Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 463
Filter
1.
mBio ; : e0229724, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248569

ABSTRACT

We have recently described a clinical isolate of Providencia rustigianii strain JH-1 carrying the genes for cytolethal distending toxin (CDT) in a conjugative plasmid. A cdtB mutant of strain JH-1, which lost CDT activity, was still found to retain invasiveness and diarrheagenicity. The strain was subjected to phenotypic and genetic analyses including whole genome sequencing (WGS) to explore the genetic determinants of the observed invasiveness and diarrheagenic properties. Analysis and annotation of WGS data revealed the presence of two distinct type III secretion systems (T3SS) in strain JH-1, one of which was located on the chromosome designated as cT3SS (3,992,833 bp) and the other on a mega-plasmid designated as pT3SS (168,819 bp). Comparative genomic analysis revealed that cT3SS is generally conserved in Providencia spp. but pT3SS was limited to a subset of Providencia spp., carrying cdt genes. Strain JH-1 was found to invade HeLa cells and induce fluid accumulation with characteristic pathological lesions in rabbit ileal loops. Remarkably, these phenomena were associated with the pT3SS but not cT3SS. The plasmid could be transferred by conjugation from strain JH-1 to other strains of P. rustigianii, Providencia rettgeri, and Escherichia coli with concomitant transfer of these virulence properties. This is the first report of a functional and mobile T3SS in P. rustigianii and its association with invasiveness and diarrheagenicity of this bacterium. These data suggest that P. rustigianii and other CDT-producing Providencia strains might carry T3SS and exert their diarrheagenic effect by exploiting the T3SS nano-machinery.IMPORTANCEThe precise mechanism of virulence of Providencia rustigianii is unclear, although some strains produce cytolethal distending toxin as a putative virulence factor. We have detected the presence of a type III secretion system (T3SS) for the first time on a plasmid in a P. rustigianii strain. Plasmid-mediated T3SS seems to be directly involved in virulence of P. rustigianii and may serve as a means of horizontal transfer of T3SS genes. Our results may have implication in understanding the mechanism of emergence of new pathogenic strains of P. rustigianii.

2.
Eur J Cell Biol ; 103(4): 151448, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39128247

ABSTRACT

Intracellular bacterial pathogens hijack the protein machinery of infected host cells to evade their defenses and cultivate a favorable intracellular niche. The intracellular pathogen Salmonella enterica subsp. Typhimurium (STm) achieves this by injecting a cocktail of effector proteins into host cells that modify the activity of target host proteins. Yet, proteome-wide approaches to systematically map changes in host protein function during infection have remained challenging. Here we adapted a functional proteomics approach - Thermal-Proteome Profiling (TPP) - to systematically assess proteome-wide changes in host protein abundance and thermal stability throughout an STm infection cycle. By comparing macrophages treated with live or heat-killed STm, we observed that most host protein abundance changes occur independently of STm viability. In contrast, a large portion of host protein thermal stability changes were specific to infection with live STm. This included pronounced thermal stability changes in proteins linked to mitochondrial function (Acod1/Irg1, Cox6c, Samm50, Vdac1, and mitochondrial respiratory chain complex proteins), as well as the interferon-inducible protein with tetratricopeptide repeats, Ifit1. Integration of our TPP data with a publicly available STm-host protein-protein interaction database led us to discover that the secreted STm effector kinase, SteC, thermally destabilizes and phosphorylates the ribosomal preservation factor Serbp1. In summary, this work emphasizes the utility of measuring protein thermal stability during infection to accelerate the discovery of novel molecular interactions at the host-pathogen interface.

