Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
bioRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38712252

ABSTRACT

The initial objective of this study was to shed light on the evolution of small DNA tumor viruses by analyzing de novo assemblies of publicly available deep sequencing datasets. The survey generated a searchable database of contig snapshots representing more than 100,000 Sequence Read Archive records. Using modern structure-aware search tools, we iteratively broadened the search to include an increasingly wide range of other virus families. The analysis revealed a surprisingly diverse range of chimeras involving different virus groups. In some instances, genes resembling known DNA-replication modules or known virion protein operons were paired with unrecognizable sequences that structural predictions suggest may represent previously unknown replicases and novel virion architectures. Discrete clades of an emerging group called adintoviruses were discovered in datasets representing humans and other primates. As a proof of concept, we show that the contig database is also useful for discovering RNA viruses and candidate archaeal phages. The ancillary searches revealed additional examples of chimerization between different virus groups. The observations support a gene-centric taxonomic framework that should be useful for future virus-hunting efforts.

2.
Virus Res ; 346: 199401, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796132

ABSTRACT

The coronavirus nonstructural protein (nsp) 13 encodes an RNA helicase (nsp13-HEL) with multiple enzymatic functions, including unwinding and nucleoside phosphatase (NTPase) activities. Attempts for enzymatic inactivation have defined the nsp13-HEL as a critical enzyme for viral replication and a high-priority target for antiviral development. Helicases have been shown to play numerous roles beyond their canonical ATPase and unwinding activities, though these functions are just beginning to be explored in coronavirus biology. Recent genetic and biochemical studies, as well as work in structurally-related helicases, have provided evidence that supports new hypotheses for the helicase's potential role in coronavirus replication. Here, we review several aspects of the coronavirus nsp13-HEL, including its reported and proposed functions in viral replication and highlight fundamental areas of research that may aid the development of helicase inhibitors.


Subject(s)
RNA Helicases , Viral Nonstructural Proteins , Virus Replication , RNA Helicases/metabolism , RNA Helicases/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Humans , Coronavirus/enzymology , Coronavirus/genetics , Coronavirus/physiology , Animals , Antiviral Agents/pharmacology , Methyltransferases
3.
Front Microbiol ; 15: 1326696, 2024.
Article in English | MEDLINE | ID: mdl-38322315

ABSTRACT

While the primary pathogenic potential of torque teno viruses (TTVs) is yet to be defined, TTVs are often co-detected with other pathogens and are suspected of exacerbating clinical disease in coinfections. Swine TTVs (TTSuVs) enhance clinical signs of porcine circovirus type 2 (PCV2) in a gnotobiotic pig model. However, the mechanisms involved are unknown. In this study, we observed that co-culture of TTSuV1 and PCV1, and specifically supplementing TTSuV1 cultures with the PCV replicase protein in trans consistently resulted in higher levels of replication of TTSuV1 when compared to TTSuV1 cultured alone. Therefore, the hypothesis that the PCV replicase (rep) protein has trans-replicase helper activity for TTSuV1 was examined. Based on EMSA and reporter gene assays, it was determined that the PCV1 rep directly interacted with the TTSuV1 UTR. The TTSuV1 rep trans-complemented a PCV rep null mutant virus, indicating that the TTSuV1 and PCV1 replicase proteins supported the replication of both viruses. In mice, the administration of plasmids encoding the PCV1 rep and a TTSuV1 infectious clone resulted in the production of higher TTSuV1 genome copies in dually exposed mice when compared to singly exposed mice. Higher sero-conversion and lymphoid hyperplasia were also observed in the dually exposed experimental mice. Thus, this study provides evidence for trans-replicase activity of PCVs and TTVs as a novel mechanism of explaining enhanced viral replication in coinfections involving both viruses.

