Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Toxicon ; 247: 107836, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38945217

ABSTRACT

The venoms of Australasian elapid snakes are known to possess coagulant activity, including some with strong procoagulant activity and others with anticoagulant activity, although the latter are less well known. This study investigates the anticoagulant activity of Australasian elapid snake venoms, and whether this activity is neutralised by commercial snake antivenom and varespladib (PLA2 inhibiting agent). Clotting assays were completed for 34 species of Australasian elapids. Antivenom neutralisation assays with tiger snake antivenom (TSAV) were performed on five species to determine if there was cross-neutralisation. Varespladib neutralisation assays were also completed for the same five species. All Pseudechis species venoms had anticoagulant activity, except P. porphyriacus, which was procoagulant. Pseudechis species venoms had similar anticoagulant potency ranging from the most potent P. colletti venom to the least potent P. butleri venom. The three Austrelaps (copperhead) species venoms were the next most potent anticoagulants. Six further snakes, Elapognathus coronatus, Acanthophis pyrrhus, A. antarcticus, Suta suta, Denisonia devisi and D. maculata, had weaker anticoagulant activity, except for D. maculata which had similar anticoagulant activity to Pseudechis species. Tiger Snake Antivenom (1200mU/mL) neutralised the anticoagulant effect of P. australis for concentrations up to 1 mg/mL. TSAV (1200mU/mL) also neutralised P. colletti, D. maculata, A. superbus and A. pyrrhus venoms at their EC50, demonstrating cross neutralisation. Varespladib neutralised the anticoagulant effect of P. australis venom at 5 µM and for venoms of P. colletti, D. maculata, A. superbus and A. pyrrhus. We found anticoagulant activity to be present in six genera of Australasian snakes at low concentrations, which can be completely neutralised by both antivenom and varespladib. Anticoagulant activity in Australian elapid venoms was associated with species possessing high PLA2 activity without procoagulant snake venom serine proteases.


Subject(s)
Anticoagulants , Antivenins , Elapid Venoms , Antivenins/pharmacology , Animals , Anticoagulants/pharmacology , Elapidae , Keto Acids/pharmacology , Blood Coagulation/drug effects , Australia , Humans , Acetates , Indoles
2.
Toxins (Basel) ; 16(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38535790

ABSTRACT

The heterogeneity in venom composition and potency in disparate Eastern Russell's viper (Daboia siamensis) populations has repercussions for the efficacy of antivenoms. This is particularly pronounced in geographical areas in which the venom of the local species has not been well studied and locally produced antivenoms are unavailable. In such cases, alternative therapies following envenoming, which are not limited by species specificity, may be employed to complement antivenoms. We studied the neuromuscular activity of D. siamensis venom from Thailand and Java (Indonesia) and the ability of Thai antivenoms and/or Varespladib to prevent or reverse these effects. Both Thai and Javanese D. siamensis venoms displayed potent pre-synaptic neurotoxicity but weak myotoxicity in the chick biventer cervicis nerve-muscle preparation. Whilst the neurotoxicity induced by both venoms was abolished by the prior administration of Thai D. siamensis monovalent antivenom or pre-incubation with Varespladib, Thai neuro-polyvalent antivenom only produced partial protection when added prior to venom. Pre-synaptic neurotoxicity was not reversed by the post-venom addition of either antivenom 30 or 60 min after either venom. Varespladib, when added 60 min after venom, prevented further inhibition of indirect twitches. However, the subsequent addition of additional concentrations of Varespladib did not result in further recovery from neurotoxicity. The combination of Thai monovalent antivenom and Varespladib, added 60 min after venom, resulted in additional recovery of twitches caused by either Thai or Javanese venoms compared with antivenom alone. In conclusion, we have shown that Varespladib can prevent and partially reverse the pre-synaptic neurotoxicity induced by either Thai or Javanese D. siamensis venoms. The efficacy of Thai D. siamensis monovalent antivenom in reversing pre-synaptic neurotoxicity was significantly enhanced by its co-administration with Varespladib. Further work is required to establish the efficacy of Varespladib as a primary or adjunct therapy in human envenoming.