3.
Plant Cell Environ ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132878

ABSTRACT

Reactive oxygen species (ROS) play a crucial role in regulating numerous functions in organisms. Among the key regulators of ROS production are NADPH oxidases, primarily referred to as respiratory burst oxidase homologues (RBOHs). However, our understanding of whether and how pathogens directly target RBOHs has been limited. In this study, we revealed that the effector protein RipBJ, originating from the phytopathogenic bacterium Ralstonia solanacearum, was present in low- to medium-virulence strains but absent in high-virulence strains. Functional genetic assays demonstrated that the expression of ripBJ led to a reduction in bacterial infection. In the plant, RipBJ expression triggered plant cell death and the accumulation of H2O2, while also enhancing host defence against R. solanacearum by modulating multiple defence signalling pathways. Through protein interaction and functional studies, we demonstrated that RipBJ was associated with the plant's plasma membrane and interacted with the tomato RBOH known as SlWfi1, which contributed positively to RipBJ's effects on plants. Importantly, SlWfi1 expression was induced during the early stages following R. solanacearum infection and played a key role in defence against this bacterium. This research uncovers the plant RBOH as an interacting target of a pathogen's effector, providing valuable insights into the mechanisms of plant defence.

4.
bioRxiv ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39131305

ABSTRACT

Engineered smart microbes that deliver therapeutic payloads are emerging as treatment modalities, particularly for diseases with links to the gastrointestinal tract. Enterohemorrhagic E coli (EHEC) is a causative agent of potentially lethal hemolytic uremic syndrome. Given concerns that antibiotic treatment increases EHEC production of Shiga toxin (Stx), which is responsible for systemic disease, novel remedies are needed. EHEC encodes a type III secretion system (T3SS) that injects Tir into enterocytes. Tir inserts into the host cell membrane, exposing an extracellular domain that subsequently binds intimin, one of its outer membrane proteins, triggering the formation of attaching and effacing (A/E) lesions that promote EHEC mucosal colonization. Citrobacter rodentium (Cr), a natural A/E mouse pathogen, similarly requires Tir and intimin for its pathogenesis. Mice infected with Cr(ΦStx2dact), a variant lysogenized with an EHEC-derived phage that produces Stx2dact, develop intestinal A/E lesions and toxin-dependent disease. Stx2a is more closely associated with human disease. By developing an efficient approach to seamlessly modify the C. rodentium genome, we generated Cr_Tir-MEHEC(ΦStx2a), a variant that expresses Stx2a and the EHEC extracellular Tir domain. We found that mouse pre-colonization with HS-PROT3EcT-TD4, a human commensal E. coli strain (E. coli HS) engineered to efficiently secrete- an anti-EHEC Tir nanobody, delayed bacterial colonization and improved survival after challenge with Cr_Tir-MEHEC(ΦStx2a). This study provides the first evidence to support the efficacy of engineered commensal E. coli to intestinally deliver therapeutic payloads that block essential enteric pathogen virulence determinants, a strategy that may serve as an antibiotic-independent antibacterial therapeutic modality.

5.
Fish Shellfish Immunol ; 153: 109854, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39179188

ABSTRACT

Vibrio parahaemolyticus (V. parahaemolyticus) is a major bacterial pathogen found in brackish environments, leading to disease outbreaks and great economic losses in the mud crab industry. This study investigated the molecular mechanism of V. parahaemolyticus infecting mud crabs through genome sequencing analysis, survival experiments, and the expression patterns of related functional genes. A strain of V. parahaemolyticus with high pathogenicity and lethality was isolated from diseased mud crab in South China. The genome sequencing results showed that the genome size of V. parahaemolyticus was a circular chromosome of 3,357,271 bp, with a GC content of 45 %, containing 2985 protein-coding genes, denoted as V. parahaemolyticus LG2206. Genome analysis data revealed that a total of 113 adherence coding genes were obtained, including 120 virulence factor coding genes, 37 type III secretion system (T3SS) coding genes, and 277 sequences of T3SS effectors. Survival experiments showed that the mortality was 20 % within 96 h in the 1 × 104 CFU/mL infection group, 90 % in the 3.2 × 105 CFU/mL treatment group, and 100 % in the 1 × 106 CFU/mL treatment group. The LD50 of V. parahaemolyticus LG2206 was determined as 4.6 × 104 CFU/mL. Six genes of znuA and fliD (flagellin encoding genes), yscE and yscR (T3SS encoding genes), and nfuA and htpX (virulence factor encoding genes) were selected and validated by quantitative real-time PCR analysis after infection with 4.6 × 104 CFU/mL of V. parahaemolyticus LG2206 for 96 h. The expression of the six genes exhibited a significant up-regulation trend at all tested time points. The results indicated that the infestation-related genes screened in the experiment play important roles in the infestation process. This study provides timely and effective information to further analyze the molecular mechanism of V. parahaemolyticus infection and develop comprehensive measures for disease prevention and control.