4.
Mol Ther Methods Clin Dev ; 31: 101151, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38027068

ABSTRACT

Hepatitis C virus (HCV) infections frequently recur after liver transplantation in patients with HCV-related liver diseases. Approximately 30% of these patients progress to cirrhosis within 5 years after surgery. In this study, we proposed an effective therapeutic strategy to overcome the recurrence of HCV. CRISPR-Cas9 was used to insert an expression cassette encoding an RNA aptamer targeting HCV NS5B replicase as an anti-HCV agent into adeno-associated virus integration site 1 (AAVS1), known as a "safe harbor," in a hepatocellular carcinoma cell line to confer resistance to HCV. The RNA aptamer expression system based on a dihydrofolate reductase minigene was precisely knocked in into AAVS1, leading to the stable expression of aptamer RNA in the developed cell line. HCV replication was effectively inhibited at both the RNA and protein levels in cells transfected with HCV RNA or infected with HCV. RNA immunoprecipitation and competition experiments strongly suggested that this HCV inhibition was due to the RNA aptamer-mediated sequestration of HCV NS5B. No off-target insertion of the RNA aptamer expression construct was observed. The findings suggest that HCV-resistant liver cells produced by genome editing technology could be used as a new alternative in the development of a treatment for HCV-induced liver diseases.

5.
Pathog Dis ; 812023 01 17.
Article in English | MEDLINE | ID: mdl-37660275

ABSTRACT

Acinetobacter baumannii is Gram-negative pathogen with extensive role in healthcare-associated infections (HAIs). Plasmids in this species are important carriers of antimicrobial resistance genes. In this work, we investigated the plasmids of 227 Brazilian A. baumannii genomes. A total of 389 plasmid sequences with 424 Rep proteins typed to 22 different homology groups (GRs) were identified. The GR2 plasmid group was the most predominant (40.6%), followed by the GR4 group (16.7%), representing ∼57% of all plasmids. There is a wide distribution of plasmids among the isolates and most strains carry more than one plasmid. Our analyses revealed a significant prevalence of GR4 plasmids in Brazilian A. baumannii genomes carrying several antimicrobial resistance genes, notably to carbapenem (39.43%). These plasmids harbor a MOBQ relaxase that might confer increased spreading potential in the environment. Most plasmids of the predominant groups belong to the same plasmid taxonomic unit (PTU-Pse7) and have a AbkA/AbkB toxin-antitoxin system that has a role in plasmid stability and dissemination of carbapenem resistance genes. The results of this work should contribute to our understanding of the molecular content of plasmids in a large and populous country, highlighting the importance of genomics for enhanced epidemiological surveillance.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/genetics , Brazil/epidemiology , Prevalence , Carbapenems/pharmacology , Plasmids/genetics
6.
mBio ; 14(4): e0106023, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37338298

ABSTRACT

Coronaviruses (CoVs) encode nonstructural proteins 1-16 (nsps 1-16) which form replicase complexes that mediate viral RNA synthesis. Remdesivir (RDV) is an adenosine nucleoside analog antiviral that inhibits CoV RNA synthesis. RDV resistance mutations have been reported only in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp). We here show that a substitution mutation in the nsp13-helicase (nsp13-HEL A335V) of the betacoronavirus murine hepatitis virus (MHV) that was selected during passage with the RDV parent compound confers partial RDV resistance independently and additively when expressed with co-selected RDV resistance mutations in the nsp12-RdRp. The MHV A335V substitution did not enhance replication or competitive fitness compared to WT MHV and remained sensitive to the active form of the cytidine nucleoside analog antiviral molnupiravir (MOV). Biochemical analysis of the SARS-CoV-2 helicase encoding the homologous substitution (A336V) demonstrates that the mutant protein retained the ability to associate with the core replication proteins nsps 7, 8, and 12 but had impaired helicase unwinding and ATPase activity. Together, these data identify a novel determinant of nsp13-HEL enzymatic activity, define a new genetic pathway for RDV resistance, and demonstrate the importance of surveillance for and testing of helicase mutations that arise in SARS-CoV-2 genomes. IMPORTANCE Despite the development of effective vaccines against COVID-19, the continued circulation and emergence of new variants support the need for antivirals such as RDV. Understanding pathways of antiviral resistance is essential for surveillance of emerging variants, development of combination therapies, and for identifying potential new targets for viral inhibition. We here show a novel RDV resistance mutation in the CoV helicase also impairs helicase functions, supporting the importance of studying the individual and cooperative functions of the replicase nonstructural proteins 7-16 during CoV RNA synthesis. The homologous nsp13-HEL mutation (A336V) has been reported in the GISAID database of SARS-CoV-2 genomes, highlighting the importance of surveillance of and genetic testing for nucleoside analog resistance in the helicase.


