Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.232
Filter
1.
Biochem Biophys Res Commun ; 735: 150445, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39094234

ABSTRACT

Sepsis, broadly described as a systemic infection, is one of the leading causes of death and long-term disability worldwide. There are limited therapeutic options available that either improve survival and/or improve the quality of life in survivors. Ilofotase alfa, also known as recombinant alkaline phosphatase (recAP), has been associated with reduced mortality in a subset of patients with sepsis-associated acute kidney injury. However, whether recAP exhibits any therapeutic benefits in other organ systems beyond the kidney is less clear. The objective of this study was to evaluate the effects of recAP on survival, behavior, and intestinal inflammation in a mouse model of sepsis, cecal ligation and puncture (CLP). Following CLP, either recAP or saline vehicle was administered via daily intraperitoneal injections to determine its treatment efficacy from early through late sepsis. We found that administration of recAP suppressed indices of inflammation in the gut and liver but did not improve survival or behavioral outcomes. These results demonstrate that recAP's therapeutic efficacy in the gut and liver may provide a valuable treatment to improve long-term outcomes in sepsis survivors.

2.
Mol Aspects Med ; 99: 101302, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094449

ABSTRACT

Modern methods of molecular diagnostics and therapy have revolutionized the field of medicine in recent years by providing more precise and effective tools for detecting and treating diseases. This progress includes a growing exploration of the body's secreted vesicles, known as extracellular vesicles (EVs), for both diagnostic and therapeutic purposes. EVs are a heterogeneous population of lipid bilayer vesicles secreted by almost every cell type studied so far. They are detected in body fluids and conditioned culture media from living cells. EVs play a crucial role in communication between cells and organs, both locally and over long distances. They are recognized for their ability to transport endogenous RNA and proteins between cells, including messenger RNA (mRNA), microRNA (miRNA), misfolded neurodegenerative proteins, and several other biomolecules. This review explores the dual utilization of EVs, serving not only for diagnostic purposes but also as a platform for delivering therapeutic molecules to cells and tissues. Through an exploration of their composition, biogenesis, and selective cargo packaging, we elucidate the intricate mechanisms behind RNA transport between cells via EVs, highlighting their potential use for both diagnostic and therapeutic applications. Finally, it addresses challenges and outlines prospective directions for the clinical utilization of EVs.

3.
J Psychosom Res ; 185: 111861, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39106547

ABSTRACT

BACKGROUND: Baseline mindset factors are important factors that influence treatment decisions and outcomes. Theoretically, improving the mindset prior to treatment may improve treatment decisions and outcomes. This prospective cohort study evaluated changes in patients' mindset following hand surgeon consultation. Additionally, we assessed if the change in illness perception differed between surgical and nonsurgical patients. METHODS: The primary outcome was illness perception, measured using the total score of the Brief Illness Perception Questionnaire (B-IPQ, range 0-80). Secondary outcomes were the B-IPQ subscales, pain catastrophizing (measured using the Pain Catastrophizing Scale (PCS)), and psychological distress (measured using the Patient Health Questionnaire-4). RESULTS: A total of 276 patients with various hand and wrist conditions completed the mindset questionnaires before and after hand surgeon consultation (median time interval: 15 days). The B-IPQ total score improved from 39.7 (±10.6) before to 35.8 (±11.3) after consultation (p < 0.0001, Cohen's d = 0.36); scores also improved for the B-IPQ subscales Coherence, Concern, Emotional Response, Timeline, Treatment Control, and Identity and the PCS. There were no changes in the other outcomes. Surgical patients improved on the B-IPQ subscales Treatment Control and Timeline, while nonsurgical patients did not. CONCLUSIONS: Illness perception and pain catastrophizing improved following hand surgeon consultation, suggesting that clinicians may actively influence the patients' mindset during consultations, and that they may try to enhance this effect to improve outcomes. Furthermore, surgical patients improved more in illness perceptions, indicating that nonsurgical patients may benefit from a more targeted strategy for changing mindset.