6.
ACS Appl Mater Interfaces ; 16(32): 41828-41842, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39088848

ABSTRACT

The bacterium Pseudomonas aeruginosa is an exceptionally resilient opportunistic pathogen, presenting formidable challenges for treatment due to its proclivity for developing drug resistance. To address this predicament, we have devised a self-assembled supramolecular antibiotic known as dHTSN1@pHPplus, which can circumvent the drug resistance mechanism of Pseudomonas aeruginosa and effectively combat Pseudomonas aeruginosa infection by impeding the secretion of key virulence factors through the inhibition of the type III secretion system while simultaneously mobilizing immune cells to eradicate Pseudomonas aeruginosa. Furthermore, dHTSN1@pHPplus was ingeniously engineered with infection-targeting capabilities, enabling it to selectively concentrate precisely at the site of infection. As anticipated, the administration of dHTSN1@pHPplus exhibited a remarkable therapeutic efficacy in combating dual resistance to Meropenem and imipenem in a mouse model of P. aeruginosa lung infection. The results obtained from metagenomic detection further confirmed these findings, demonstrating a significant reduction in the proportion of Pseudomonas aeruginosa compared to untreated mice with Pseudomonas aeruginosa-infected lungs. Additionally, no notable acute toxicity was observed in the acute toxicity experiments. The present study concludes that the remarkable efficacy of dHTSN1@pHPplus in treating drug-resistant P. aeruginosa infection confirms its immense potential as a groundbreaking antibiotic agent for combating drug-resistant P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Pseudomonas aeruginosa , Virulence Factors , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Pseudomonas Infections/drug therapy , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Adaptive Immunity/drug effects , Microbial Sensitivity Tests , Humans , Drug Resistance, Bacterial/drug effects , Mice, Inbred BALB C , Female
7.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005373

ABSTRACT

Leukotriene B4 (LTB4) is critical for initiating the inflammatory cascade in response to infection. However, Yersinia pestis colonizes the host by inhibiting the timely synthesis of LTB4 and inflammation. Here, we show that the bacterial type 3 secretion system (T3SS) is the primary pathogen associated molecular pattern (PAMP) responsible for LTB4 production by leukocytes in response to Yersinia and Salmonella, but synthesis is inhibited by the Yop effectors during Yersinia interactions. Moreover, we unexpectedly discovered that T3SS-mediated LTB4 synthesis by neutrophils and macrophages require two distinct host signaling pathways. We show that the SKAP2/PLC signaling pathway is essential for LTB4 production by neutrophils but not macrophages. Instead, phagocytosis and the NLRP3/CASP1 inflammasome are needed for LTB4 synthesis by macrophages. Finally, while recognition of the T3SS is required for LTB4 production, we also discovered a second unrelated PAMP-mediated signal independently activates the MAP kinase pathway needed for LTB4 synthesis. Together, these data demonstrate significant differences in the signaling pathways required by macrophages and neutrophils to quickly respond to bacterial infections.

