Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.229
Filter
1.
Iran J Basic Med Sci ; 27(10): 1260-1267, 2024.
Article in English | MEDLINE | ID: mdl-39229582

ABSTRACT

Objectives: Expression of miR-188-5p changes upon experiencing cerebral I/R injury. SENP3 is a predicted target of miR-188-5p. The study aimed to examine the potential mechanism underlying the miR-188-5p mediated enhancement of SUMO2/3 conjugation via targeting SENP3 and alleviation against cerebral I/R injury. Materials and Methods: Focal cerebral I/R was established in Sprague-Dawley rats using the MCAO model. The expression of miR-188-5p was modulated through intracerebroventricular (ICV) administration of its mimics or inhibitors. The expression of miR-188-5p, SENP3, and SUMO2/3 was detected using RT-qPCR or western blot analysis. Dual luciferase reporter assays were conducted to demonstrate the targeting effect of miR-188-5p on SENP3 in N2a cells. HE staining and TUNEL staining were performed to evaluate neurocellular morphological changes and detect neurocellular apoptosis, respectively. The extent of neurological deficits was evaluated using mNSS. TTC staining was used to evaluate the infarct area. Results: In the cerebral ischemic penumbra, the expression of miR-188-5p declined and SENP3 levels increased following I/R. Dual luciferase reporter assays confirmed that miR-188-5p directly acted on SENP3 in N2a cells. As a self-protective mechanism, SUMO2/3 conjugation increased after reperfusion. After ICV administration of miR-188-5p inhibitor, the expression of miR-188-5p was down-regulated, the expression of SENP3 was up-regulated, the SUMO2/3 conjugation decreased, and cerebral I/R injury was exacerbated. However, ICV administration of small hairpin RNA targeting SENP3 partially reversed the effects of the miR-188-5p inhibitor. Conclusion: MiR-188-5p mitigated cerebral I/R injury by down-regulating SENP3 expression and consequently enhancing SUMO2/3 conjugation in rats.

2.
J Transl Med ; 22(1): 762, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143486

ABSTRACT

BACKGROUND: Personalized disease models are crucial for evaluating how diseased cells respond to treatments, especially in case of innovative biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells (nKPCs). METHODS: EVs were isolated from nKPCs derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport syndrome patient podocytes were characterized and used to assess albumin permeability in response to nKPC-EVs or various drugs. RNA sequencing was conducted to identify commonly modulated pathways after nKPC-EV treatment. siRNA transfection was used to demonstrate the involvement of SUMO1 and SENP2 in the modulation of permeability. RESULTS: Treatment with the nKPC-EVs significantly reduced permeability across all the steroid-resistant patients-derived and Alport syndrome-derived podocytes. At variance, podocytes appeared unresponsive to standard pharmacological treatments, with the exception of one line, in alignment with the patient's clinical response at 48 months. By RNA sequencing, only two genes were commonly upregulated in nKPC-EV-treated genetically altered podocytes: small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2). SUMO1 and SENP2 downregulation increased podocyte permeability confirming the role of the SUMOylation pathway. CONCLUSIONS: nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocytes with genetic dysfunction, through modulation of SUMOylation, an important pathway for the stability of podocyte slit diaphragm proteins. Our findings also suggest the feasibility of developing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.


Subject(s)
Extracellular Vesicles , Nephrotic Syndrome , Podocytes , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Humans , Nephrotic Syndrome/pathology , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/metabolism , Extracellular Vesicles/metabolism , Drug Evaluation, Preclinical , Models, Biological , Stem Cells/metabolism , Steroids/pharmacology , Kidney/pathology , Kidney/metabolism , Drug Resistance , Infant, Newborn , Male
3.
Biomedicines ; 12(8)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39200165

