Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Trends Mol Med ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38926032

ABSTRACT

Innovative therapeutic strategies are urgently needed for Parkinson's disease due to limited efficacy of current treatments and a weak therapeutic pipeline. In this forum article, we propose targeting tyrosine hydroxylase phosphorylation as a novel mechanism of action to address this critical need.

2.
Chemosphere ; 241: 125086, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31627110

ABSTRACT

Triclosan (TCS) is widely used in personal care products, and its chronic exposure leads to severely toxic effects in zebrafish (Danio rerio). PKCα, Nrf2 and p53 are three important signaling pathways concerned with cell development. Herein, we speculated on and verified a novel TCS regulatory pathway: (1) TCS acted on GPER (G-protein-coupled estrogen receptor) to activate MAPK/ERK pathway, further resulting in the expression changes of protein kinase C (PKC) family; (2) PKC participated in Nrf2 phosphorylation; (3) The expression of miR-125b was regulated by Nrf2; and (4) The expression changes of related genes in the PKCs-Nrf2-ARE pathway showed the specificity of zebrafish tissue and organ. TCS exposure led to down-regulation of the Nrf2 and phosphorylated Nrf2(Ser40) protein in diencephalon nucleus, stratum marginale and stratum centrale areas in adult zebrafish brain. The phosphorylated Nrf2(Ser40) was mainly expressed in PGz area, while it was not the case for Nrf2. Both Nrf2 and phosphorylated Nrf2 were activated by TCS exposure; however, the changing trend of PKCs was opposite to that of Nrf2 in the liver. Both DAPI staining and Merge images demonstrated that TCS induced oxidative phosphorylation, and phosphorylated Nrf2 is translocated into the nucleus as the transcription factor to regulate gene transcription in liver and brain. Nrf2 over-expression increased accumulation of lipid droplets in yolk, brain and liver, resulting from the upregulation of pri-miR-125b1, pri-miR-125b3, but not pri-miR-125b2. These findings reveal the upstream regulation mechanism of miR-125b for TCS-induced fat-metabolism disorder from the regulatory perspective of the pri-miR-125b promoter region.


Subject(s)
Brain/drug effects , Chemical and Drug Induced Liver Injury/etiology , MicroRNAs , NF-E2-Related Factor 2/metabolism , Triclosan/toxicity , Zebrafish Proteins/metabolism , Zebrafish , Animals , Brain/metabolism , Embryo, Nonmammalian/drug effects , Gene Expression Regulation/drug effects , Liver/drug effects , Liver/metabolism , NF-E2-Related Factor 2/genetics , Phosphorylation/drug effects , Protein Kinase C-alpha/metabolism , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
3.
Front Neuroanat ; 8: 84, 2014.
Article in English | MEDLINE | ID: mdl-25206324

ABSTRACT

Nowadays it is assumed that besides its roles in neuronal processing, dopamine (DA) is also involved in the regulation of cerebral blood flow. However, studies on the hemodynamic actions of DA have been mainly focused on the cerebral cortex, but the possibility that vessels in deeper brain structures receive dopaminergic axons and the origin of these axons have not been investigated. Bearing in mind the evidence of changes in the blood flow of basal ganglia in Parkinson's disease (PD), and the pivotal role of the dopaminergic mesostriatal pathway in the pathophysiology of this disease, here we studied whether striatal vessels receive inputs from midbrain dopaminergic neurons. The injection of an anterograde neuronal tracer in combination with immunohistochemistry for dopaminergic, vascular and astroglial markers, and dopaminergic lesions, revealed that midbrain dopaminergic axons are in close apposition to striatal vessels and perivascular astrocytes. These axons form dense perivascular plexuses restricted to striatal regions in rats and monkeys. Interestingly, they are intensely immunoreactive for tyrosine hydroxylase (TH) phosphorylated at Ser19 and Ser40 residues. The presence of phosphorylated TH in vessel terminals indicates they are probably the main source of basal TH activity in the striatum, and that after activation of midbrain dopaminergic neurons, DA release onto vessels precedes that onto neurons. Furthermore, the relative weight of this "vascular component" within the mesostriatal pathway suggests that it plays a relevant role in the pathophysiology of PD.

SELECTION OF CITATIONS
SEARCH DETAIL