8.
Microorganisms ; 12(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39065247

ABSTRACT

Despite being considered a normal flora, Providencia alcalifaciens can cause diarrhea. In a previous study, strain 2939/90, obtained from a diarrheal patient, caused invasion and actin condensation in mammalian cells, and diarrhea in a rabbit model. Four TnphoA mutants of 2939/90 produced negligible invasion and actin condensation in mammalian cells. Now, the parent strain and the mutants have been sequenced to locate TnphoA insertion sites and determine the effect on virulence. A TnphoA insertion was detected in the type three secretion system (T3SS) locus on a large plasmid and not in a T3SS locus on the chromosome. In 52 genomes of P. alcalifaciens surveyed, the chromosomal T3SS locus was present in all strains, including both P. alcalifaciens genomic clades, which we classified as group A and group B. Plasmid T3SS was present in 21 of 52 genomes, mostly in group A genomes, which included isolates from an outbreak of hemorrhagic diarrhea in dogs. The TnphoA insertion only in the plasmid T3SS locus affected the invasion phenotype, suggested that this locus is critical for causation of diarrhea. We conclude that a subgroup of P. alcalifaciens that possesses this plasmid-mediated T3SS is an enteric pathogen that can cause diarrheal disease.

9.
Appl Environ Microbiol ; 90(8): e0086224, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39058035

ABSTRACT

Type 1 fimbria, the short hair-like appendage assembled on the bacterial surface, plays a pivotal role in adhesion and invasion in Edwardsiella piscicida. The type III secretion system (T3SS), another bacterial surface appendage, facilitates E. piscicida's replication in vivo by delivering effectors into host cells. Our previous research demonstrated that E. piscicida T3SS protein EseJ inhibits adhesion and invasion of E. piscicida by suppressing type 1 fimbria. However, how EseJ suppresses type 1 fimbria remains elusive. In this study, a lacI-like operator (nt -245 to -1 of fimA) upstream of type 1 fimbrial operon in E. piscicida was identified, and EseJ inhibits type 1 fimbria through the lacI-like operator. Moreover, through DNA pull-down and electrophoretic mobility shift assay, an AraC-type T3SS regulator, EsrC, was screened and verified to bind to nt -145 to -126 and nt -50 to -1 of fimA, suppressing type 1 fimbria. EseJ is almost abolished upon the depletion of EsrC. EsrC and EseJ impede type 1 fimbria expression. Intriguingly, nutrition and microbiota-derived indole activate type 1 fimbria through downregulating T3SS, alleviating EsrC or EseJ's inhibitory effect on lacI-like operator of type 1 fimbrial operon. By this study, it is revealed that upon entering the gastrointestinal tract, rich nutrients and indole downregulate T3SS and thereof upregulate type 1 fimbria, stimulating efficient adhesion and invasion; upon being internalized into epithelium, the limit in indole and nutrition switches on T3SS and thereof switches off type 1 fimbria, facilitating effector delivery to guarantee E. piscicida's survival/replication in vivo.IMPORTANCEIn this work, we identified the lacI-like operator of type 1 fimbrial operon in E. piscicida, which was suppressed by the repressors-T3SS protein EseJ and EsrC. We unveiled that E. piscicida upregulates type 1 fimbria upon sensing rich nutrition and the microbiota-derived indole, thereof promoting the adhesion of E. piscicida. The increase of indole and nutrition promotes type 1 fimbria by downregulating T3SS. The decrease in EseJ and EsrC alleviates their suppression on type 1 fimbria, and vice versa.


Subject(s)
Bacterial Adhesion , Bacterial Proteins , Edwardsiella , Fimbriae, Bacterial , Operon , Type III Secretion Systems , Edwardsiella/genetics , Edwardsiella/physiology , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Animals , Gene Expression Regulation, Bacterial , Enterobacteriaceae Infections/microbiology
10.
Appl Environ Microbiol ; 90(8): e0098824, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39082807