ABSTRACT

Orofacial clefts (OFCs) are the second most common birth defect worldwide. The etiology of OFCs involves complex interactions between genetics and environment. Advances in genomic technologies have identified gene variants associated with OFCs. This study aimed to investigate whether selected SNPs in the MYH9, MTHFR, MAFB, and SUMO1 genes influence the occurrence of non-syndromic OFCs in the Polish population. The study included 209 individuals with non-syndromic OFCs and 418 healthy controls. Saliva and umbilical cord blood samples were collected for DNA extraction. Four SNPs in the MYH9, MTHFR, MAFB, and SUMO1 genes were genotyped using real-time PCR-based TaqMan assays. Statistical analysis was performed using logistic regression to assess the association between SNPs and OFCs. A significant association was found between the rs7078 CC polymorphism and OFCs (OR = 3.22, CI 1.68-6.17, p < 0.001). No significant associations were identified for the rs1081131, rs13041247, and rs3769817 polymorphisms. The research indicates that the rs7078 polymorphism significantly influences the occurrence of orofacial cleft palate in the Polish population, whereas the rs3769817, rs1801131, and rs13041247 SNPs do not show such a correlation.

4.
Scand J Immunol ; : e13401, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39155774

ABSTRACT

This study aimed to explore the molecular mechanism of neuronal cell adhesion molecule (NrCAM) by regulating Th17 cell differentiation in the pathogenesis of Graves' disease (GD). Naïve CD4+ T cells were isolated from peripheral blood mononuclear cells of GD patients and healthy control (HC) subjects. During the differentiation of CD4+ T cells into Th17 cells, NrCAM level in GD group was improved. Interference with NrCAM in CD4+ T cells of GD patients decreased the percentage of Th17 cells. NrCAM overexpression in CD4+ T cells of HC subjects increased the percentage of Th17 cells and upregulated p-IκBα, p50, p65, c-Rel protein expressions, and NF-κB inhibitor BAY11-7082 partially reversed NrCAM effect. NrCAM overexpression promoted the degradation of IκBα, and overexpression of small ubiquitin-related modifier 1 (SUMO-1) inhibited IκBα degradation. NrCAM overexpression reduced IκBα binding to SUMO-1. During Th17 cell differentiation in HC group, NrCAM overexpression increased IL-21 levels and secretion, and IL-21 neutralizing antibody reversed this effect. IL-21 level was decreased after p65 interference in CD4+ T cells of HC subjects. p65 interacts with IL-21 promoter region. In conclusion, NrCAM binds to SUMO-1 and increases phosphorylation of IκBα, leading to activation of NF-κB pathway, which promotes Th17 cell differentiation.

5.
Biol Direct ; 19(1): 74, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183358

ABSTRACT

BACKGROUND: Excavation of key molecules can help identify therapeutic targets and improve the prognosis of pancreatic cancer. This study evaluated the roles of SUMO3 in cell viability, glycolysis, gemcitabine (GEM) sensitivity, and the antitumor activity of butyric acid (BA) in pancreatic cancer. METHODS: The mRNA and protein levels of SUMO3 were detected by qRT-PCR, Western blot, and immunohistochemical assay. SUMO3 was silenced or overexpressed in pancreatic cancer cells with or without Wnt/ß-catenin pathway inhibitor, glycolysis inhibitor, GEM, or BA treatment. Cell viability was measured using the Cell Counting Kit-8 assay. Glycolysis was measured by determining the extracellular acidification rate, ATP level, and lactate content. Apoptosis was measured by flow cytometry, and TUNEL staining was used to examine in vitro and in vivo sensitivity to GEM chemotherapy. Luciferase reporter and chromatin immunoprecipitation assays were conducted to detect the binding of the SUMO3 promoter and NF-κB p65. RESULTS: SUMO3 was increased and associated with poor survival in pancreatic cancer. SUMO3 knockdown decreased cell viability and glycolysis in vitro and inhibited tumor growth in vivo. SUMO3 overexpression increased cell viability and glycolysis in vitro through the ß-catenin pathway. SUMO3 knockdown increased GEM sensitivity, whereas SUMO3 overexpression decreased GEM sensitivity and inhibited the antitumor activity of BA. BA promoted histone acetylation and p-IκBα expression to inhibit NF-κB p65-mediated SUMO3 transcription. CONCLUSION: SUMO3 acted as an active molecule in cell survival and growth by enhancing glycolysis in response to either GEM or BA. The mechanism was related to the constitutive IκBα/NF-κB/SUMO3/ß-catenin signaling pathway.