5.
J Struct Biol ; 216(3): 108115, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117045

ABSTRACT

Human RAD52 protein binds DNA and is involved in genomic stability maintenance and several forms of DNA repair, including homologous recombination and single-strand annealing. Despite its importance, there are very few structural details about the variability of the RAD52 ring size and the RAD52 C-terminal protein-protein interaction domains. Even recent attempts to employ cryogenic electron microscopy (cryoEM) methods on full-length yeast and human RAD52 do not reveal interpretable structures for the C-terminal half that contains the replication protein A (RPA) and RAD51 binding domains. In this study, we employed the monodisperse purification of two RAD52 deletion constructs and small angle X-ray scattering (SAXS) to construct a structural model that includes RAD52's RPA binding domain. This model is of interest to DNA repair specialists as well as for drug development against HR-deficient cancers.

6.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167448, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117290

ABSTRACT

The levels and activities of the DNA/RNA helicase schlafen11 (SLFN11) and the serine/threonine-protein kinase ataxia telangiectasia and Rad3-related protein (ATR) may determine cancer cell sensitivity to DNA damaging agents, including platinum drugs. Here, we studied the roles of SLFN11 and ATR in cisplatin resistance of ovarian cancer using cell lines displaying acquired or intrinsic cisplatin resistance. W1CR, the cisplatin-resistant subline of W1 ovarian cancer cells, displayed reduced SLFN11 levels. HDAC inhibition using entinostat returned an epigenetic downregulation of SLFN11 in W1CR cells, caused SLFN11 re-expression and re-sensitized these cells to cisplatin. Moreover, entinostat also sensitized intrinsically resistant EFO21 ovarian cancer cells to cisplatin by upregulating SLFN11. However, SLFN11 was not involved in cisplatin resistance in all other cell models. Thus, SLFN11 expression is not a general cisplatin resistance marker in ovarian cancer. In contrast, inhibition of the DNA damage repair master regulator ATR using sub-toxic concentrations of elimusertib sensitized parental cell lines as well as intrinsically resistant EFO21 cells to cisplatin, and fully reversed acquired cisplatin resistance in cisplatin-adapted sublines W1CR, A2780cis, and KuramochirCDDP2000. Mechanisms underlying ATR-mediated cisplatin resistance differed between the cell lines and included CHK1/WEE1 signaling and induction of homologous recombination. In conclusion, SLFN11 and ATR are involved in ovarian cancer cisplatin resistance. Although our data identify ATR as key target for tackling cisplatin resistance in ovarian cancer, future studies are needed to identify biomarkers that indicate, which individual ovarian cancers benefit from SLFN11 re-activation and/or ATR inhibition.

7.
Article in English | MEDLINE | ID: mdl-39088356

ABSTRACT

Virtual reality (VR) has emerged as a nonpharmacological adjuvant to manage acute and chronic pain symptoms. The goal of this survey study was to determine the acceptability of VR among chronic pain participants hailing from distressed and prosperous neighborhoods in the state of Maryland. We hypothesized that pain severity and interference vary in groups experiencing health disparities, potentially influencing VR's acceptability. From March 11 to March 15, 2020, we surveyed a cohort of clinically phenotyped participants suffering from chronic orofacial pain. Participants were asked to express their willingness to participate in a longitudinal VR study and their expectation of pain relief from using VR. Seventy out of 350 participants with chronic pain completed the survey (response rate: 20%). There was no difference in the likelihood of responding to the survey based on their neighborhood distress. Among survey respondents and nonrespondents, similar proportions of participants were from distressed neighborhoods. Among the respondents, 63 (90%) and 59 (84.3%) were willing to participate and expected to experience pain relief from the VR intervention, respectively. Age, sex, race, neighborhood distress, severity of pain, and prior VR experience did not influence willingness to participate in the VR trial or the expectations of VR-induced improvement. These findings suggest that VR as an adjuvant intervention is potentially accepted by chronic pain participants, irrespective of neighborhood-level social determinants of health.