Subject(s)
Acetates , Daboia , Indoles , Keto Acids , Neurotoxicity Syndromes , Humans , Animals , Antivenins , Venoms , Indonesia , Thailand
3.
Toxicon ; 242: 107694, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38556061

ABSTRACT

Snakebite envenomation often leads to severe visceral injuries, including acute liver injury (ALI). However, the toxicity mechanism remains unclear. Moreover, varespladib can directly inhibit phospholipase A2 (PLA2) in snake venom, but its protective effect on snakebite-induced ALI and the mechanism have not been clarified. Previous studies have shown that snake venom PLA2 leads to neuron cell death via reactive oxygen species (ROS), one of the initial factors related to the mitophagy pathway. The present study group also found that ROS accumulation occurred after Naja atra envenoming. Hematoxylin and eosin (H/E) staining and immunohistochemistry (IHC) were performed to identify the expression of inflammatory factors in the liver tissue, and flow cytometry and immunofluorescence were used to detect ROS levels and mitochondrial function. Immunofluorescence and western blotting were also used for detecting mitophagy pathway-related proteins. The results showed that N. atra bite induced ALI by activating mitophagy and inducing inflammation and that varespladib had a protective effect. Collectively, these results showed the pathological mechanism of ALI caused by N. atra bite and revealed the protective effect of varespladib.


Subject(s)
Acetates , Indoles , Mitophagy , Phospholipases A2 , Snake Bites , Animals , Mice , Mitophagy/drug effects , Phospholipases A2/metabolism , Snake Bites/drug therapy , Snake Bites/complications , Keto Acids/pharmacology , Male , Reactive Oxygen Species/metabolism , Elapid Venoms/toxicity , Liver/drug effects , Liver/pathology , Chemical and Drug Induced Liver Injury
4.
Toxins (Basel) ; 15(9)2023 09 07.
Article in English | MEDLINE | ID: mdl-37755983

ABSTRACT

Antivenom is currently the standard-of-care treatment for snakebite envenoming, but its efficacy is limited by treatment delays, availability, and in many cases, species specificity. Many of the rapidly lethal effects of envenoming are caused by venom-derived toxins, such as phospholipase A2 (sPLA2); therefore, small molecule direct toxin inhibitors targeting these toxins may have utility as initial and adjunct therapies after envenoming. Varespladib (intravenous, IV) and varespladib-methyl (oral) have been shown to potently inhibit sPLA2s from snake venoms in murine and porcine models, thus supporting their further study as potential treatments for snakebite envenoming. In this pilot study, we tested the ability of these compounds to reverse neurotoxic effects of venom from the Australian and Papuan taipan (Oxyuranus scutellatus) subspecies in juvenile pigs (Sus domesticus). The mean survival time for control animals receiving Australian taipan venom (0.03 mg/kg, n = 3) was 331 min ± 15 min; for those receiving Papuan taipan venom (0.15 mg/kg, n = 3) it was 178 ± 31 min. Thirteen pigs received Australian taipan venom and treatment with either IV or oral varespladib (or with IV to oral transition) and all 13 survived the duration of the study (≥96 h). Eight pigs received Papuan taipan venom followed by treatment: Briefly: Two animals received antivenom immediately and survived to the end of the study. Two animals received antivenom treatment delayed 45 min from envenoming and died within 4 h. Two animals received similarly delayed antivenom treatment and were rescued by varespladib. Two animals were treated with varespladib alone after a 45-min delay. Treatment with varespladib only was effective but required repeat dosing over the course of the study. Findings highlight both the importance of early treatment and, as well, a half-life for the investigational inhibitors now in Phase II clinical trials for snakebite. Varespladib rapidly reversed weakness even when administered many hours post-envenoming and, overall, our results suggest that varespladib and varespladib-methyl could be efficacious tools in the treatment of sPLA2-induced weakness from Oxyuranus envenoming. Further clinical study as initial therapy and as potential method of rescue from some types of antivenom-resistant envenomings are supported by these data.


Subject(s)
Phospholipases A2, Secretory , Snake Bites , Animals , Swine , Mice , Antivenins/pharmacology , Antivenins/therapeutic use , Snake Bites/drug therapy , Pilot Projects , Australia , Elapid Venoms/toxicity
5.
Toxicon ; 234: 107263, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37659667

ABSTRACT

In this work, we examined the neuromuscular blockade caused by venoms from four South-American coralsnakes (Micrurus altirostris - MA, M. corallinus - MC, M. spixii - MS, and M. dumerilii carinicauda - MDC) and the ability of varespladib (VPL), a phospholipase A2 (PLA2) inhibitor, to attenuate this blockade. PLA2 activity was determined using a colorimetric assay and a fixed amount of venom (10 µg). Neurotoxicity was assayed using a single concentration of venom (10 µg/ml) in mouse phrenic nerve-diaphragm (PND) preparations mounted for myographic recordings and then subjected to histological analysis. All venoms showed PLA2 activity, with MS and MA venoms having the highest (15.53 ± 1.9 A425 nm/min) and lowest (0.23 ± 0.14 A425 nm/min) activities, respectively. VPL (292 and 438 µM) inhibited the PLA2 activity of all venoms, although that of MA venom was least affected. All venoms caused neuromuscular blockade, with MS and MDC venoms causing the fastest and slowest 100% blockade [in 40 ± 3 min and 120 ± 6 min (n = 4), respectively]; MA and MC produced complete blockade within 90-100 min. Preincubation of venoms with 292 µM VPL attenuated the blockade to varying degrees: the greatest inhibition was seen with MDC venom and blockade by MS venom was unaffected by this inhibitor. These results indicate that PLA2 has a variable contribution to coralsnake venom-induced neuromuscular blockade in vitro, with the insensitivity of MS venom to VPL suggesting that blockade by this venom is mediated predominantly by post-synaptically-active α-neurotoxins.