Subject(s)
Butyric Acid , Cell Survival , Deoxycytidine , Gemcitabine , Glycolysis , Pancreatic Neoplasms , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Humans , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Glycolysis/drug effects , Butyric Acid/pharmacology , Cell Survival/drug effects , Cell Line, Tumor , Animals , Mice , Mice, Nude , Antineoplastic Agents/pharmacology , Apoptosis/drug effects
6.
Cell Mol Life Sci ; 81(1): 283, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963422

ABSTRACT

Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.


Subject(s)
Cyclic AMP , Guanine Nucleotide Exchange Factors , Sumoylation , Ubiquitin-Conjugating Enzymes , rap1 GTP-Binding Proteins , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/chemistry , Humans , Cyclic AMP/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , HEK293 Cells , Molecular Dynamics Simulation , Shelterin Complex/metabolism , Signal Transduction , Telomere-Binding Proteins/metabolism , rap GTP-Binding Proteins/metabolism , rap GTP-Binding Proteins/genetics , Heat-Shock Response , Amino Acid Sequence , Protein Binding
7.
Biochem Pharmacol ; 227: 116425, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004233

ABSTRACT

Hemorrhagic shock (HS), a leading cause of preventable death, is characterized by severe blood loss and inadequate tissue perfusion. Reoxygenation of ischemic tissues exacerbates organ damage through ischemia-reperfusion injury. SUMOylation has been shown to protect neurons after stroke and is upregulated in response to cellular stress. However, the role of SUMOylation in organ protection after HS is unknown. This study aimed to investigate SUMOylation-mediated organ protection following HS. Male Wistar rats were subjected to HS (blood pressure of 40 ± 2 mmHg, for 90 min) followed by reperfusion. Blood, kidney, and liver samples were collected at various time points after reperfusion to assess organ damage and investigate the profile of SUMO1 and SUMO2/3 conjugation. In addition, human kidney cells (HK-2), treated with the SUMOylation inhibitor TAK-981 or overexpressing SUMO proteins, were subjected to oxygen and glucose deprivation to investigate the role of SUMOylation in hypoxia/reoxygenation injury. The animals presented progressive multiorgan dysfunction, except for the renal system, which showed improvement over time. Compared to the liver, the kidneys displayed distinct patterns in terms of oxidative stress, apoptosis activation, and tissue damage. The global level of SUMO2/3 in renal tissue was also distinct, suggesting a differential role. Pharmacological inhibition of SUMOylation reduced cell viability after hypoxia-reoxygenation damage, while overexpression of SUMO1 or SUMO2 protected the cells. These findings suggest that SUMOylation might play a critical role in cellular protection during ischemia-reperfusion injury in the kidneys, a role not observed in the liver. This difference potentially explains the renal resilience observed in HS animals when compared to other systems.


Subject(s)
Rats, Wistar , Shock, Hemorrhagic , Sumoylation , Animals , Male , Shock, Hemorrhagic/metabolism , Sumoylation/drug effects , Sumoylation/physiology , Rats , Humans , Kidney/metabolism , Kidney/pathology , Kidney/drug effects , Reperfusion Injury/metabolism , Cell Line
8.
Adv Exp Med Biol ; 1459: 3-29, 2024.
Article in English | MEDLINE | ID: mdl-39017837

ABSTRACT

MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Proto-Oncogene Proteins c-myb , Humans , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Proto-Oncogene Proteins c-myb/genetics , Animals , Protein Processing, Post-Translational , Epigenesis, Genetic , Gene Expression Regulation
9.
Cell Biosci ; 14(1): 91, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997783