8.
J Neuroimmunol ; 394: 578421, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39088907

ABSTRACT

Niacin was found in the lysolecithin model of multiple sclerosis (MS) to promote the phagocytic clearance of debris and enhance remyelination. Lysolecithin lesions have prominent microglia/macrophages but lack lymphocytes that populate plaques of MS or its experimental autoimmune encephalomyelitis (EAE) model. Thus, the current study assessed the efficacy of niacin in EAE. We found that niacin inconsistently affects EAE clinical score, and largely does not ameliorate neuropathology. In culture, niacin enhances phagocytosis by macrophages, but does not reduce T cell proliferation. We suggest that studies of niacin for potential remyelination in MS should include a therapeutic that targets adaptive immunity.

9.
Neuro Oncol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093629

ABSTRACT

BACKGROUND: Advances in our understanding of the molecular biology of meningiomas have led to significant gains in the ability to predict patient prognosis and tumor recurrence and to identify novel targets for therapeutic design. Specifically, classification of meningiomas based on DNA methylation has greatly improved our ability to risk stratify patients, however new questions have arisen in terms of the underlying impact these DNA methylation signatures have on meningioma biology. METHODS: This study utilizes RNA-seq data from 486 meningioma samples corresponding to three meningioma DNA methylation groups (Merlin-intact, Immune-enriched, and Hypermitotic), followed by in vitro experiments utilizing human meningioma cell lines. RESULTS: We identify alterations in RNA splicing between meningioma DNA methylation groups including individual splicing events that correlate with Hypermitotic meningiomas and predict tumor recurrence and overall patient prognosis and compile a set of splicing events that can accurately predict DNA methylation classification based on RNA-seq data. Furthermore, we validate these events using RT-PCR in patient samples and meningioma cell lines. Additionally, we identify alterations in RNA binding proteins and splicing factors that lie upstream of RNA splicing events, including upregulation of SRSF1 in Hypermitotic meningiomas which we show drives alternative RNA splicing changes. Finally, we design splice switching antisense oligonucleotides to target RNA splicing changes in NASP and MFF observed in Hypermitotic meningiomas, providing a rationale for RNA-based therapeutic design. CONCLUSIONS: RNA splicing is an important driver of meningioma phenotypes that can be useful in prognosticating patients and as a potential exploit for therapeutic vulnerabilities.

10.
Small Methods ; : e2400902, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092676

ABSTRACT

The systemic delivery of oligonucleotide therapeutics to the brain is challenging but highly desirable for the treatment of brain diseases undruggable with traditional small-molecule drugs. In this study, a set of DNA nanostructures is prepared and screened them to develop a protein corona-assisted platform for the brain delivery of oligonucleotide therapeutics. The biodistribution analysis of intravenously injected DNA nanostructures reveals that a cube-shaped DNA nanostructure (D-Cb) can penetrate the brain-blood barrier (BBB) and reach the brain tissue. The brain distribution level of D-Cb is comparable to that of other previous nanoparticles conjugated with brain-targeting ligands. Proteomic analysis of the protein corona formed on D-Cb suggests that its brain distribution is driven by endothelial receptor-targeting ligands in the protein corona, which mediate transcytosis for crossing the BBB. D-Cb is subsequently used to deliver an antisense oligonucleotide (ASO) to treat glioblastoma multiforme (GBM) in mice. While free ASO is unable to reach the brain, ASO loaded onto D-Cb is delivered efficiently to the brain tumor region, where it downregulates the target gene and exerts an anti-tumor effect on GBM. D-Cb is expected to serve as a viable platform based on protein corona formation for systemic brain delivery of oligonucleotide therapeutics.