ABSTRACT

Shigella bacteria utilize the type III secretion system (T3SS) to invade host cells and establish local infection. Invasion plasmid antigen D (IpaD), a component of Shigella T3SS, has garnered extensive interest as a vaccine target, primarily due to its pivotal role in the Shigella invasion, immunogenic property, and a high degree of conservation across Shigella species and serotypes. Currently, we are developing an epitope- and structure-based multivalent vaccine against shigellosis and require functional epitope antigens of key Shigella virulence determinants including IpaD. However, individual IpaD B-cell epitopes, their contributions to the overall immunogenicity, and functional activities attributing to bacteria invasion have not been fully characterized. In this study, we predicted continuous B-cell epitopes in silico and fused each epitope to a carrier protein. Then, we immunized mice intramuscularly with each epitope fusion protein, examined the IpaD-specific antibody responses, and measured antibodies from each epitope fusion for the activity against Shigella invasion in vitro. Data showed that all epitope fusion proteins induced similar levels of anti-IpaD IgG antibodies in mice, and differences were noted for antibody inhibition activity against Shigella invasion. IpaD epitope 1 (SPGGNDGNSV), IpaD epitope 2 (LGGNGEVVLDNA), and IpaD epitope 5 (SPNNTNGSSTET) induced antibodies significantly better in inhibiting invasion from Shigella flexneri 2a, and epitopes 1 and 5 elicited antibodies more effectively at preventing invasion of Shigella sonnei. These results suggest that IpaD epitopes 1 and 5 can be the IpaD representative antigens for epitope-based polyvalent protein construction and protein-based cross-protective Shigella vaccine development.IMPORTANCEShigella is a leading cause of diarrhea in children younger than 5 years in developing countries (children's diarrhea) and continues to be a major threat to public health. No licensed vaccines are currently available against the heterogeneous Shigella species and serotype strains. Aiming to develop a cross-protective multivalent vaccine against shigellosis and dysentery, we applied novel multiepitope fusion antigen (MEFA) technology to construct a broadly immunogenic polyvalent protein antigen, by presenting functional epitopes of multiple Shigella virulence determinants on a backbone protein. The functional IpaD epitopes identified from this study will essentially allow us to construct an optimal polyvalent Shigella immunogen, leading to the development of a cross-protective vaccine against shigellosis (and dysentery) and the improvement of global health. In addition, identifying functional epitopes from heterogeneous virulence determinants and using them as antigenic representatives for the development of cross-protective multivalent vaccines can be applied generally in vaccine development.


Subject(s)
Antigens, Bacterial , Epitopes, B-Lymphocyte , Shigella flexneri , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Animals , Mice , Shigella flexneri/immunology , Shigella flexneri/genetics , Epitopes, B-Lymphocyte/immunology , Shigella Vaccines/immunology , Shigella Vaccines/administration & dosage , Shigella Vaccines/genetics , Dysentery, Bacillary/prevention & control , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Mice, Inbred BALB C , Epitope Mapping , Female , Shigella/immunology , Shigella/genetics , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Shigella sonnei/immunology , Shigella sonnei/genetics , Type III Secretion Systems/immunology , Type III Secretion Systems/genetics
11.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062822

ABSTRACT

Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.


Subject(s)
Flagella , Symbiosis , Type III Secretion Systems , Flagella/metabolism , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Xenorhabdus/metabolism , Xenorhabdus/genetics , Xenorhabdus/physiology , Gene Expression Regulation, Bacterial , Photorhabdus/metabolism , Photorhabdus/pathogenicity , Photorhabdus/genetics , Photorhabdus/physiology , Nematoda/microbiology , Nematoda/metabolism , Biofilms/growth & development
12.
J Biol Chem ; 300(9): 107613, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39079629

ABSTRACT

Shigella spp. are highly pathogenic members of the Enterobacteriaceae family, causing ∼269 million cases of bacillary dysentery and >200,000 deaths each year. Like many Gram-negative pathogens, Shigella rely on their type three secretion system (T3SS) to inject effector proteins into eukaryotic host cells, driving both cellular invasion and evasion of host immune responses. Exposure to the bile salt deoxycholate (DOC) significantly enhances Shigella virulence and is proposed to serve as a critical environmental signal present in the small intestine that prepares Shigella's T3SS for efficient infection of the colonic epithelium. Here, we uncover critical mechanistic details of the Shigella-specific DOC signaling process by describing the role of a π-helix secondary structure element within the T3SS tip protein invasion plasmid antigen D (IpaD). Biophysical characterization and high-resolution structures of IpaD mutants lacking the π-helix show that it is not required for global protein structure, but that it defines the native DOC binding site and prevents off target interactions. Additionally, Shigella strains expressing the π-helix deletion mutants illustrate the pathogenic importance of its role in guiding DOC interaction as flow cytometry and gentamycin protection assays show that the IpaD π-helix is essential for DOC-mediated apparatus maturation and enhanced invasion of eukaryotic cells. Together, these findings add to our understanding of the complex Shigella pathogenesis pathway and its evolution to respond to environmental bile salts by identifying the π-helix in IpaD as a critical structural element required for translating DOC exposure to virulence enhancement.

13.
Antibiotics (Basel) ; 13(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38927143

ABSTRACT

In order to combat resistance, it is necessary to develop antimicrobial agents that act differently from conventional antibiotics. Fluorothiazinone, 300 mg tablet (The Gamaleya National Research Center), is an original antibacterial drug based on a new small molecule T3SS and flagellum inhibitor. A total of 357 patients with complicated urinary tract infections (UTIs) were divided into two groups and given Fluorothiazinone 1200 mg/day or a placebo for 7 days to evaluate the efficacy and safety of the drug. Additionally, all patients were given Cefepime 2000 mg/day. Fluorothiazinone with Cefepime showed superiority over placebo/Cefepime based on the assessment of the proportion of patients with an overall outcome in the form of a cure after 21 days post-therapy (primary outcome), overall outcome in cure rates, clinical cure rates, and microbiological efficacy at the end of therapy and after 21 days post-therapy (secondary outcomes). In patients who received Fluorothiazinone, the rate of infection recurrences 53 and 83 days after the end of the therapy was lower by 18.9%, compared with patients who received placebo. Fluorothiazinone demonstrated a favorable safety profile with no serious unexpected adverse events reported. The results showed superiority of the therapy with Fluorothiazinone in combination with Cefepime compared with placebo/Cefepime in patients with cUTIs.

14.
Front Immunol ; 15: 1372349, 2024.
Article in English | MEDLINE | ID: mdl-38698863

ABSTRACT

Pseudomonas aeruginosa (Pa) is an opportunistic bacterial pathogen responsible for severe hospital acquired infections in immunocompromised and elderly individuals. Emergence of increasingly drug resistant strains and the absence of a broad-spectrum prophylactic vaccine against both T3SA+ (type III secretion apparatus) and ExlA+/T3SA- Pa strains worsen the situation in a post-pandemic world. Thus, we formulated a candidate subunit vaccine (called ExlA/L-PaF/BECC/ME) against both Pa types. This bivalent vaccine was generated by combining the C-terminal active moiety of exolysin A (ExlA) produced by non-T3SA Pa strains with our T3SA-based vaccine platform, L-PaF, in an oil-in-water emulsion. The ExlA/L-PaF in ME (MedImmune emulsion) was then mixed with BECC438b, an engineered lipid A analogue and a TLR4 agonist. This formulation was administered intranasally (IN) to young and elderly mice to determine its potency across a diverse age-range. The elderly mice were used to mimic the infection seen in elderly humans, who are more susceptible to serious Pa disease compared to their young adult counterparts. After Pa infection, mice immunized with ExlA/L-PaF/BECC/ME displayed a T cell-mediated adaptive response while PBS-vaccinated mice experienced a rapid onset inflammatory response. Important genes and pathways were observed, which give rise to an anti-Pa immune response. Thus, this vaccine has the potential to protect aged individuals in our population from serious Pa infection.


Subject(s)
Emulsions , Pseudomonas Infections , Pseudomonas Vaccines , Pseudomonas aeruginosa , Vaccines, Subunit , Animals , Pseudomonas aeruginosa/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Mice , Pseudomonas Infections/immunology , Pseudomonas Infections/prevention & control , Pseudomonas Vaccines/immunology , Pseudomonas Vaccines/administration & dosage , Female , Vaccine Development , Humans , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Disease Models, Animal , Bacterial Proteins/immunology , Bacterial Proteins/genetics
15.
Microbiol Res ; 285: 127770, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788352

ABSTRACT

Edwardsiella piscicida is an acute marine pathogen that causes severe damage to the aquaculture industry worldwide. The pathogenesis of E. piscicida is dependent mainly on the type III secretion system (T3SS) and type VI secretion system (T6SS), both of which are critically regulated by EsrB and EsrC. In this study, we revealed that fatty acids influence T3SS expression. Unsaturated fatty acids (UFAs), but not saturated fatty acids (SFAs), directly interact with EsrC, which abolishes the function of EsrC and results in the turn-off of T3/T6SS. Moreover, during the in vivo colonization of E. piscicida, host fatty acids were observed to be transported into E. piscicida through FadL and to modulate the expression of T3/T6SS. Furthermore, the esrCR38G mutant blocked the interaction between EsrC and UFAs, leading to dramatic growth defects in DMEM and impaired colonization in HeLa cells and zebrafish. In conclusion, this study revealed that the interaction between UFAs and EsrC to turn off T3/T6SS expression is essential for E. piscicida infection.


Subject(s)
Bacterial Proteins , Edwardsiella , Enterobacteriaceae Infections , Fatty Acids, Unsaturated , Fish Diseases , Type III Secretion Systems , Type VI Secretion Systems , Zebrafish , Animals , Edwardsiella/genetics , Edwardsiella/metabolism , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Enterobacteriaceae Infections/microbiology , Humans , HeLa Cells , Zebrafish/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Type VI Secretion Systems/metabolism , Type VI Secretion Systems/genetics , Fatty Acids, Unsaturated/metabolism , Fish Diseases/microbiology , Gene Expression Regulation, Bacterial
16.
bioRxiv ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38712050

ABSTRACT

Chlamydia trachomatis (C.t.), the leading cause of bacterial sexually transmitted infections, employs a type III secretion system (T3SS) to translocate two classes of effectors, inclusion membrane proteins and conventional T3SS (cT3SS) effectors, into the host cell to counter host defense mechanisms. Here we employed three assays to directly evaluate secretion during infection, validating secretion for 23 cT3SS effectors. As bioinformatic analyses have been largely unrevealing, we conducted affinity purification-mass spectrometry to identify host targets and gain insights into the functions of these effectors, identifying high confidence interacting partners for 21 cT3SS effectors. We demonstrate that CebN localizes to the nuclear envelope in infected and bystander cells where it interacts with multiple nucleoporins and Rae1, blocking STAT1 nuclear import following IFN-γ stimulation. By building a cT3SS effector-host interactome, we have identified novel pathways that are targeted during bacterial infection and have begun to address how C.t. effectors combat cell autonomous immunity.

17.
Heliyon ; 10(8): e29751, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681583

ABSTRACT

Pseudomonas aeruginosa is one of the leading nosocomial opportunistic pathogens causing acute and chronic infections. Among its main virulent factors is the Type III secretion system (T3SS) which enhances disease severity by delivering effectors to the host in a highly regulated manner. Despite its importance for virulence, only six T3SS-dependent effectors have been discovered so far. Previously, we identified two new potential effectors using a machine-learning algorithm approach. Here we demonstrate that one of these effectors, PemB, is indeed virulent. Using a live Caenorhabditis elegans infection model, we demonstrate this effector damages the integrity of the intestine barrier leading to the death of the host. Implementing a high-throughput assay using Saccharomyces cerevisiae, we identified several candidate proteins that interact with PemB. One of them, EFT1, has an ortholog in C. elegans (eef-2) and is also an essential gene and a well-known target utilized by different pathogens to induce toxicity to the worm. Accordingly, we found that by silencing the eef-2 gene in C. elegans, PemB could no longer induce its toxic effect. The current study further uncovers the complex machinery assisting P. aeruginosa virulence and may provide novel insight how to manage infection associated with this hard-to-treat pathogen.

18.
Cell Rep ; 43(4): 114034, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38568808

ABSTRACT

Escape from the bacterial-containing vacuole (BCV) is a key step of Shigella host cell invasion. Rab GTPases subverted to in situ-formed macropinosomes in the vicinity of the BCV have been shown to promote its rupture. The involvement of the BCV itself has remained unclear. We demonstrate that Rab35 is non-canonically entrapped at the BCV. Stimulated emission depletion imaging localizes Rab35 directly on the BCV membranes before vacuolar rupture. The bacterial effector IcsB, a lysine Nε-fatty acylase, is a key regulator of Rab35-BCV recruitment, and we show post-translational acylation of Rab35 by IcsB in its polybasic region. While Rab35 and IcsB are dispensable for the first step of BCV breakage, they are needed for the unwrapping of damaged BCV remnants from Shigella. This provides a framework for understanding Shigella invasion implicating re-localization of a Rab GTPase via its bacteria-dependent post-translational modification to support the mechanical unpeeling of the BCV.


Subject(s)
Bacterial Proteins , Protein Processing, Post-Translational , Shigella , Vacuoles , rab GTP-Binding Proteins , rab GTP-Binding Proteins/metabolism , Humans , Shigella/metabolism , Bacterial Proteins/metabolism , Vacuoles/metabolism , Vacuoles/microbiology , HeLa Cells
19.
J Agric Food Chem ; 72(17): 9611-9620, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38646906

ABSTRACT

Citrus canker, a highly contagious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), poses a substantial threat to citrus crops, leading to serious reductions in fruit yield and economic losses. Most commonly used bactericides against Xcc lead to the rapid development of resistant subpopulations. Therefore, it is imperative to create novel drugs, such as type III secretion system (T3SS) inhibitors, that specifically target bacterial virulence factors rather than bacterial viability. In our study, we designed and synthesized a series of mandelic acid derivatives including 2-mercapto-1,3,4-thiazole. Seven substances were found to reduce the level of transcription of hpa1 without affecting bacterial viability. In vivo bioassays indicated that compound F9 significantly inhibited hypersensitive response and pathogenicity. RT-qPCR assays showed that compound F9 visibly suppressed the expression of Xcc T3SS-related genes as well as citrus canker susceptibility gene CsLOB1. Furthermore, the combination with compound F9 and quorum-quenching bacteria HN-8 can also obviously alleviate canker symptoms.


Subject(s)
Bacterial Proteins , Citrus , Mandelic Acids , Plant Diseases , Type III Secretion Systems , Xanthomonas , Xanthomonas/drug effects , Xanthomonas/pathogenicity , Citrus/microbiology , Citrus/chemistry , Plant Diseases/microbiology , Virulence/drug effects , Mandelic Acids/pharmacology , Mandelic Acids/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Type III Secretion Systems/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Drug Design
20.
Microorganisms ; 12(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674757

ABSTRACT

Vibrio parahaemolyticus is an important human pathogen that is currently the leading cause of shellfish-borne gastroenteritis in the world. Particularly, the pandemic strain has the capacity to induce cytotoxicity and enterotoxicity through its Type 3 Secretion System (T3SS2) that leads to massive cell death. However, the specific mechanism by which the T3SS2 induces cell death remains unclear and its contribution to mitochondrial stress is not fully understood. In this work, we evaluated the contribution of the T3SS2 of V. parahaemolyticus in generating mitochondrial stress during infection in human intestinal HT-29 cells. To evaluate the contribution of the T3SS2 of V. parahaemolyticus in mitochondrial stress, infection assays were carried out to evaluate mitochondrial transition pore opening, mitochondrial fragmentation, ATP quantification, and cell viability during infection. Our results showed that the Δvscn1 (T3SS2+) mutant strain contributes to generating the sustained opening of the mitochondrial transition pore. Furthermore, it generates perturbations in the ATP production in infected cells, leading to a significant decrease in cell viability and loss of membrane integrity. Our results suggest that the T3SS2 from V. parahaemolyticus plays a role in generating mitochondrial stress that leads to cell death in human intestinal HT-29 cells. It is important to highlight that this study represents the first report indicating the possible role of the V. parahaemolyticus T3SS2 and its effector proteins involvement in generating mitochondrial stress, its impact on the mitochondrial pore, and its effect on ATP production in human cells.

SELECTION OF CITATIONS
SEARCH DETAIL