ABSTRACT

BACKGROUND: Nor1/NR4A3 is a member of the NR4A subfamily of nuclear receptors that play essential roles in regulating gene expression related to development, cell homeostasis and neurological functions. However, Nor1 is still considered an orphan receptor, as its natural ligand remains unclear for mediating transcriptional activation. Yet other activation signals may modulate Nor1 activity, although their precise role in the development and maintenance of the nervous system remains elusive. METHODS: We used transcriptional reporter assays, gene expression profiling, protein turnover measurement, and cell growth assays to assess the functional relevance of Nor1 and SUMO-defective variants in neuronal cells. SUMO1 and SUMO2 conjugation to Nor1 were assessed by immunoprecipitation. Tubulin stability was determined by acetylation and polymerization assays, and live-cell fluorescent microscopy. RESULTS: Here, we demonstrate that Nor1 undergoes SUMO1 conjugation at Lys-89 within a canonical ψKxE SUMOylation motif, contributing to the complex pattern of Nor1 SUMOylation, which also includes Lys-137. Disruption of Lys-89, thereby preventing SUMO1 conjugation, led to reduced Nor1 transcriptional competence and protein stability, as well as the downregulation of genes involved in cell growth and metabolism, such as ENO3, EN1, and CFLAR, and in microtubule cytoskeleton dynamics, including MAP2 and MAPT, which resulted in reduced survival of neuronal cells. Interestingly, Lys-89 SUMOylation was potentiated in response to nocodazole, a microtubule depolymerizing drug, although this was insufficient to rescue cells from microtubule disruption despite enhanced Nor1 gene expression. Instead, Lys-89 deSUMOylation reduced the expression of microtubule-severing genes like KATNA1, SPAST, and FIGN, and enhanced α-tubulin cellular levels, acetylation, and microfilament organization, promoting microtubule stability and resistance to nocodazole. These effects contrasted with Lys-137 SUMOylation, suggesting distinct regulatory mechanisms based on specific Nor1 input SUMOylation signals. CONCLUSIONS: Our study provides novel insights into Nor1 transcriptional signaling competence and identifies a hierarchical mechanism whereby selective Nor1 SUMOylation may govern neuronal cytoskeleton network dynamics and resistance against microtubule disturbances, a condition strongly associated with neurodegenerative diseases.

10.
Genes Dev ; 38(13-14): 614-630, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39038850

ABSTRACT

The alternative lengthening of telomeres (ALT) pathway maintains telomere length in a significant fraction of cancers that are associated with poor clinical outcomes. A better understanding of ALT mechanisms is therefore necessary for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins contributes to the formation of ALT telomere-associated PML bodies (APBs), in which telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, it is still unknown whether-and if so, how-SUMO supports ALT beyond APB formation. Here, we show that SUMO condensates that contain DNA repair proteins enable telomere maintenance in the absence of APBs. In PML knockout ALT cell lines that lack APBs, we found that SUMOylation is required for manifesting ALT features independent of PML and APBs. Chemically induced telomere targeting of SUMO produces condensate formation and ALT features in PML-null cells. This effect requires both SUMOylation and interactions between SUMO and SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are associated with the accumulation of DNA repair proteins, including Rad52, Rad51AP1, RPA, and BLM, at telomeres. Furthermore, Rad52 can undergo phase separation, enrich SUMO at telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that SUMO condensate formation promotes collaboration among DNA repair factors to support ALT telomere maintenance without PML. Given the promising effects of SUMOylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.


Subject(s)
DNA Repair , Promyelocytic Leukemia Protein , Sumoylation , Telomere Homeostasis , Telomere , Humans , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , Telomere/metabolism , Cell Line, Tumor , SUMO-1 Protein/metabolism , SUMO-1 Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Cell Line , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics
11.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000276