11.
Article in English | MEDLINE | ID: mdl-39090822

ABSTRACT

INTRODUCTION: Due to their faithful recapitulation of human disease, nonhumanprimates (NHPs) are considered the gold standard for evaluating drugs against Ebolavirus and other filoviruses. The long-term goal is to reduce the reliance on NHPswith more ethical alternatives. In silico simulations and organoidmodels have the potential to revolutionize drug testing by providing accurate,human-based systems that mimic disease processes and drug responses without theethical concerns associated with animal testing. However, as these emergingtechnologies are still in their developmental infancy, NHP models are presentlyneeded for late-stage evaluation of filovirus vaccines and drugs, as theyprovide critical insights into the efficacy and safety of new medicalcountermeasures. AREAS COVERED: In this review, the authors introduce available NHP models andexamine the existing literature on drug discovery for all medically significantfiloviruses in corresponding models. EXPERT OPINION: A deliberate shift towards animal-free models is desired to alignwith the 3Rs of animal research. In the short term, the use of NHP models canbe refined and reduced by enhancing replicability and publishingnegative data. Replacement involves a gradual transition, beginning withthe selection and optimization of better small animal models; advancingorganoid systems, and using in silico models to accurately predictimmunological outcomes.

13.
JCI Insight ; 9(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39133652

ABSTRACT

The development of targeted therapies offers new hope for patients affected by incurable cancer. However, multiple challenges persist, notably in controlling tumor cell plasticity in patients with refractory and metastatic illness. Neuroblastoma (NB) is an aggressive pediatric malignancy originating from defective differentiation of neural crest-derived progenitors with oncogenic activity due to genetic and epigenetic alterations and remains a clinical challenge for high-risk patients. To identify critical genes driving NB aggressiveness, we performed combined chromatin and transcriptome analyses on matched patient-derived xenografts (PDXs), spheroids, and differentiated adherent cultures derived from metastatic MYCN nonamplified tumors. Bone marrow kinase on chromosome X (BMX) was identified among the most differentially regulated genes in PDXs and spheroids versus adherent models. BMX expression correlated with high tumor stage and poor patient survival and was crucial to the maintenance of the self-renewal and tumorigenic potential of NB spheroids. Moreover, BMX expression positively correlated with the mesenchymal NB cell phenotype, previously associated with increased chemoresistance. Finally, BMX inhibitors readily reversed this cellular state, increased the sensitivity of NB spheroids toward chemotherapy, and partially reduced tumor growth in a preclinical NB model. Altogether, our study identifies BMX as a promising innovative therapeutic target for patients with high-risk MYCN nonamplified NB.


Subject(s)
N-Myc Proto-Oncogene Protein , Neuroblastoma , Spheroids, Cellular , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Humans , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Animals , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , Spheroids, Cellular/drug effects , Mice , Xenograft Model Antitumor Assays , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
14.
Biol Trace Elem Res ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129053

ABSTRACT

The present study investigates human health risks upon consumption of herbal medicines in terms of ten toxic metalloids in 20 plant-based anti-diabetic therapeutics. The analysis of metalloids was determined by an atomic absorption spectrometer after microwave-assisted digestion. The computation of hazard quotients (HQ) and hazard indexes (HI) of metalloids leads to the assessment of non-carcinogenic health risks. Carcinogenic risk was assessed based on cancer slope factor (CSF) and chronic daily intake (CDI) values. Comparison with WHO regulatory cut-off points for each metalloid: seven samples for Mn, 12 samples for Hg, three samples for Cu, eight samples for Ni, four samples for Cd, two samples for Pb, one sample for Cr, and eight samples for Zn are unsafe to consume. Non-carcinogenic human health risk is predicted for Mn in seven samples, Fe in one sample, Hg in ten samples, Cu in three samples, Ni in one sample, and Pb in two samples. HI values greater than 1 predict non-carcinogenic health risk in thirteen samples. Incremental lifetime cancer risk (ILCR) remains for As (inorganic) in 12 samples, Cr (+ 6) in one sample, and Pb in no samples. To guarantee consumer safety, the implementation of strict monitoring is suggested.