6.
Cardiovasc Toxicol ; 23(3-4): 132-146, 2023 04.
Article in English | MEDLINE | ID: mdl-36813862

ABSTRACT

In this work, we examined the action of two South American coralsnake (Micrurus corallinus and Micrurus dumerilii carinicauda) venoms on rat heart function in the absence and presence of treatment with Brazilian coralsnake antivenom (CAV) and varespladib (VPL), a potent phospholipase A2 inhibitor. Anesthetized male Wistar rats were injected with saline (control) or a single dose of venom (1.5 mg/kg, i.m.) and monitored for alterations in echocardiographic parameters, serum CK-MB levels and cardiac histomorphology, the latter using a combination of fractal dimension and histopathological methods. Neither of the venoms caused cardiac functional alterations 2 h after venom injection; however, M. corallinus venom caused tachycardia 2 h after venom injection, with CAV (given i.p. at an antivenom:venom ratio of 1:1.5, v/w), VPL (0.5 mg/kg, i.p.) and CAV + VPL preventing this increase. Both venoms increased the cardiac lesional score and serum CK-MB levels compared to saline-treated rats, but only the combination of CAV + VPL prevented these alterations, although VPL alone was able to attenuate the increase in CK-MB caused by M. corallinus venom. Micrurus corallinus venom increased the heart fractal dimension measurement, but none of the treatments prevented this alteration. In conclusion, M. corallinus and M. d. carinicauda venoms caused no major cardiac functional alterations at the dose tested, although M. corallinus venom caused transient tachycardia. Both venoms caused some cardiac morphological damage, as indicated by histomorphological analyses and the increase in circulating CK-MB levels. These alterations were consistently attenuated by a combination of CAV and VPL.


Subject(s)
Coral Snakes , Elapidae , Male , Rats , Animals , Antivenins/pharmacology , Elapid Venoms/toxicity , Brazil , Rats, Wistar , Tachycardia
7.
Toxins (Basel) ; 15(1)2023 01 11.
Article in English | MEDLINE | ID: mdl-36668882

ABSTRACT

The venom of the Russell's viper (Daboia siamensis) contains neurotoxic and myotoxic phospholipase A2 toxins which can cause irreversible damage to motor nerve terminals. Due to the time delay between envenoming and antivenom administration, antivenoms may have limited efficacy against some of these venom components. Hence, there is a need for adjunct treatments to circumvent these limitations. In this study, we examined the efficacy of Chinese D. siamensis antivenom alone, and in combination with a PLA2 inhibitor, Varespladib, in reversing the in vitro neuromuscular blockade in the chick biventer cervicis nerve-muscle preparation. Pre-synaptic neurotoxicity and myotoxicity were not reversed by the addition of Chinese D. siamensis antivenom 30 or 60 min after venom (10 µg/mL). The prior addition of Varespladib prevented the neurotoxic and myotoxic activity of venom (10 µg/mL) and was also able to prevent further reductions in neuromuscular block and muscle twitches when added 60 min after venom. The addition of the combination of Varespladib and antivenom 60 min after venom failed to produce further improvements than Varespladib alone. This demonstrates that the window of time in which antivenom remains effective is relatively short compared to Varespladib and small-molecule inhibitors may be effective in abrogating some activities of Chinese D. siamensis venom.


Subject(s)
Daboia , Neurotoxicity Syndromes , Snake Bites , Animals , Antivenins/pharmacology , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Snake Bites/drug therapy , Viper Venoms/toxicity
8.
Ren Fail ; 45(2): 2259230, 2023.
Article in English | MEDLINE | ID: mdl-38376456

ABSTRACT

Wasp venom can trigger local and systemic reactions, with the kidneys being commonly affected, potentially causing acute kidney injury (AKI). Despite of the recent advances, our knowledge on the underlying mechanisms of toxicity and targeted therapies remain poor. AKI can result from direct nephrotoxic effects of the wasp venom or secondary rhabdomyolysis and intravascular hemolysis, which will release myoglobin and free hemoglobin. Inflammatory responses play a central role in these pathological mechanisms. Noteworthily, the successful establishment of a suitable experimental model can assist in basic research and clinical advancements related to wasp venom-induced AKI. The combination of therapeutic plasma exchange and continuous renal replacement therapy appears to be the preferred treatment for wasp venom-induced AKI. In addition, studies on cilastatin and varespladib for wasp venom-induced AKI treatment have shown their potential as therapeutic agents. This review summarizes the available evidence on the mechanisms and treatment of wasp venom-induced AKI, with a particular focus on the role of inflammatory responses and potential targets for therapeutic drugs, and, therefore, aiming to support the development of clinical treatment against wasp venom-induced AKI.


Subject(s)
Acute Kidney Injury , Wasp Venoms , Humans , Wasp Venoms/toxicity , Acute Kidney Injury/chemically induced , Acute Kidney Injury/therapy , Kidney , Plasmapheresis , Cilastatin
9.
Toxins (Basel) ; 14(11)2022 10 27.
Article in English | MEDLINE | ID: mdl-36355986

ABSTRACT

Envenomation by elapid snakes primarily results in neurotoxic symptoms and, consequently, are the primary focus of therapeutic research concerning such venoms. However, mounting evidence suggests these venoms can additionally cause coagulopathic symptoms, as demonstrated by some Asian elapids and African spitting cobras. This study sought to investigate the coagulopathic potential of venoms from medically important elapids of the genera Naja (true cobras), Hemachatus (rinkhals), and Dendroaspis (mambas). Crude venoms were bioassayed for coagulant effects using a plasma coagulation assay before RPLC/MS was used to separate and identify venom toxins in parallel with a nanofractionation module. Subsequently, coagulation bioassays were performed on the nanofractionated toxins, along with in-solution tryptic digestion and proteomics analysis. These experiments were then repeated on both crude venoms and on the nanofractionated venom toxins with the addition of either the phospholipase A2 (PLA2) inhibitor varespladib or the snake venom metalloproteinase (SVMP) inhibitor marimastat. Our results demonstrate that various African elapid venoms have an anticoagulant effect, and that this activity is significantly reduced for cobra venoms by the addition of varespladib, though this inhibitor had no effect against anticoagulation caused by mamba venoms. Marimastat showed limited capacity to reduce anticoagulation in elapids, affecting only N. haje and H. haemachatus venom at higher doses. Proteomic analysis of nanofractionated toxins revealed that the anticoagulant toxins in cobra venoms were both acidic and basic PLA2s, while the causative toxins in mamba venoms remain uncertain. This implies that while PLA2 inhibitors such as varespladib and metalloproteinase inhibitors such as marimastat are viable candidates for novel snakebite treatments, they are not likely to be effective against mamba envenomings.


Subject(s)
Dendroaspis , Animals , Anticoagulants/toxicity , Proteomics , Elapid Venoms/toxicity , Elapidae , Snake Venoms , Phospholipases A2/toxicity , Biological Assay , Metalloproteases , Antivenins/pharmacology
10.
Toxins (Basel) ; 14(11)2022 11 11.
Article in English | MEDLINE | ID: mdl-36422958

ABSTRACT

The availability of effective, reliably accessible, and affordable treatments for snakebite envenoming is a critical and long unmet medical need. Recently, small, synthetic toxin-specific inhibitors with oral bioavailability used in conjunction with antivenom have been identified as having the potential to greatly improve outcomes after snakebite. Varespladib, a small, synthetic molecule that broadly and potently inhibits secreted phospholipase A2 (sPLA2s) venom toxins has renewed interest in this class of inhibitors due to its potential utility in the treatment of snakebite envenoming. The development of varespladib and its oral dosage form, varespladib-methyl, has been accelerated by previous clinical development campaigns to treat non-envenoming conditions related to ulcerative colitis, rheumatoid arthritis, asthma, sepsis, and acute coronary syndrome. To date, twenty-nine clinical studies evaluating the safety, pharmacokinetics (PK), and efficacy of varespladib for non-snakebite envenoming conditions have been completed in more than 4600 human subjects, and the drugs were generally well-tolerated and considered safe for use in humans. Since 2016, more than 30 publications describing the structure, function, and efficacy of varespladib have directly addressed its potential for the treatment of snakebite. This review summarizes preclinical findings and outlines the scientific support, the potential limitations, and the next steps in the development of varespladib's use as a snakebite treatment, which is now in Phase 2 human clinical trials in the United States and India.


Subject(s)
Snake Bites , Humans , Snake Bites/drug therapy , Antivenins/therapeutic use , Biological Availability , India
11.
Toxicol Lett ; 366: 26-32, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35788045

ABSTRACT

Snakebite remains a worldwide public health burden and a severely neglected tropical disease. Recent research has begun to focus on the potential use of repurposed small-molecule enzyme-inhibitors as early treatments to neutralise the effects of snake venoms. Black snakes (Pseudechis spp.) are a widespread and dangerously venomous group found throughout Australia and New Guinea. Utilising validated coagulation assays, our study assessed the efficacy of two chemically different small molecule inhibitors, a phospholipase A2 inhibitor (varespladib) and a metalloproteinase inhibitor (prinomastat), in vitro neutralisation of the anticoagulant prothrombinase-inhibiting activity of venom from seven species within the Pseudechis genus (P. australis, P. butleri, P. coletti, P. guttatus, P. papuanus, P.rossignolii, P. sp (NT).). Varespladib was shown to be highly effective at neutralising this anticoagulant activity for all seven species, but with P. coletti notably less so than the others. In contrast, prinomastat showed strong neutralisation for five out of the seven species, but was ineffective at neutralising the activity of P. coletti or P. rossignolii venoms. This suggests that varespladib binds to a highly conserved site but that prinomastat binds to a more variable site. These results build upon recent literature indicating that metalloproteinase inhibitors have cross-neutralising potential towards snake venom phospholipase A2 toxins, but with higher degrees of variability that PLA2-specific inhibitors. An important caveat is that these are in vitro tests and while suggestive of potential clinical utility, in vivo animal testing and clinical trials are required as future work.


Subject(s)
Antivenins , Elapid Venoms , Animals , Anticoagulants/pharmacology , Antivenins/pharmacology , Elapid Venoms/metabolism , Elapidae/metabolism , Enzyme Inhibitors/metabolism , Metalloproteases/metabolism , Phospholipases A2/metabolism , Snake Venoms/toxicity
12.
Toxicon ; 215: 69-76, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35724947

ABSTRACT

This study aimed to clarify whether varespladib, a phospholipase A2 (PLA2) inhibitor, can be used as a therapeutic agent for wasp sting-induced acute kidney injury (AKI). Rats were divided into control, AKI, and AKI + varespladib groups. The AKI model was established by subcutaneously injecting wasp venom at five different sites in rats. Varespladib treatment showed a significant inhibitory effect on wasp venom PLA2in vitro and in vivo. Moreover, we observed that varespladib decreased the levels of rhabdomyolysis and hemolysis markers compared with that in the AKI group. Histopathological changes in the kidney decreased significantly, and rat serum creatinine levels were reduced after varespladib administration. The significantly regulated genes in the kidney of the AKI group were mostly involved in inflammatory response pathway, and the administration of varespladib remarkably attenuated the expression of these genes. Therefore, varespladib inhibited wasp sting-induced functional and pathological damage to the kidneys. We propose that the PLA2 inhibitor varespladib protects the kidney tissue in a wasp sting-induced AKI model by inhibiting PLA2 activity.


Subject(s)
Acute Kidney Injury , Insect Bites and Stings , Wasps , Acetates , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Animals , Indoles , Keto Acids , Phospholipases A2/metabolism , Rats , Wasp Venoms
13.
Toxicon ; 214: 54-61, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35580653

ABSTRACT

The venom of the South American rattlesnake Crotalus durissus terrificus causes an irreversible neuromuscular blockade in isolated preparations due to action of the presynaptically-acting heterodimeric phospholipase A2 (PLA2) crotoxin. Some populations of this subspecies contain, in addition to crotoxin, the toxin crotamine, which acts directly on muscle fibers. In this study we used C. d. terrificus venoms with (crot+) or without (crot-) crotamine to test whether Varespladib, a PLA2 inhibitor, is able to abrogate the neuromuscular blockade induced by these venoms comparatively with crotalic antivenom. Mouse phrenic nerve-diaphragm preparations were exposed to venoms previously incubated with two different concentrations of Varepladib or antivenom, or with a mixture of these two agents, before addition to the bath. In another experimental setting, venoms were initially added to the system, followed by the addition of Varespladib or antivenom 10, 30, or 60 min after venom. At the highest concentrations tested, Varespladib and antivenom inhibited the action of the venom >80% and >70%, respectively. With lower concentrations the inhibition of neuromuscular blockade decreased, but when low doses of the two agents were incubated together with the venom, the inhibitory effect improved, underscoring a synergistic phenomenon. When added after venom, Varespladib was able to halt the progression of the neuromuscular blockade even when added at 60 min. Antivenom exhibited a lower ability to inhibit the toxic effect of the venoms in these conditions. In conclusion, the PLA2 inhibitor Varespladib is highly effective at abrogating the neuromuscular blocking activity of crotamine-positive and crotamine-negative C. d. terrificus venoms and seems to act synergistically with antivenom.


Subject(s)
Antivenins , Crotalid Venoms , Crotoxin , Indoles , Neuromuscular Blockade , Neuromuscular Diseases , Acetates/pharmacology , Animals , Antivenins/pharmacology , Crotalid Venoms/pharmacology , Crotoxin/pharmacology , Drug Synergism , Indoles/pharmacology , Keto Acids/pharmacology , Mice , Phospholipases A2
14.
Toxicon ; 213: 99-104, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35489427

ABSTRACT

In this work, we reported the efficacy of a combination of Brazilian therapeutic coralsnake antivenom (CAV) and varespladib (phospholipase A2 inhibitor - VPL) in partially neutralizing selected toxic effects of Micrurus dumerilii carinicauda coralsnake venom in rats. Venom caused local myonecrosis and systemic neurotoxicity, nephrotoxicity, and hepatotoxicity within 2 h of injection. CAV and VPL administered separately failed to prevent most of these alterations. However, a combination of CAV plus VPL offered variable protection against venom-induced coagulation disturbances, leukocytosis, and renal-hepatic morphological alterations.


Subject(s)
Coral Snakes , Acetates , Animals , Antivenins/pharmacology , Brazil , Elapid Venoms/toxicity , Indoles , Keto Acids , Rats
15.
Molecules ; 27(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35268832

ABSTRACT

Snakebite remains a significant public health burden globally, disproportionately affecting low-income and impoverished regions of the world. Recently, researchers have begun to focus on the use of small-molecule inhibitors as potential candidates for the neutralisation of key snake venom toxins and as potential field therapies. Bitis vipers represent some of the most medically important as well as frequently encountered snake species in Africa, with a number of species possessing anticoagulant phospholipase A2 (PLA2) toxins that prevent the prothrombinase complex from inducing clot formation. Additionally, species within the genus are known to exert pseudo-procoagulant activity, whereby kallikrein enzymatic toxins cleave fibrinogen to form a weak fibrin clot that rapidly degrades, thereby depleting fibrinogen levels and contributing to the net anticoagulant state. Utilising well-validated coagulation assays measuring time until clot formation, this study addresses the in vitro efficacy of three small molecule enzyme inhibitors (marimastat, prinomastat and varespladib) in neutralising these aforementioned activities. The PLA2 inhibitor varespladib showed the greatest efficacy for the neutralisation of PLA2-driven anticoagulant venom activity, with the metalloproteinase inhibitors prinomastat and marimastat both showing low and highly variable degrees of cross-neutralisation with PLA2 anticoagulant toxicity. However, none of the inhibitors showed efficacy in neutralising the pseudo-procoagulant venom activity exerted by the venom of B. caudalis. Our results highlight the complex nature of snake venoms, for which single-compound treatments will not be universally effective, but combinations might prove highly effective. Despite the limitations of these inhibitors with regards to in vitro kallikrein enzyme pseudo-procoagulant venom activity, our results further support the growing body of literature indicating the potential use of small molecule inhibitors to enhance first-aid treatment of snakebite envenoming, particularly in cases where hospital and thus antivenom treatment is either unavailable or far away.


Subject(s)
Viperidae , Animals
16.
Toxicol Lett ; 356: 54-63, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34774704

ABSTRACT

In this study, we investigated the action of varespladib (VPL) alone or in combination with a coral snake antivenom (CAV) on the local and systemic effects induced by Micrurus corallinus venom in rats. Adult male Wistar rats were exposed to venom (1.5 mg/kg - i.m.) and immediately treated with CAV (antivenom:venom ratio 1:1.5 'v/w' - i.p.), VPL (0.5 mg/kg - i.p.), or both of these treatments. The animals were monitored for 120 min and then anesthetized to collect blood samples used for haematological and serum biochemical analysis; after euthanasia, skeletal muscle, renal and hepatic tissue samples were collected for histopathological analysis. M. corallinus venom caused local oedema without subcutaneous haemorrhage or apparent necrosis formation, although there was accentuated muscle morphological damage; none of the treatments prevented oedema formation but the combination of CAV and VPL reduced venom-induced myonecrosis. Venom caused neuromuscular paralysis and respiratory impairment in approximately 60 min following envenomation; CAV alone did not prevent the neurotoxic action, whereas VPL alone prevented neurotoxic symptoms developing as did the combination of CAV and VPL. Venom induced significant increase of serum CK and AST release, mostly due to local and systemic myotoxicity, which was partially prevented by the combination of CAV and VPL. The release of hepatotoxic serum biomarkers (LDH and ALP) induced by M. corallinus venom was not prevented by CAV and VPL when individually administered; their combination effectively prevented ALP release. The venom-induced nephrotoxicity (increase in serum creatinine concentration) was prevented by all the treatments. VPL alone or in combination with CAV significantly prevented the venom-induced lymphocytosis. In conclusion, VPL shows to be effective at preventing the neurotoxic, nephrotoxic, and inflammatory activities of M. corallinus venom. In addition, VPL acts synergistically with antivenom to prevent a number of systemic effects caused by M. corallinus venom.


Subject(s)
Acetates/pharmacology , Coral Snakes/physiology , Elapid Venoms/toxicity , Indoles/pharmacology , Keto Acids/pharmacology , Phospholipase A2 Inhibitors/pharmacology , Animals , Biomarkers/blood , Blood Coagulation Disorders/chemically induced , Blood Coagulation Disorders/drug therapy , Gene Expression Regulation, Enzymologic/drug effects , L-Lactate Dehydrogenase/blood , Neuroprotective Agents/pharmacology , Phospholipases A2/genetics , Phospholipases A2/metabolism , Rats , Rats, Wistar
17.
Toxins (Basel) ; 15(1)2022 12 28.
Article in English | MEDLINE | ID: mdl-36668842

ABSTRACT

INTRODUCTION: Snakebite is an urgent, unmet global medical need causing significant morbidity and mortality worldwide. Varespladib is a potent inhibitor of venom secretory phospholipase A2 (sPLA2) that can be administered orally via its prodrug, varespladib-methyl. Extensive preclinical data support clinical evaluation of varespladib as a treatment for snakebite envenoming (SBE). The protocol reported here was designed to evaluate varespladib-methyl for SBE from any snake species in multiple geographies. METHODS AND ANALYSIS: BRAVO (Broad-spectrum Rapid Antidote: Varespladib Oral for snakebite) is a multicenter, randomized, double-blind, placebo-controlled, phase 2 study to evaluate the safety, tolerability, and efficacy of oral varespladib-methyl plus standard of care (SoC) vs. SoC plus placebo in patients presenting with acute SBE by any venomous snake species. Male and female patients 5 years of age and older who meet eligibility criteria will be randomly assigned 1:1 to varespladib-methyl or placebo. The primary outcome is the Snakebite Severity Score (SSS) that has been modified for international use. This composite outcome is based on the sum of the pulmonary, cardiovascular, nervous, hematologic, and renal systems components of the updated SSS. ETHICS AND DISSEMINATION: This protocol was submitted to regulatory authorities in India and the US. A Clinical Trial No Objection Certificate from the India Central Drugs Standard Control Organisation, Drug Controller General-India, and a Notice to Proceed from the US Food and Drug Administration have been obtained. The study protocol was approved by properly constituted, valid institutional review boards or ethics committees at each study site. This study is being conducted in compliance with the April 1996 ICH Guidance for Industry GCP E6, the Integrated Addendum to ICH E6 (R2) of November 2016, and the applicable regulations of the country in which the study is conducted. The trial is registered on Clinical trials.gov, NCT#04996264 and Clinical Trials Registry-India, 2021/07/045079 000062.


Subject(s)
Phospholipases A2, Secretory , Snake Bites , Humans , Male , Female , Snake Bites/drug therapy , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase II as Topic
18.
Front Pharmacol, v. 12, 812295, jan. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4137

ABSTRACT

Varespladib (VPL) was primarily developed to treat inflammatory disturbances associated with high levels of serum phospholipase A2 (PLA2). VPL has also demonstrated to be a potential antivenom support agent to prevent PLA2-dependent effects produced by snake venoms. In this study, we examined the action of VPL on the coagulant, haemorrhagic and enzymatic activities of Lachesis muta rhombeata (South-American bushmaster) venom. Conventional colorimetric enzymatic assays were performed for PLA2, caseinolytic and esterasic activities; in vitro coagulant activities for prothrombin time (PT) and activated partial thromboplastin time (aPTT) were performed in rat citrated plasma through a quick timer coagulometer, whereas the dimensions of haemorrhagic haloes obtained after i.d. injections of venom in Wistar rats were determined using ImageJ software. Venom (1 mg/ml) exhibited accentuated enzymatic activities for proteases and PLA2 in vitro, with VPL abolishing the PLA2 activity from 0.01 mM; VPL did not affect caseinolytic and esterasic activities at any tested concentrations (0.001–1 mM). In rat citrated plasma in vitro, VPL (1 mM) alone efficiently prevented the venom (1 mg/ml)-induced procoagulant disorder associated to extrinsic (PT) pathway, whereas its association with a commercial antivenom successfully prevented changes in both intrinsic (aPTT) and extrinsic (PT) pathways; commercial antivenom by itself failed to avoid the procoagulant disorders by this venom. Venom (0.5 mg/kg)-induced hemorrhagic activity was slightly reduced by VPL (1 mM) alone or combined with antivenom (antivenom:venom ratio 1:3 ‘v/w’) in rats, with antivenom alone producing no protective action on this parameter. In conclusion, VPL does not inhibit other major enzymatic groups of L. m. rhombeata venom, with its high PLA2 antagonize activity efficaciously preventing the venom-induced coagulation disturbances.

19.
Front Pharmacol ; 12: 754304, 2021.
Article in English | MEDLINE | ID: mdl-34744732

ABSTRACT

Human envenoming by Australian brown snakes (Pseudonaja spp.) may result in potentially life-threatening hypotension and subsequent cardiovascular collapse. There have been relatively few studies of the cardiovascular and sympathetic effects of Pseudonaja spp. venoms. In this study, we have examined the effects of venom from five brown snake species-P. affinis, aspidorhyncha, inframacula, nuchalis, and textilis-on cardiac inotropic and chronotropic responses, vascular tone, and sympathetic nerve-induced vascular contractions in rat isolated tissues. The role of phospholipases A2 (PLA2s) in venom-induced effects was assessed with the sPLA2 inhibitor varespladib. In rat isolated left and right atria, there were no physiologically relevant effects of Pseudonaja venoms (0.1-30 µg/ml) on left atrial force of contraction (inotropy) or right atrial rate (chronotropy). In contrast, in isolated small mesenteric arteries precontracted with a thromboxane mimetic, each of the five brown snake venoms (at 30 µg/ml) caused marked vasorelaxation (-60 to -90% of contractile tone). Pretreatment with varespladib (1 µM) significantly inhibited the vasorelaxation caused by P. aspidorhyncha, P. nuchalis, and P. textilis venoms. Electrically induced sympathetic nerve-mediated contractions of mesenteric arteries were significantly attenuated by only P. textilis, and P. affinis venoms (30 µg/ml) and these sympatholytic effects were inhibited by varespladib (1 µM). Based on their inhibition with the sPLA2 inhibitor varespladib, we conclude that PLA2 toxins in P. aspidorhyncha, P. nuchalis, and P. textilis venoms are involved in brown snake venom-induced vasorelaxation and the sympatholytic effects of P. affinis, and P. textilis venoms. Our study supports the promising potential role of varespladib as an initial (pre-referral) and/or adjunct (in combination with antivenom) therapeutic agent for brown snake envenoming.

20.
Toxicon ; 202: 40-45, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34562493

ABSTRACT

Varespladib (LY315920) is a synthetic phospholipase A2 (PLA2) inhibitor that has been demonstrating antiophidic potential against snake venoms that present PLA2 neurotoxins. In this study, we evaluate the capacity of Varespladib to inhibit the neuromuscular effects of crotoxin (CTX), the main toxic component of Crotalus durissus terrificus snake venom, and its PLA2 subunit (CB). We performed a myographic study to compare the neuromuscular effects of CTX or CB and the mixture of these substances plus Varespladib in mice phrenic nerve-diaphragm muscle preparations. CTX (5 µg/mL), CB (20 µg/mL), or toxin-inhibitor mixtures pre-incubated with different concentration ratios of Varespladib (1:0.25; 1:0.5; 1:1; w/w) were added to the preparations and maintained throughout the experimentation period. Myotoxicity was assessed by light microscopic analysis of diaphragm muscle after myographic study. CTX and CB blocked the nerve-evoked twitches, and only CTX induced histological alterations in diaphragm muscle. Pre-incubation with Varespladib abolished the muscle-paralyzing activity of CTX and CB, and also the muscle-damaging activity of CTX. These findings emphasize the clinical potential of Varespladib in mitigating the toxic effects of C. d. terrificus snakebites and as a research tool to advance the knowledge of the mechanism of action of snake toxins.


Subject(s)
Crotalid Venoms , Crotoxin , Acetates , Animals , Crotalid Venoms/toxicity , Crotoxin/toxicity , Indoles , Keto Acids , Mice , Myotoxicity
SELECTION OF CITATIONS
SEARCH DETAIL