Subject(s)
COVID-19 , Murine hepatitis virus , Animals , Mice , Humans , Nucleosides/pharmacology , COVID-19 Vaccines , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Virus Replication/genetics , COVID-19 Drug Treatment , Mutation , Murine hepatitis virus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , RNA-Dependent RNA Polymerase/metabolism , RNA , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
7.
FEBS Lett ; 597(3): 344-379, 2023 02.
Article in English | MEDLINE | ID: mdl-36203246

ABSTRACT

How life emerged from inanimate matter is one of the most intriguing questions posed to modern science. Central to this research are experimental attempts to build systems capable of Darwinian evolution. RNA catalysts (ribozymes) are a promising avenue, in line with the RNA world hypothesis whereby RNA pre-dated DNA and proteins. Since evolution in living organisms relies on template-based replication, the identification of a ribozyme capable of replicating itself (an RNA self-replicase) has been a major objective. However, no self-replicase has been identified to date. Alternatively, autocatalytic systems involving multiple RNA species capable of ligation and recombination may enable self-reproduction. However, it remains unclear how evolution could emerge in autocatalytic systems. In this review, we examine how experimentally feasible RNA reactions catalysed by ribozymes could implement the evolutionary properties of variation, heredity and reproduction, and ultimately allow for Darwinian evolution. We propose a gradual path for the emergence of evolution, initially supported by autocatalytic systems leading to the later appearance of RNA replicases.


Subject(s)
RNA, Catalytic , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , RNA/metabolism , RNA-Dependent RNA Polymerase/genetics , DNA/genetics , Catalysis , Evolution, Molecular , Origin of Life
8.
J Virol ; 97(1): e0136822, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36533950

ABSTRACT

Eastern equine encephalitis virus (EEEV) usually cycles between Culiseta melanura mosquitoes and birds; however, it can also infect humans. EEEV has a positive-sense RNA genome that, in infected cells, serves as an mRNA for the P1234 polyprotein. P1234 undergoes a series of precise cleavage events producing four nonstructural proteins (nsP1-4) representing subunits of the RNA replicase. Here, we report the construction and properties of a trans-replicase for EEEV. The template RNA of EEEV was shown to be replicated by replicases of diverse alphaviruses. The EEEV replicase, on the other hand, demonstrated limited ability in replicating template RNAs originating from alphaviruses of the Semliki Forest virus complex. The replicase of EEEV was also successfully reconstructed from P123 and nsP4 components. The ability of EEEV P123 to form functional RNA replicases with heterologous nsP4s was more efficient using EEEV template RNA than heterologous alphavirus template RNA. This finding indicates that unlike with previously studied Semliki Forest complex alphaviruses, P123 and/or its processing products have a leading role in EEEV template RNA recognition. Infection of HEK293T cells harboring the EEEV template RNA with EEEV or Western equine encephalitis virus prominently activated expression of a reporter encoded in the template RNA; the effect was much smaller for infection with other alphaviruses and not detectable upon flavivirus infection. At the same time, EEEV infection resulted only in a limited activation of the template RNA of chikungunya virus. Thus, cells harboring reporter-carrying template RNAs can be used as sensitive and selective biosensors for different alphaviruses. IMPORTANCE Infection of EEEV in humans can cause serious neurologic disease with an approximately 30% fatality rate. Although human infections are rare, a record-breaking number was documented in 2019. The replication of EEEV has a unique requirement for host factors but is poorly studied, partly because the virus requires biosafety level 3 facilities which can limit the scope of experiments; at the same time, these studies are crucial for developing antiviral approaches. The EEEV trans-replicase developed here contributes significantly to research on EEEV, providing a safe and versatile tool for studying the virus RNA replication. Using this system, the compatibility of EEEV replicase components with counterparts from other alphaviruses was analyzed. The obtained data can be used to develop unique biosensors that provide alternative methods for detection, identification, quantitation, and neutralization of viable alphaviruses that are compatible with high throughput, semiautomated approaches.


Subject(s)
Chikungunya virus , Encephalitis Virus, Eastern Equine , RNA-Dependent RNA Polymerase , Viral Nonstructural Proteins , Animals , Humans , Chikungunya virus/genetics , Encephalitis Virus, Eastern Equine/enzymology , Encephalitis Virus, Eastern Equine/genetics , HEK293 Cells , Horses , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology
9.
Vavilovskii Zhurnal Genet Selektsii ; 27(7): 776-783, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38213698

ABSTRACT

The participants of Hepatitis C virus (HCV) replication are both viral and host proteins. Therapeutic approaches based on activity inhibition of viral non-structural proteins NS3, NS5A, and NS5B are undergoing clinical trials. However, rapid mutation processes in the viral genome and acquisition of drug resistance to the existing drugs remain the main obstacles to fighting HCV. Identifying the host factors, exploring their role in HCV RNA replication, and studying viral effects on their expression is essential for understanding the mechanisms of viral replication and developing novel, effective curative approaches. It is known that the host factors PREB (prolactin regulatory element binding) and PLA2G4C (cytosolic phospholipase A2 gamma) are important for the functioning of the viral replicase complex and the formation of the platforms of HCV genome replication. The expression of PREB and PLA2G4C was significantly elevated in the presence of the HCV genome. However, the mechanisms of its regulation by HCV remain unknown. In this paper, using a text-mining technology provided by ANDSystem, we reconstructed and analyzed gene networks describing regulatory effects on the expression of PREB and PLA2G4C by HCV proteins. On the basis of the gene network analysis performed, we put forward hypotheses about the modulation of the host factors functions resulting from protein-protein interaction with HCV proteins. Among the viral proteins, NS3 showed the greatest number of regulatory linkages. We assumed that NS3 could inhibit the function of host transcription factor (TF) NOTCH1 by protein-protein interaction, leading to upregulation of PREB and PLA2G4C. Analysis of the gene networks and data on differential gene expression in HCV-infected cells allowed us to hypothesize further how HCV could regulate the expression of TFs, the binding sites of which are localized within PREB and PLA2G4C gene regions. The results obtained can be used for planning studies of the molecular-genetic mechanisms of viral-host interaction and searching for potential targets for anti-HCV therapy.

10.
Front Microbiol ; 14: 1291761, 2023.
Article in English | MEDLINE | ID: mdl-38328580

ABSTRACT

Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.

11.
Front Microbiol ; 13: 967021, 2022.
Article in English | MEDLINE | ID: mdl-36338106

ABSTRACT

High-throughput sequencing (HTS) methods are transforming our capacity to detect pathogens and perform disease diagnosis. Although sequencing advances have enabled accessible and point-of-care HTS, data analysis pipelines have yet to provide robust tools for precise and certain diagnosis, particularly in cases of low sequencing coverage. Lack of standardized metrics and harmonized detection thresholds confound the problem further, impeding the adoption and implementation of these solutions in real-world applications. In this work, we tackle these issues and propose biologically-informed viral genome assembly coverage as a method to improve diagnostic certainty. We use the identification of viral replicases, an essential function of viral life cycles, to define genome coverage thresholds in which biological functions can be described. We validate the analysis pipeline, Viroscope, using field samples, synthetic and published datasets, and demonstrate that it provides sensitive and specific viral detection. Furthermore, we developed Viroscope.io a web-service to provide on-demand HTS data viral diagnosis to facilitate adoption and implementation by phytosanitary agencies to enable precise viral diagnosis.