15.
Int J Infect Dis ; : 107200, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117175

ABSTRACT

Mycoplasma pneumoniae (M. pneumoniae) continues to pose a significant disease burden on global public health as a respiratory pathogen. The antimicrobial resistance among M. pneumoniae strains has complicated the outbreak control efforts, emphasizing the need for robust surveillance systems and effective antimicrobial stewardship programs. This review comprehensively investigates studies stemming from previous outbreaks to emphasize the multifaceted nature of M. pneumoniae infections, encompassing epidemiological dynamics, diagnostic innovations, antibiotic resistance, and therapeutic challenges. We explored the spectrum of clinical manifestations associated with M. pneumoniae infections, emphasizing the continuum of disease severity and the challenges in gradating it accurately. Artificial Intelligence and Machine Learning have emerged as promising tools in M. pneumoniae diagnostics, offering enhanced accuracy and efficiency in identifying infections. However, their integration into clinical practice presents hurdles that need to be addressed. Further, we elucidate the pivotal role of pharmacological interventions in controlling and treating M. pneumoniae infections as the efficacy of existing therapies is jeopardized by evolving resistance mechanisms. Lessons learned from previous outbreaks underscore the importance of adaptive treatment strategies and proactive management approaches. Addressing these complexities demands a holistic approach integrating advanced technologies, genomic surveillance, and adaptive clinical strategies to effectively combat this pathogen.

16.
Front Immunol ; 15: 1403798, 2024.
Article in English | MEDLINE | ID: mdl-39136023

ABSTRACT

Rosacea is a complex inflammatory condition characterized by papulopustular lesions and erythema on the central face for which there is no cure. The development of rosacea is influenced by both external triggers and genetics, but the common pathophysiology is overactivation of the immune system. Here, we review the current data on proinflammatory cytokines and dysregulation of the neurovascular system as targetable components of rosacea. Amelioration of cutaneous and gastrointestinal dysbiosis and other external factors impacts the immune state and has been observed to improve rosacea. While multiple treatments exist, many patients do not achieve their goals for rosacea control and highlights an unmet need for dermatologic care. Current interventions encompass topical/oral drugs, light devices, and avoidance of triggers management. Additional understanding of the underlying pathogenesis may help us develop novel targeted therapeutic strategies to improve rosacea.


Subject(s)
Neuroinflammatory Diseases , Rosacea , Rosacea/immunology , Rosacea/therapy , Humans , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/etiology , Cytokines/metabolism , Animals , Skin/immunology , Skin/pathology
17.
JCI Insight ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115939

ABSTRACT

Progress in cytokine engineering is driving therapeutic translation by overcoming these proteins' limitations as drugs. The interleukin-2 (IL-2) cytokine is a promising immune stimulant for cancer treatment but is limited by its concurrent activation of both pro-inflammatory immune effector cells and anti-inflammatory regulatory T cells, toxicity at high doses, and short serum half-life. One approach to improve the selectivity, safety, and longevity of IL-2 is complexation with anti-IL-2 antibodies that bias the cytokine towards immune effector cell activation. Although this strategy shows potential in preclinical models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multi-protein drug and concerns regarding complex stability. Here, we introduced a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine towards immune effector cells. We optimized IC construction and engineered the cytokine/antibody affinity to improve immune bias. We demonstrated that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared to natural IL-2, both alone and combined with immune checkpoint inhibitors. Moreover, therapeutic efficacy was observed without inducing toxicity. This work presents a roadmap for the design and translation of cytokine/antibody fusion proteins.

18.
Cell Chem Biol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39116881

ABSTRACT

We describe a protein proximity inducing therapeutic modality called Regulated Induced Proximity Targeting Chimeras or RIPTACs: heterobifunctional small molecules that elicit a stable ternary complex between a target protein (TP) selectively expressed in tumor cells and a pan-expressed protein essential for cell survival. The resulting co-operative protein-protein interaction (PPI) abrogates the function of the essential protein, thus leading to death selectively in cells expressing the TP. This approach leverages differentially expressed intracellular proteins as novel cancer targets, with the advantage of not requiring the target to be a disease driver. In this chemical biology study, we design RIPTACs that incorporate a ligand against a model TP connected via a linker to effector ligands such as JQ1 (BRD4) or BI2536 (PLK1) or CDK inhibitors such as TMX3013 or dinaciclib. RIPTACs accumulate selectively in cells expressing the HaloTag-FKBP target, form co-operative intracellular ternary complexes, and induce an anti-proliferative response in target-expressing cells.

19.
Sci Total Environ ; 950: 175317, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111448

ABSTRACT

The latent potential of active ingredients derived from agro-industrial waste remains largely untapped and offers a wealth of unexplored resources. While these types of materials have applications in various fields, their ability to benefit human health needs to be further explored and investigated. This systematic review was conducted to systematically evaluate non-clinical studies that have investigated the biological effects of fractions, extracts and bioactive compounds from agro-industrial wastes and their potential therapeutic applications. Articles were selected via PubMed, Embase and Medline using the descriptors (by-products[title/abstract]) AND (agro-industrial[title/abstract]). The systematic review was registered in the International Prospective Register of Systematic Reviews (Prospero) under the number CRD42024491021. After a detailed analysis based on inclusion and exclusion criteria, a total of 38 articles were used for data extraction and discussion of the results. Information was found from in vitro and in vivo experiments investigating a variety of residues from the agro-industry. The studies investigated peels, pomace/bagasse, pulp, seeds, aerial parts, cereals/grains and other types of waste. The most studied activities include mainly antioxidant and anti-inflammatory effects, but other activities such as antimicrobial, cytotoxic, antiproliferative, antinociceptive, hypoglycemic, antihyperglycemic and anticoagulant effects have also been described. Finally, the studies included in this review demonstrate the potential of agro-industrial waste and can drive future research with a focus on clinical application.

20.
Cancer Cell Int ; 24(1): 279, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118110

ABSTRACT

The Gasdermin E gene (GSDME) plays roles in deafness and cancers. However, the roles and mechanisms in cancers are complex, and the same gene exhibits different mechanisms and actions in different types of cancers. Online databases, such as GEPIA2, cBioPortal, and DNMIVD, were used to comprehensively analyze GSDME profiles, DNA methylations, mutations, diagnosis, and prognosis in patients with tumor tissues and matched healthy tissues. Western blotting and RT-PCR were used to monitor the regulation of GSDME by Cordycepin (CD) in cancer cell lines. We revealed that GSDME expression is significantly upregulated in eight cancers (ACC, DLBC, GBM, HNSC, LGG, PAAD, SKCM, and THYM) and significantly downregulated in seven cancers (COAD, KICH, LAML, OV, READ, UCES, and UCS). The overall survival was longer only in ACC, but shorter in four cancers, including COAD, KIRC, LIHC, and STAD, when GSDME was highly expressed in cancers compared with the corresponding normal tissues. Moreover, the high expression of GSDME was negatively correlated with the poor prognosis of ACC, while the low expression of GSDME was negatively correlated with the poor prognosis of COAD, suggesting that GSDME might serve as a good prognostic factor in these two cancer types. Accordingly, results indicated that the DNA methylations of those 7 CpG sites constitute a potentially effective signature to distinguish different tumors from adjacent healthy tissues. Gene mutations for GSDME were frequently observed in a variety of tumors, with UCES having the highest frequency. Moreover, CD treatment inhibited GSDME expression in different cancer cell lines, while overexpression of GSDME promoted cell migration and invasion. Thus, we have systematically and successfully clarified the GSDME expression profiles, diagnostic values, and prognostic values in pan-cancers. Targeting GSDME with CD implies therapeutic significance and a mechanism for antitumor roles in some types of cancers via increasing the sensitivity of chemotherapy. Altogether, our study may provide a strategy and biomarker for clinical diagnosis, prognostics, and treatment of cancers by targeting GSDME.

SELECTION OF CITATIONS
SEARCH DETAIL