ABSTRACT

Neurologic manifestations are an immediate consequence of SARS-CoV-2 infection, the etiologic agent of COVID-19, which, however, may also trigger long-term neurological effects. Notably, COVID-19 patients with neurological symptoms show elevated levels of biomarkers associated with brain injury, including Tau proteins linked to Alzheimer's pathology. Studies in brain organoids revealed that SARS-CoV-2 alters the phosphorylation and distribution of Tau in infected neurons, but the mechanisms are currently unknown. We hypothesize that these pathological changes are due to the recruitment of Tau into stress granules (SGs) operated by the nucleocapsid protein (NCAP) of SARS-CoV-2. To test this hypothesis, we investigated whether NCAP interacts with Tau and localizes to SGs in hippocampal neurons in vitro and in vivo. Mechanistically, we tested whether SUMOylation, a posttranslational modification of NCAP and Tau, modulates their distribution in SGs and their pathological interaction. We found that NCAP and Tau colocalize and physically interact. We also found that NCAP induces hyperphosphorylation of Tau and causes cognitive impairment in mice infected with NCAP in their hippocampus. Finally, we found that SUMOylation modulates NCAP SG formation in vitro and cognitive performance in infected mice. Our data demonstrate that NCAP induces Tau pathological changes both in vitro and in vivo. Moreover, we demonstrate that SUMO2 ameliorates NCAP-induced Tau pathology, highlighting the importance of the SUMOylation pathway as a target of intervention against neurotoxic insults, such as Tau oligomers and viral infection.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Hippocampus , Neurons , SARS-CoV-2 , Sumoylation , tau Proteins , tau Proteins/metabolism , Animals , Mice , Humans , Hippocampus/metabolism , Hippocampus/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , SARS-CoV-2/pathogenicity , SARS-CoV-2/metabolism , Phosphorylation , Coronavirus Nucleocapsid Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/virology , Small Ubiquitin-Related Modifier Proteins/metabolism , Stress Granules/metabolism , Mice, Inbred C57BL , Phosphoproteins/metabolism , Male , Nucleocapsid Proteins/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/virology
12.
Hum Cell ; 37(5): 1347-1354, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38856883

ABSTRACT

SUMOylation is a dynamic and reversible post-translational modification (PTM) of proteins involved in the regulation of biological processes such as protein homeostasis, DNA repair and cell cycle in normal and tumor cells. In particular, overexpression of SUMOylation components in tumor cells increases the activity of intracellular SUMOylation, protects target proteins against ubiquitination degradation and activation, promoting tumor cell proliferation and metastasis, providing immune evasion and increasing tolerance to chemotherapy and antitumor drugs. However, with the continuous research on SUMOylation and with the continued development of SUMOylation inhibitors, it has been found that tumor initiation and progression can be inhibited by blocking SUMOylation and/or in combination with drugs. SUMOylation is not a bad target when trying to treat tumor. This review introduces SUMOylation cycle pathway and summarizes the role of SUMOylation in tumor initiation and progression and SUMOylation inhibitors and their functions in tumors and provides a prospective view of SUMOylation as a new therapeutic target for tumors.


Subject(s)
Molecular Targeted Therapy , Neoplasms , Sumoylation , Humans , Neoplasms/therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Protein Processing, Post-Translational , Disease Progression , Cell Proliferation/genetics
13.
Front Oncol ; 14: 1325157, 2024.
Article in English | MEDLINE | ID: mdl-38846969