12.
Mol Ther Methods Clin Dev ; 27: 391-403, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36381303

ABSTRACT

The insect cell-based baculovirus expression vector (BEV) system is a leading platform for scalable production of adeno-associated viruses (AAVs). The previously described One-Bac system consists of an insect packaging cell line harboring the AAV Rep and Cap genes and a BEV carrying the transgene and AAV inverted terminal repeats. Here we describe a new system where we successfully translated the molecular design of a double AAV Rep expression cassette to inducible plasmid vectors. These optimized plasmid vectors employ non-canonical late promoters and alternative start codons that alleviate promoter-promoter competition. Because too much Rep expression can be toxic to the host cells, tighter regulation of AAV Rep expression is warranted. This has been achieved by adopting alternate baculovirus homologous region enhancers. Inoculation of the resultant stable insect Rep packaging cell line by a recombinant BEV produced high-titer recombinant AAV (rAAV) preparations (1 × 1011 genome copies/mL). Sequential batch reactor experiments indicate that this system is amenable to large-scale AAV production. We generated an insect packaging cell line that employs an optimized Rep gene control system, ensuring stable and appropriate Rep expression. This platform produces potent and high-yield AAV particles and demonstrates potential for scale up.

13.
J Virol ; 96(14): e0065322, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35862676

ABSTRACT

Infectious bronchitis virus (IBV) is an avian coronavirus that causes infectious bronchitis, an acute and highly contagious respiratory disease of chickens. IBV evolution under the pressure of comprehensive and widespread vaccination requires surveillance for vaccine resistance, as well as periodic vaccine updates. Reverse genetics systems are very valuable tools in virology, as they facilitate rapid genetic manipulation of viral genomes, thereby advancing basic and applied research. We report here the construction of an infectious clone of IBV strain Beaudette as a bacterial artificial chromosome (BAC). The engineered full-length IBV clone allowed the rescue of an infectious virus that was phenotypically indistinguishable from the parental virus. We used the infectious IBV clone and examined whether an enhanced green fluorescent protein (EGFP) can be produced by the replicase gene ORF1 and autocatalytically released from the replicase polyprotein through cleavage by the main coronavirus protease. We show that IBV tolerates insertion of the EGFP ORF at the 3' end of the replicase gene, between the sequences encoding nsp13 and nsp16 (helicase, RNA exonuclease, RNA endonuclease, and RNA methyltransferase). We further show that EGFP is efficiently cleaved from the replicase polyprotein and can be localized in double-membrane vesicles along with viral RNA polymerase and double-stranded RNA, an intermediate of IBV genome replication. One of the engineered reporter EGFP viruses were genetically stable during passage in cultured cells. We demonstrate that the reporter EGFP viruses can be used to study virus replication in host cells and for antiviral drug discovery and development of diagnostic assays. IMPORTANCE Reverse genetics systems based on bacterial artificial chromosomes (BACs) are the most valuable systems in coronavirus research. Here, we describe the establishment of a reverse genetics system for the avian coronavirus strain Beaudette, the most intensively studied strain. We cloned a copy of the avian coronavirus genome into a BAC vector and recovered infectious virus in permissive cells. We used the new system to construct reporter viruses that produce enhanced green fluorescent protein (EGFP). The EGFP coding sequence was inserted into 11 known cleavage sites of the major coronavirus protease in the replicase gene ORF1. Avian coronavirus tolerated the insertion of the EGFP coding sequence at three sites. The engineered reporter viruses replicated with parental efficiency in cultured cells and were sufficiently genetically stable. The new system facilitates functional genomics of the avian coronavirus genome but can also be used for the development of novel vaccines and anticoronaviral drugs.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Reverse Genetics , Animals , Chickens , Coronavirus Infections/veterinary , Genes, Reporter , Green Fluorescent Proteins , Infectious bronchitis virus/genetics , Peptide Hydrolases , Polyproteins , RNA, Viral/genetics
14.
Microbiol Spectr ; 10(4): e0074422, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35730969

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is responsible for the COVID-19 pandemic that has caused unprecedented loss of life and economic trouble all over the world, though the mechanism of its replication remains poorly understood. In this study, antibodies were generated and used to systematically determine the expression profile and subcellular distribution of 11 SARS-CoV-2 nonstructural replicase proteins (nsp1, nsp2, nsp3, nsp5, nsp7, nsp8, nsp9, nsp10, nsp13, nsp14, and nsp15) by Western blot and immunofluorescence assay. Nsp3, nsp5, and nsp8 were detected in perinuclear foci at different time points, with diffusion and stronger fluorescence observed over time. In particular, colocalization of nsp8 and nsp13 with different replicase proteins suggested viral protein-protein interaction, which may be key to understanding their functions and potential molecular mechanisms. Viral intermediate dsRNA was detected in perinuclear foci as early as 2-h postinfection, indicating the initiation of virus replication. With the passage of time, these perinuclear dsRNA foci became larger and brighter, and nearly all colocalized with N protein, consistent with viral growth over time. Thus, the development of these anti-nsp antibodies provides basic tools for the further study of replication and diagnosis of SARS-CoV-2. IMPORTANCE The intracellular localization of SARS-CoV-2 replicase nonstructural proteins (nsp) during infection has not been fully elucidated. In this study, we systematically analyzed the expression and subcellular localization of 11 distinct viral nsp and dsRNA over time in SARS-CoV-2-infected cells by using individual antibody against these replicase proteins. The data indicated that nsp gene expression is highly regulated in space and time, which could be useful to understand the function of viral replicases and future development of diagnostics and potential antiviral strategies against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Open Reading Frames , Pandemics , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/genetics
15.
Gene Rep ; 27: 101619, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35530725

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a remarkably contagious and pathogenic viral infection arising from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first appeared in Wuhan, China. For the time being, COVID-19 is not treated with a specific therapy. The Food and Drug Administration (FDA) has approved Remdesivir as the first drug to treat COVID-19. However, many other therapeutic approaches are being investigated as possible treatments for COVID-19. As part of this review, we discussed the development of various drugs, their mechanism of action, and how they might be applied to different cases of COVID-19 patients. Furthermore, this review highlights an update in the emergence of new prophylactic or therapeutic vaccines against COVID-19. In addition to FDA or The World Health Organization (WHO) approved vaccines, we intended to incorporate the latest published data from phase III trials about different COVID-19 vaccines and provide clinical data released on the networks or peer-review journals.

16.
J Virol ; 96(12): e0016821, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35638821

ABSTRACT

Positive-strand RNA viruses build large viral replication organelles (VROs) with the help of coopted host factors. Previous works on tomato bushy stunt virus (TBSV) showed that the p33 replication protein subverts the actin cytoskeleton by sequestering the actin depolymerization factor, cofilin, to reduce actin filament disassembly and stabilize the actin filaments. Then, TBSV utilizes the stable actin filaments as "trafficking highways" to deliver proviral host factors into the protective VROs. In this work, we show that the cellular intrinsic restriction factors (CIRFs) also use the actin network to reach VROs and inhibit viral replication. Disruption of the actin filaments by expression of the Legionella RavK protease inhibited the recruitment of plant CIRFs, including the CypA-like Roc1 and Roc2 cyclophilins, and the antiviral DDX17-like RH30 DEAD box helicase into VROs. Conversely, temperature-sensitive actin and cofilin mutant yeasts with stabilized actin filaments reduced the levels of copurified CIRFs, including cyclophilins Cpr1, CypA, Cyp40-like Cpr7, cochaperones Sgt2, the Hop-like Sti1, and the RH30 helicase in viral replicase preparations. Dependence of the recruitment of both proviral and antiviral host factors into VROs on the actin network suggests that there is a race going on between TBSV and its host to exploit the actin network and ultimately to gain the upper hand during infection. We propose that, in the highly susceptible plants, tombusviruses efficiently subvert the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors via winning the recruitment race and overwhelming cellular defenses. IMPORTANCE Replication of positive-strand RNA viruses is affected by the recruitment of host components, which provide either proviral or antiviral functions during virus invasion of infected cells. The delivery of these host factors into the viral replication organelles (VROs), which represent the sites of viral RNA replication, depends on the cellular actin network. Using TBSV, we uncover a race between the virus and its host with the actin network as the central player. We find that in susceptible plants, tombusviruses exploit the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors. In summary, this work demonstrates that the actin network plays a major role in determining the outcome of viral infections in plants.


Subject(s)
Actins , Antiviral Restriction Factors , Organelle Biogenesis , Tombusvirus , Virus Replication , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Carrier Proteins/metabolism , Cyclophilins/metabolism , DNA Viruses/genetics , RNA, Viral/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/virology , Saccharomyces cerevisiae Proteins , Tombusvirus/genetics , Tombusvirus/physiology , Viral Proteins/metabolism
17.
Microorganisms ; 10(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35456790

ABSTRACT

Copiotrophic marine bacteria of the Roseobacter group (Rhodobacterales, Alphaproteobacteria) are characterized by a multipartite genome organization. We sequenced the genomes of Sulfitobacter indolifex DSM 14862T and four related plasmid-rich isolates in order to investigate the composition, distribution, and evolution of their extrachromosomal replicons (ECRs). A combination of long-read PacBio and short-read Illumina sequencing was required to establish complete closed genomes that comprised up to twelve ECRs. The ECRs were differentiated in stably evolving chromids and genuine plasmids. Among the chromids, a diagnostic RepABC-8 replicon was detected in four Sulfitobacter species that likely reflects an evolutionary innovation that originated in their common ancestor. Classification of the ECRs showed that the most abundant plasmid system is RepABC, followed by RepA, DnaA-like, and RepB. However, the strains also contained three novel plasmid types that were designated RepQ, RepY, and RepW. We confirmed the functionality of their replicases, investigated the genetic inventory of the mostly cryptic plasmids, and retraced their evolutionary origin. Remarkably, the RepY plasmid of S. pontiacus DSM 110277 is the first high copy-number plasmid discovered in Rhodobacterales.

18.
Vavilovskii Zhurnal Genet Selektsii ; 26(2): 121-127, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35434485

ABSTRACT

Coronaviruses (CoVs) belong to the subfamily Orthocoronavirinae of the family Coronaviridae. CoVs are enveloped (+) RNA viruses with unusually long genomes. Severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the novel coronavirus (2019-nCoV, SARS-CoV-2) have been identif ied as causing global pandemics. Clinically tested vaccines are widely used to control rapidly spreading, acute, and often severe infections; however, effective drugs are still not available. The genomes of SARS-CoV-2 and SARS-CoV are approximately 80 % identical, while the genomes of SARS-CoV-2 and MERS-CoV are approximately 50 % identical. This indicates that there may be common mechanisms of coronavirus pathogenesis and, therefore, potential therapeutic targets for each virus may be the same. The enzymes and effector proteins that make up the replication-transcription complex (RTC) of coronaviruses are encoded by a large replicase gene. These enzymes and effector proteins represent promising targets for potential therapeutic drugs. The enzyme targets include papain- and 3C-like cysteine proteinases that process two large viral polyproteins, RNA-dependent RNA polymerase, RNA helicase, viral genome-modifying enzymes, and enzymes with 3'-5' exoribonuclease or uridylate-specif ic endonuclease activity. Currently, there are many studies investigating the complex molecular mechanisms involved in the assembly and function of the RTC. This review will encompass current, modern studies on the properties and complexes of individual non-structural subunits of the RTC, the structures of individual coronavirus RTC subunits, domain organization and functions of subunits, protein-protein interactions, properties and architectures of subunit complexes, the effect of mutations, and the identif ication of mutations affecting the viability of the virus in cell culture. Key words: non-structural proteins CoVs; subunits of replicase CoVs; replication-transcription complex of CoVs; architecture of non-structural protein complexes CoVs.

19.
J Bacteriol ; 204(4): e0061121, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35285726

ABSTRACT

Translesion synthesis (TLS) by specialized DNA polymerases (Pols) is an evolutionarily conserved mechanism for tolerating replication-blocking DNA lesions. Using the Escherichia coli dinB-encoded Pol IV as a model to understand how TLS is coordinated with the actions of the high-fidelity Pol III replicase, we previously described a novel Pol IV mutant containing a threonine 120-to-proline mutation (Pol IV-T120P) that failed to exchange places with Pol III at the replication fork in vitro as part of a Pol III-Pol IV switch. This in vitro defect correlated with the inability of Pol IV-T120P to support TLS in vivo, suggesting Pol IV gains access to the DNA, at least in part, via a Pol III-Pol IV switch. Interaction of Pol IV with the ß sliding clamp and the single-stranded DNA binding protein (SSB) significantly stimulates Pol IV replication and facilitates its access to the DNA. In this work, we demonstrate that Pol IV interacts physically with Pol III. We further show that Pol IV-T120P interacts normally with the ß clamp, but is impaired in interactions with the α catalytic and εθ proofreading subunits of Pol III, as well as SSB. Taken together with published work, these results provide strong support for the model in which Pol IV-Pol III and Pol IV-SSB interactions help to regulate the access of Pol IV to the DNA. Finally, we describe several additional E. coli Pol-Pol interactions, suggesting Pol-Pol interactions play fundamental roles in coordinating bacterial DNA replication, DNA repair, and TLS. IMPORTANCE Specialized DNA polymerases (Pols) capable of catalyzing translesion synthesis (TLS) generate mutations that contribute to bacterial virulence, pathoadaptation, and antimicrobial resistance. One mechanism by which the bacterial TLS Pol IV gains access to the DNA to generate mutations is by exchanging places with the bacterial Pol III replicase via a Pol III-Pol IV switch. Here, we describe multiple Pol III-Pol IV interactions and discuss evidence that these interactions are required for the Pol III-Pol IV switch. Furthermore, we describe several additional E. coli Pol-Pol interactions that may play fundamental roles in managing the actions of the different bacterial Pols in DNA replication, DNA repair, and TLS.


Subject(s)
Escherichia coli Proteins , Escherichia coli , DNA/metabolism , DNA Polymerase III/genetics , DNA Repair , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
20.
Viruses ; 14(2)2022 01 28.
Article in English | MEDLINE | ID: mdl-35215875

ABSTRACT

Chikungunya virus (CHIKV) is an emerging arthropod-borne virus that has spread globally during the last two decades. The virus is mainly transmitted by Aedes aegypti and Aedes albopictus mosquitos and is thus capable of replicating in both human and mosquito cells. CHIKV has a broad tropism in vivo, capable of replicating in various tissues and cell types but largely excluding blood cells. This was reflected in vitro by a broad array of adherent cell lines supporting CHIKV infection. One marked exception to this general rule is the resistance of the lung cancer-derived A549 cell line to CHIKV infection. We verified that A549 cells were restrictive to infection by multiple alphaviruses while being completely permissive to flavivirus infection. The adaptive growth of a primary CHIKV strain through multiple passages allowed the emergence of a CHIKV strain that productively infected A549 cells while causing overt cytopathic effects and without a fitness cost for replication in otherwise CHIKV-susceptible cells. Whole genome sequencing of polyclonal and monoclonal preparations of the adapted virus showed that a limited number of mutations consistently emerged in both structural (2 mutations in E2) and non-structural proteins (1 mutation in nsP1 and 1 mutation in nsP2). The introduction of the adaptive mutations, individually or in combinations, into a wild-type molecular clone of CHIKV allowed us to determine the relative contributions of the mutations to the new phenotype. We found that the mutations in the E2 envelope protein and non-structural proteins contributed significantly to the acquired phenotype. The nsP mutations were introduced in a split-genome trans-replicase assay to monitor their effect on viral genome replication efficiency. Interestingly, neither mutation supported increased viral genomic replication in either Vero or A549 cells.


Subject(s)
Adaptation, Physiological , Chikungunya virus/physiology , Genome, Viral , Host Adaptation , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , A549 Cells , Animals , Chikungunya virus/genetics , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Humans , Mutation , Phenotype , Vero Cells , Viral Tropism , Virus Attachment , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL