constant. The design and material of the containers (e.g. port systems) defined the residual volume. Different handling scenarios led to differences in dosing accuracy. As a result, no universal approach applicable for all containers can be defined. To ensure the right dose, it is recommended to pre-select the preferred diluent, evaluate fill volumes of carrier solutions, and assess in-use compatibility of the product solution with its diluent in terms of concentration and volume.


Subject(s)
Drug Packaging , Humans , Infusions, Parenteral
17.
J Pharm Sci ; 113(4): 1054-1060, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37863428

ABSTRACT

Producing solid-state formulations of biologics remains a daunting task despite the prevalent use of lyophilization and spray drying technologies in the biopharmaceutical industry. The challenges include protein stability (temperature stresses), high capital costs, particle design/controllability, shortened processing times and manufacturing considerations (scalability, yield improvements, aseptic operation, etc.). Thus, scientists/engineers are constantly working to improve existing methodologies and exploring novel dehydration/powder-forming technologies. Microglassification™ is a dehydration technology that uses solvent extraction to rapidly dehydrate protein formulations at ambient temperatures, eliminating the temperature stress experienced by biologics in traditional lyophilization and spray drying methods. The process results in microparticles that are spherical, dense, and chemically stable. In this study, we compared the molecular stability of a monoclonal antibody formulation processed by lyophilization to the same formulation processed using Microglassification™. Both powders were placed on stability for 3 months at 40 °C and 6 months at 25 °C. Both dehydration methods showed similar chemical stability, including percent monomer, charge variants, and antigen binding. These results show that Microglassification™ is viable for the production of stable solid-state monoclonal antibody formulations.


Subject(s)
Biological Products , Chemistry, Pharmaceutical , Humans , Chemistry, Pharmaceutical/methods , Antibodies, Monoclonal/chemistry , Dehydration , Freeze Drying/methods , Drug Stability , Powders
18.
J Pharm Sci ; 113(2): 366-376, 2024 02.
Article in English | MEDLINE | ID: mdl-38042344

ABSTRACT

Aflibercept is a recombinant fusion protein that is commercially available for several ocular diseases impacting millions of people worldwide. Here, we use a case study approach to examine alternative liquid formulations for aflibercept for ocular delivery, utilizing different stabilizers, buffering agents, and surfactants with the goal of improving the thermostability to allow for limited storage outside the cold chain. The formulations were developed by studying the effects of pH changes, substituting amino acids for sucrose and salt, and using polysorbate 80 or poloxamer 188 instead of polysorbate 20. A formulation containing acetate, proline, and poloxamer 188 had lower rates of aggregate formation at 4, 30, and 40°C when compared to the marketed commercial formulation containing phosphate, sucrose, sodium chloride, and polysorbate 20. Further studies examining subvisible particles after exposure to a transport stress and long-term stability at 4°C, post-translational modifications by multi-attribute method, purity by reduced and non-reduced capillary electrophoresis, and potency by cell proliferation also demonstrated a comparable or improved stability for the enhanced formulation of acetate, proline, and poloxamer 188. This enhanced stability could enable limited storage outside of the cold chain, allowing for easier distribution in low to middle income countries.


Subject(s)
Poloxamer , Polysorbates , Receptors, Vascular Endothelial Growth Factor , Humans , Polysorbates/chemistry , Recombinant Fusion Proteins , Sodium Chloride , Acetates , Sucrose , Proline , Drug Stability
19.
J Pharm Sci ; 113(6): 1523-1535, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38142969

ABSTRACT

Many challenges have been identified for ensuring compatibility of closed system transfer devices (CSTDs) with biologic drug products. One challenge is large hold-up volumes (HUVs) of CSTD components, which can be especially problematic with early-stage biologics when low transfer volumes smaller than the nominal fill volume may be used to achieve a wide range of doses with a single drug product configuration. Here, we identified possible CSTD handling techniques during dose preparation of a drug product requiring small volume transfers during reconstitution, intermediate dilution, and dilution in an IV bag, and systematically evaluated the impact of these handling procedures on the ability to deliver an accurate dose to the next step. We show that small changes to CSTD procedures can have a major impact on dose accuracy, depending on both CSTD HUVs and drug product-specific transfer volumes. We demonstrate that it is possible to craft CSTD instructions for use to mitigate these issues, and that the dose accuracy for specific drug product/CSTD combinations can be estimated using theoretical equations. Finally, we explored potential downsides of these mitigations. Our results emphasize key factors for consideration by both drug and CSTD manufacturers when assessing compatibility and providing CSTD instructions for use with biologics requiring low transfer volumes during dose preparation.


Subject(s)
Biological Products , Drug Compounding , Biological Products/administration & dosage , Biological Products/chemistry , Drug Compounding/methods , Drug Compounding/instrumentation , Humans , Equipment Design
20.
Mol Pharm ; 20(11): 5842-5855, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37867303

ABSTRACT

Colloidal stability is an important consideration when developing high concentration mAb formulations. PEG-induced protein precipitation is a commonly used assay to assess the colloidal stability of protein solutions. However, the practical usefulness and the current theoretical model for this assay have yet to be verified over a large formulation space across multiple mAbs and mAb-based modalities. In the present study, we used PEG-induced protein precipitation assays to evaluate colloidal stability of 3 mAbs in 24 common formulation buffers at 20 and 5 °C. These prediction assays were conducted at low protein concentration (1 mg/mL). We also directly characterized high concentration (100 mg/mL) formulations for cold-induced phase separation, turbidity, and concentratibility by ultrafiltration. This systematic study allowed analysis of the correlation between the results of low concentration assays and the high concentration attributes. The key findings of this study include the following: (1) verification of the usefulness of three different parameters (Cmid, µB, and Tcloud) from PEG-induced protein precipitation assays for ranking colloidal stability of high concentration mAb formulations; (2) a new method to implement PEG-induced protein precipitation assay suitable for high throughput screening with low sample consumption; (3) improvement in the theoretical model for calculating robust thermodynamic parameters of colloidal stability (µB and εB) that are independent of specific experimental settings; (4) systematic evaluation of the effects of pH and buffer salts on colloidal stability of mAbs in common formulation buffers. These findings provide improved theoretical and practical tools for assessing the colloidal stability of mAbs and mAb-based modalities during formulation development.


Subject(s)
Antibodies, Monoclonal , Polyethylene Glycols , Hydrogen-Ion Concentration , Polyethylene Glycols/chemistry , Antibodies, Monoclonal/chemistry , High-Throughput Screening Assays , Pharmaceutical Preparations , Protein Stability , Buffers
SELECTION OF CITATIONS
SEARCH DETAIL