ABSTRACT

Introduction: Urothelial Bladder Cancer (BC) is the ninth most common cancer worldwide. It is classified into Non Muscle Invasive (NMIBC) and Muscle Invasive Bladder Cancer (MIBC), which are characterized by frequent recurrences and progression rate, respectively. The diagnosis and monitoring are obtained through invasive methods as cystoscopy and post-surgery biopsies. Thus, a panel of biomarkers able to discriminate BC based on grading or staging represents a significant step forward in the patients' workup. In this perspective, long non-coding RNAs (lncRNAs) are emerged as reliable candidates as potential biomarker given their specific and regulated expression. In the present work we propose two lncRNAs, the Small Ubiquitin Modifier 1 pseudogene 3 (SUMO1P3), a poorly characterized pseudogene, and the Urothelial Carcinoma Associated 1 (UCA1) as candidates to monitor the BC progression. Methods: This study was a retrospective trial enrolling NMIBC and MIBC patients undergoing surgical intervention: the expression of the lncRNA SUMO1P3 and UCA1 was evaluated in urine from 113 subjects (cases and controls). The receiver operating characteristic curve analysis was used to evaluate the performance of single or combined biomarkers in discriminating cases from controls. Results: SUMO1P3 and UCA1 expression in urine was able to significantly discriminate low grade NMIBC, healthy control and benign prostatic hyperplasia subjects versus high grade NMIBC and MIBC patients. We also demonstrated that miR-320a, which binds SUMO1P3, was reduced in high grade NMIBC and MIBC patients and the SUMO1P3/miR-320a ratio was used to differentiate cases versus controls, showing a statistically significant power. Finally, we provided an automated method of RNA extraction coupled to ddPCR analysis in a perspective of clinical application. Discussion: We have shown that the lncRNA SUMO1P3 is increased in urine from patients with high grade NMIBC and MIBC and that it is likely to be good candidate to predict bladder cancer progression if used alone or in combination with UCA1 or with miRNA320a.

14.
Mol Cancer ; 23(1): 116, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822351

ABSTRACT

BACKGROUND: Elevated evidence suggests that the SENPs family plays an important role in tumor progression. However, the role of SENPs in AML remains unclear. METHODS: We evaluated the expression pattern of SENP1 based on RNA sequencing data obtained from OHSU, TCGA, TARGET, and MILE datasets. Clinical samples were used to verify the expression of SENP1 in the AML cells. Lentiviral vectors shRNA and sgRNA were used to intervene in SENP1 expression in AML cells, and the effects of SENP1 on AML proliferation and anti-apoptosis were detected using in vitro and in vivo models. Chip-qPCR, MERIP-qPCR, CO-IP, RNA pulldown, and dual-luciferase reporter gene assays were used to explore the regulatory mechanisms of SNEP1 in AML. RESULTS: SENP1 was significantly upregulated in high-risk AML patients and closely related to poor prognosis. The AKT/mTOR signaling pathway is a key downstream pathway that mediates SENP1's regulation of AML proliferation and anti-apoptosis. Mechanistically, the CO-IP assay revealed binding between SENP1 and HDAC2. SUMO and Chip-qPCR assays suggested that SENP1 can desumoylate HDAC2, which enhances EGFR transcription and activates the AKT pathway. In addition, we found that IGF2BP3 expression was upregulated in high-risk AML patients and was positively correlated with SENP1 expression. MERIP-qPCR and RIP-qPCR showed that IGF2BP3 binds SENP1 3-UTR in an m6A manner, enhances SENP1 expression, and promotes AKT pathway conduction. CONCLUSIONS: Our findings reveal a distinct mechanism of SENP1-mediated HDAC2-AKT activation and establish the critical role of the IGF2BP3/SENP1signaling axis in AML development.


Subject(s)
Adenosine , Cell Proliferation , Cysteine Endopeptidases , Histone Deacetylase 2 , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Sumoylation , Animals , Female , Humans , Male , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Apoptosis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Disease Progression , Gene Expression Regulation, Leukemic , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Xenograft Model Antitumor Assays
15.
Front Mol Neurosci ; 17: 1352782, 2024.
Article in English | MEDLINE | ID: mdl-38932933

ABSTRACT

Introduction: The Anaphase Promoting Complex (APC/C), an E3 ubiquitin ligase, plays a key role in cell cycle control, but it is also thought to operate in postmitotic neurons. Most studies linking APC/C function to neuron biology employed perturbations of the APC/C activators, cell division cycle protein 20 (Cdc20) and Cdc20 homologue 1 (Cdh1). However, multiple lines of evidence indicate that Cdh1 and Cdc20 can function in APC/C-independent contexts, so that the effects of their perturbation cannot strictly be linked to APC/C function. Methods: We therefore deleted the gene encoding Anaphase Promoting Complex 4 (APC4), a core APC/C component, in neurons cultured from conditional knockout (cKO) mice. Results: Our data indicate that several previously published substrates are actually not APC/C substrates, whereas ubiquitin specific peptidase 1 (USP1) protein levels are altered in APC4 knockout (KO) neurons. We propose a model where the APC/C ubiquitylates USP1 early in development, but later ubiquitylates a substrate that directly or indirectly stabilizes USP1. We further discovered a novel role of the APC/C in regulating the number of neurites exiting somata, but we were unable to confirm prior data indicating that the APC/C regulates neurite length, neurite complexity, and synaptogenesis. Finally, we show that APC4 SUMOylation does not impact the ability of the APC/C to control the number of primary neurites or USP1 protein levels. Discussion: Our data indicate that perturbation studies aimed at dissecting APC/C biology must focus on core APC/C components rather than the APC/C activators, Cdh20 and Cdh1.

16.
Cureus ; 16(5): e61158, 2024 May.
Article in English | MEDLINE | ID: mdl-38933620

ABSTRACT

Background Sumo is a sport that requires wrestlers to develop their physique from childhood for athletic advantage. However, the energy expenditure and energy balance required for the growth of junior Sumo wrestlers remain unclear. This study aimed to determine the energy balance of junior Sumo wrestlers over six months using doubly labeled water (DLW) and bioelectrical impedance analysis (BIA). Methodology A total of 12 male Sumo wrestlers were affiliated with a local Sumo club (average age = 15 ± 1 years). The total energy expenditure (TEE) was measured using DLW, whereas body composition was evaluated using BIA. Daily physical activity was quantified using a tri-accelerometer (Active style Pro HJA-750C). Results The TEE was 4,194 ± 734 kcal/day, while daily physical activity without training was 786 ± 50 minutes. Within six months, the body weight increased by 2.0 ± 3.2 kg, fat-free mass (FFM) was augmented by 2.1 kg, while fat mass did not change significantly. The surplus energy accumulated was 5.6 ± 213 kcal/day. Conclusions The excess energy of junior Sumo wrestlers predominantly increases their FFM. To increase their physical prowess, wrestlers adhere to a lifestyle characterized by high-intensity training and attenuated daily physical activity.

17.
J Cancer ; 15(12): 3841-3856, 2024.
Article in English | MEDLINE | ID: mdl-38911380

ABSTRACT

Background: Bladder cancer is a prevalent malignancy with significant clinical implications. Small Ubiquitin-like Modifier (SUMO) pathway related genes (SPRG) have been implicated in the development and progression of cancer. Methods: In this study, we conducted a comprehensive analysis of SPRG in bladder cancer. We analyzed gene expression and prognostic value of SPRG and developed a SPRG signature (SPRGS) prognostic model based on four genes (HDAC4, TRIM27, EGR2, and UBE2I) in bladder cancer. Furthermore, we investigated the relationship between SPRGS and genomic alterations, tumor microenvironment, chemotherapy response, and immunotherapy. Additionally, we identified EGR2 as a key SPRG in bladder cancer. The expression of EGR2 in bladder cancer was detected by immunohistochemistry, and the cell function experiment clarified the effect of knocking down EGR2 on the proliferation, invasion, and migration of bladder cancer cells. Results: Our findings suggest that SPRGS hold promise as prognostic markers and predictive biomarkers for chemotherapy response and immunotherapy efficacy in bladder cancer. The SPRGS prognostic model exhibited high predictive accuracy for bladder cancer patient survival. We also observed correlations between SPRG and genomic alterations, tumor microenvironment, and response to chemotherapy. Immunohistochemical results showed that EGR2 was highly expressed in bladder cancer tissues, and its overexpression was associated with poor prognosis. Knockdown of EGR2 inhibited bladder cancer cell proliferation, invasion, and migration. Conclusion: This study provides valuable insights into the landscape of SPRGS in bladder cancer and their potential implications for personalized treatment strategies. The identification of EGR2 as a key SPRG and its functional impact on bladder cancer cells further highlights its significance in bladder cancer development and progression. Overall, SPRGS may serve as important prognostic markers and predictive biomarkers for bladder cancer patients, guiding treatment decisions and improving patient outcomes.

18.
Biomed Pharmacother ; 177: 116898, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878635

ABSTRACT

Liver disease affects millions of people in the world, and China has the highest prevalence of liver disease in the world. Small ubiquitin-related modifier (SUMO) modification is a highly conserved post-translational modification of proteins. They are widely expressed in a variety of tissues, including the heart, liver, kidney and lung. SUMOylation of protein plays a key role in the occurrence and development of liver disease. Therefore, this study reviewed the effects of SUMO protein on non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases to provide novel strategies for targeted treatment of liver disease.


Subject(s)
Liver Diseases , Small Ubiquitin-Related Modifier Proteins , Sumoylation , Humans , Animals , Liver Diseases/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Protein Processing, Post-Translational
19.
World J Microbiol Biotechnol ; 40(6): 183, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722449

ABSTRACT

Heterologous production of proteins in Escherichia coli has raised several challenges including soluble production of target proteins, high levels of expression and purification. Fusion tags can serve as the important tools to overcome these challenges. SUMO (small ubiquitin-related modifier) is one of these tags whose fusion to native protein sequence can enhance its solubility and stability. In current research, a simple, efficient and cost-effective method is being discussed for the construction of pET28a-SUMO vector. In order to improve the stability and activity of lysophospholipase from Pyrococcus abyssi (Pa-LPL), a 6xHis-SUMO tag was fused to N-terminal of Pa-LPL by using pET28a-SUMO vector. Recombinant SUMO-fused enzyme (6 H-S-PaLPL) works optimally at 35 °C and pH 6.5 with remarkable thermostability at 35-95 °C. Thermo-inactivation kinetics of 6 H-S-PaLPL were also studied at 35-95 °C with first order rate constant (kIN) of 5.58 × 10- 2 h-1 and half-life of 12 ± 0 h at 95 °C. Km and Vmax for the hydrolysis of 4-nitrophenyl butyrate were calculated to be 2 ± 0.015 mM and 3882 ± 22.368 U/mg, respectively. 2.4-fold increase in Vmax of Pa-LPL was observed after fusion of 6xHis-SUMO tag to its N-terminal. It is the first report on the utilization of SUMO fusion tag to enhance the overall stability and activity of Pa-LPL. Fusion of 6xHis-SUMO tag not only aided in the purification process but also played a crucial role in increasing the thermostability and activity of the enzyme. SUMO-fused enzyme, thus generated, can serve as an important candidate for degumming of vegetable oils at industrial scale.


Subject(s)
Enzyme Stability , Escherichia coli , Pyrococcus abyssi , Recombinant Fusion Proteins , Temperature , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Kinetics , Pyrococcus abyssi/genetics , Pyrococcus abyssi/enzymology , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Genetic Vectors/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , SUMO-1 Protein/chemistry , Cloning, Molecular , Solubility
20.
J Appl Genet ; 65(3): 615-625, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38709457

ABSTRACT

RNA polymerase sigma factors are indispensable in the process of bacterial transcription. They are responsible for a given gene's promoter region recognition on template DNA and hence determine specificity of RNA polymerase and play a significant role in gene expression regulation. Here, we present a simple and unified protocol for purification of all seven Escherichia coli RNA polymerase sigma factors. In our approach, we took advantage of the His8-SUMO tag, known to increase protein solubilization. Sigma factors were first purified in N-terminal fusions with this tag, which was followed by tag removal with Ulp1 protease. This allowed to obtain proteins in their native form. In addition, the procedure is simple and requires only one resin type. With the general protocol we employed, we were able to successfully purify σD, σE, σS, and σN. Final step modification was required for σF, while for σH and σFecI, denaturing conditions had to be applied. All seven sigma factors were fully functional in forming an active holoenzyme with core RNA polymerase which we demonstrated with EMSA studies.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli Proteins , Escherichia coli , Sigma Factor , Sigma Factor/genetics , Escherichia coli/genetics , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL