Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 714
Filter
1.
Front Plant Sci ; 15: 1408833, 2024.
Article in English | MEDLINE | ID: mdl-39091312

ABSTRACT

Several plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In this study, we investigated the role of PAA during interactions between the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 (PtoDC3000) and the model plant host, Arabidopsis thaliana. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) of PtoDC3000 converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we further demonstrated the biochemical versatility of AldA by conducting substrate screening and steady-state kinetic analyses, and showed that AldA can use both IAAld and phenylacetaldehyde as substrates to produce IAA and PAA, respectively. Quantification of auxin in infected plant tissue showed that AldA-dependent synthesis of either IAA or PAA by PtoDC3000 does not contribute significantly to the increase in auxin levels in infected A. thaliana leaves. Using available arogenate dehydratase (adt) mutant lines of A. thaliana compromised for PAA synthesis, we observed that a reduction in PAA-Asp and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results provide evidence that PAA/IAA homeostasis in A. thaliana influences the outcome of plant-microbial interactions.

2.
Food Chem X ; 23: 101621, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39071928

ABSTRACT

The value of Baijiu is affected by its flavor, age, and adulteration. Therefore, a simple and rapid identification method is crucial for the market. In this study, we present a rapid, non-intrusive identification technique for Baijiu utilizing the Tyndall effect combined with chemometrics analysis. Our experiment begins illuminating Baijiu with a 405 nm wavelength laser and recording the resulting bright light path due to the Tyndall effect. To further analyze the color and brightness information, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Hierarchical Cluster Analysis (HCA), and Multilayer Perceptron (MLP) were employed. This study establishes correlations between the brightness of the Tyndall light path and seven trace flavor compounds in Baijiu. The findings demonstrate that this method effectively identifies the flavor, age cellar, and adulteration of Baijiu and also quantitatively detects the concentrations of flavor compounds. Additionally, an analysis platform was developed to enable the rapid identification of Baijiu.

3.
World J Gastrointest Oncol ; 16(7): 3230-3240, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39072174

ABSTRACT

BACKGROUND: Aldehyde (ALDH2) dysfunction has been verified to contribute to human cancers. AIM: To investigate the molecular mechanism and biological function of ALDH2 in colorectal cancer (CRC) progression. METHODS: Human CRC cells with high expression of ALDH2 were screened. After shRNA ALDH2 (sh-ALDH2) transfection, phenotypes [proliferation, apoptosis, acetaldehyde (ACE) accumulation, DNA damage] of CRC cells were verified using cell counting kit-8, flow cytometry, ACE assay, and comet assays. Western blotting was used for evaluation of the apoptosis proteins (Bax and Bcl-2) and JNK/p38 MAPK pathway-associated proteins. We subjected CVT-10216 (a selective ALDH2 inhibitor) to nude mice for establishment of SK-CO-1 mouse xenograft model and observed the occurrence of CRC. RESULTS: The inhibition of ALDH2 could promote the malignant structures of CRC cells, including apoptosis, ACE level, and DNA damage, and cell proliferation was decreased in the sh-ALDH2 group, whereas ALDH2 agonist Alda-1 reversed features. ALDH2 repression can cause ACE accumulation, whereas ACE enhanced CRC cell features related to increased DNA damage. Additionally, ALDH2 repression led to JNK/P38 MAPK activation, and apoptosis, ACE accumulation, and DNA damage were inhibited after p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125 addition. ACE accumulation and raised DNA damage were recognized in CVT-10216 treated-mouse tumor tissues in vivo. CONCLUSION: The repression of ALDH2 led to ACE accumulation, inducing cell apoptosis and DNA damage by the JNK/p38 MAPK signaling pathway activation in CRC.

4.
J Biol Chem ; : 107559, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002679

ABSTRACT

Many anaerobic microorganisms use the bifunctional aldehyde and alcohol dehydrogenase, AdhE, to produce ethanol. One such organism is Clostridium thermocellum, which is of interest for cellulosic biofuel production. In the course of engineering this organism for improved ethanol tolerance and production, we observed that AdhE was a frequent target of mutations. Here, we characterized those mutations to understand their effects on enzymatic activity, as well ethanol tolerance and product formation in the organism. We found that there is a strong correlation between NADH-linked alcohol dehydrogenase (ADH) activity and ethanol tolerance. Mutations that decrease NADH-linked ADH activity increase ethanol tolerance; correspondingly, mutations that increase NADH-linked ADH activity decrease ethanol tolerance. We also found that the magnitude of ADH activity did not play a significant role in determining ethanol titer. Increasing ADH activity had no effect on ethanol titer. Reducing ADH activity had indeterminate effects on ethanol titer, sometimes increasing and sometimes decreasing it. Finally, this study shows that the cofactor specificity of ADH activity was found to be the primary factor affecting ethanol yield. We expect that these results will inform efforts to use AdhE enzymes in metabolic engineering approaches.

5.
World J Gastrointest Oncol ; 16(6): 2697-2715, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994159

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) has a high incidence and mortality. Recent studies have shown that indole derivatives involved in gut microbiota metabolism can impact the tumorigenesis, progression, and metastasis of CRC. AIM: To investigate the effect of indole-3-acetaldehyde (IAAD) on CRC. METHODS: The effect of IAAD was evaluated in a syngeneic mouse model of CRC and CRC cell lines (HCT116 and DLD-1). Cell proliferation was assessed by Ki-67 fluorescence staining and cytotoxicity tests. Cell apoptosis was analysed by flow cytometry after staining with Annexin V-fluorescein isothiocyanate and propidium iodide. Invasiveness was investigated using the transwell assay. Western blotting and real-time fluorescence quantitative polymerase chain reaction were performed to evaluate the expression of epithelial-mesenchymal transition related genes and aryl hydrocarbon receptor (AhR) downstream genes. The PharmMapper, SEA, and SWISS databases were used to screen for potential target proteins of IAAD, and the core proteins were identified through the String database. RESULTS: IAAD reduced tumorigenesis in a syngeneic mouse model. In CRC cell lines HCT116 and DLD1, IAAD exhibited cytotoxicity starting at 24 h of treatment, while it reduced Ki67 expression in the nucleus. The results of flow cytometry showed that IAAD induced apoptosis in HCT116 cells but had no effect on DLD1 cells, which may be related to the activation of AhR. IAAD can also increase the invasiveness and epithelial-mesenchymal transition of HCT116 and DLD1 cells. At low concentrations (< 12.5 µmol/L), IAAD only exhibited cytotoxic effects without promoting cell invasion. In addition, predictions based on online databases, protein-protein interaction analysis, and molecular docking showed that IAAD can bind to matrix metalloproteinase-9 (MMP9), angiotensin converting enzyme (ACE), poly(ADP-ribose) polymerase-1 (PARP1), matrix metalloproteinase-2 (MMP2), and myeloperoxidase (MPO). CONCLUSION: Indole-3-aldehyde can induce cell apoptosis and inhibit cell proliferation to prevent the occurrence of CRC; however, at high concentrations (≥ 25 µmol/L), it can also promote epithelial-mesenchymal transition and invasion in CRC cells. IAAD activates AhR and directly binds MMP9, ACE, PARP1, MMP2, and MPO, which partly reveals why it has a bidirectional effect.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124797, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38991618

ABSTRACT

Discrimination of segmented Baijiu contributes to stabilizing the quality of products, improving revenue-generating effects. A fluorescence sensor array is constructed based on four fluorescence characteristic peaks of terbium@lanthanum metal-organic framework (Tb@La-MOF). Its fluorescence signal is specifically quenched, when Tb@La-MOF encounters acetaldehyde. Acetaldehyde may inhibit the absorption of energy by the organic ligands in MOF, or/and hydrogen bonding with -COOH on the organic ligand, resulting in energy transfer to Tb(Ⅲ). According to this, the quantitative detection of acetaldehyde is completed with a range of 10-300 µM and the detection limit of 5.5 µM. At the same time, it has been successfully applied to the discrimination of segmented Baijiu. Fifteen segmented from three wine cellars are 100 % discriminated with the combined processing of sensor arrays and analytical methods. Accuracy, simplicity, and low-cost are highlights of this fluorescence sensor array, which has considerable potential for application in detection, production, and food field.

7.
Article in English | MEDLINE | ID: mdl-38991992

ABSTRACT

Protective effect of quercetin against acetaldehyde was evaluated using the cultured hepatocyte models with aldehyde dehydrogenase (ALDH) isozyme deficiency (aldh2-kd and aldh1a1-kd). The quercetin-induced cytoprotection against acetaldehyde in the ALDH1A1-deficient mutant (aldh1a1-kd) was weaker than that in wild type. Furthermore, quercetin did not enhance the ALDH activity in aldh1a1-kd cells, suggesting that ALDH1A1 is involved in the quercetin-induced cytoprotection.

8.
Food Chem ; 460(Pt 1): 140461, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39047481

ABSTRACT

This study endeavors to examine the levels of risk factors in alcoholic beverages and propose mitigation strategies. GC-MS analysis was utilized to assess risk factors in various distilled-spirits. The content of such risk factors in spirits ranked as follows: vodka ≈ gin < baijiu < whiskey < brandy, and all were adhering to the Chinese national standard. Additionally, a method was refined to alleviate these risks, employing various reagents for activated carbon modification and evaluating their adsorption efficiency for risk factors reduction. Oxalic acid-modified activated carbon exhibited promising adsorption rates for risk factors with acceptable flavor compounds loss, rendering it a prospective solution for health hazard reduction. Characterization via SEM and nitrogen-adsorption-desorption was conducted on the optimal material, complemented by sensory experiments to optimize its application. This study offers valuable insights into the content of risk factors in alcoholic beverages, aiding in improving quality and safety of alcoholic beverages.

9.
J Transl Med ; 22(1): 697, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075523

ABSTRACT

BACKGROUND: Aldehyde dehydrogenase 2 (ALDH2) is critical for alcohol metabolism by converting acetaldehyde to acetic acid. In East Asian descendants, an inactive genetic variant in ALDH2, rs671, triggers an alcohol flushing response due to acetaldehyde accumulation. As alcohol flushing is not exclusive to those of East Asian descent, we questioned whether additional ALDH2 genetic variants can drive facial flushing and inefficient acetaldehyde metabolism using human testing and biochemical assays. METHODS: After IRB approval, human subjects were given an alcohol challenge (0.25 g/kg) while quantifying acetaldehyde levels and the physiological response (heart rate and skin temperature) to alcohol. Further, by employing biochemical techniques including human purified ALDH2 proteins and transiently transfected NIH 3T3 cells, we characterized two newly identified ALDH2 variants for ALDH2 enzymatic activity, ALDH2 dimer/tetramer formation, and reactive oxygen species production after alcohol treatment. RESULTS: Humans heterozygous for rs747096195 (R101G) or rs190764869 (R114W) had facial flushing and a 2-fold increase in acetaldehyde levels, while rs671 (E504K) had facial flushing and a 6-fold increase in acetaldehyde levels relative to wild type ALDH2 carriers. In vitro studies with recombinant R101G and R114W ALDH2 enzyme showed a reduced efficiency in acetaldehyde metabolism that is unique when compared to E504K or wild-type ALDH2. The effect is caused by a lack of functional dimer/tetramer formation for R101G and decreased Vmax for both R101G and R114W. Transiently transfected NIH-3T3 cells with R101G and R114W also had a reduced enzymatic activity by ~ 50% relative to transfected wild-type ALDH2 and when subjected to alcohol, the R101G and R114W variants had a 2-3-fold increase in reactive oxygen species formation with respect to wild type ALDH2. CONCLUSIONS: We identified two additional ALDH2 variants in humans causing facial flushing and acetaldehyde accumulation after alcohol consumption. As alcohol use is associated with a several-fold higher risk for esophageal cancer for the E504K variant, the methodology developed here to characterize ALDH2 genetic variant response to alcohol can lead the way precision medicine strategies to further understand the interplay of alcohol consumption, ALDH2 genetics, and cancer.


Subject(s)
Acetaldehyde , Aldehyde Dehydrogenase, Mitochondrial , Ethanol , Genetic Variation , Acetaldehyde/metabolism , Humans , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Animals , Mice , Ethanol/metabolism , NIH 3T3 Cells , Reactive Oxygen Species/metabolism , Male , Adult , Female , Flushing/metabolism , Flushing/genetics
10.
Cell Rep ; 43(7): 114406, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38963759

ABSTRACT

Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.


Subject(s)
Acetaldehyde , Melanoma , Zebrafish , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Melanoma/drug therapy , Acetaldehyde/metabolism , Acetaldehyde/pharmacology , Animals , Humans , Cell Line, Tumor , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Histones/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Transcription, Genetic/drug effects , Neural Crest/metabolism , Neural Crest/drug effects , Gene Expression Regulation, Neoplastic/drug effects
11.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930972

ABSTRACT

Copper (II), a vital fungicide in organic viticulture, also acts as a wine oxidation catalyst. However, limited data are currently available on the impact that maximum allowed copper (II) ion doses in wine grapes at harvest can have on aged wine quality. This was the focus of the present study. We investigated the copper (II) effects by producing both white and red wines from musts containing three initial metal concentrations according to the limits set for organic farming. In detail, the influence of copper (II) on fermentation evolution, chromatic characteristics, and phenolic compounds was evaluated. Interestingly, the white wine obtained with the highest permitted copper (II) dose initially exceeded the concentration of 1.0 mg/L at fermentation completion. However, after one year of storage, the copper (II) content fell below 0.2 ± 0.01 mg/L. Conversely, red wines showed copper (II) levels below 1.0 mg/L at the end of fermentation, but the initial copper (II) level in musts significantly affected total native anthocyanins, color intensity, hue, and acetaldehyde concentration. After 12-month aging, significant differences were observed in polymeric pigments, thus suggesting a potential long-term effect of copper (II) on red wine color stability.


Subject(s)
Acetaldehyde , Copper , Fermentation , Phenols , Vitis , Wine , Wine/analysis , Copper/analysis , Acetaldehyde/analysis , Phenols/analysis , Phenols/chemistry , Vitis/chemistry , Color , Anthocyanins/analysis , Anthocyanins/chemistry
12.
J Hazard Mater ; 474: 134747, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38843638

ABSTRACT

We present a new method for investigating the oxidation and emission behavior of air-permeable materials. Employing this method, a differentiated statement can be made about the extent to which critical volatile organic compounds (VOCs) such as formaldehyde, acetaldehyde, and acrolein are contained in the material as impurities or formed by thermo-oxidative degradation of the polymer matrix in the use phase. The parameters affecting methods of VOC analysis are reviewed and considered for the developed method. The molecular mechanisms of VOC formation are discussed. Toxicological implications of the reaction kinetics are put into context with international guidelines and threshold levels. This new method enables manufacturers of cellular materials not only to determine the oxidative stability of their products but also to optimize them specifically for higher durability. ENVIRONMENTAL IMPLICATION: Cellular materials are ubiquitous in the technosphere. They play a crucial role in various microenvironments such as automotive interiors, building insulation, and cushioning. These materials are susceptible to oxidative breakdown, leading to the release of formaldehyde, acetaldehyde, and acrolein. The ecotoxicological profiles of these compounds necessitate monitoring and regulation. The absence of reproducible and reliable analytical methods restricts research and development aimed at risk assessment and mitigation. This work significantly enhances the toolbox for optimizing the oxidative stability of any open-cell cellular material and evaluating these materials in terms of their temperature-dependent oxidation and emission behavior.

13.
Sci Total Environ ; 932: 172941, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38703844

ABSTRACT

Different Br-doped metal-organic frameworks (MOFs) derived (Brx@UiO-66) have been prepared by heat treatment using UiO-66 as the precursor. The experimental results showed that Br0.2@UiO-66 exhibited the best photocatalytic oxidation and adsorption performances toward acetaldehyde. In the dynamic system, the acetaldehyde removal rate and adsorption capacity of Br0.2@UiO-66 were 93.2 % and 230.59 mg/g, respectively. The improvement of the photocatalytic performance can be attributed to the presence of Br ions and CBr bonds, which facilitated the rapid separation of electrons and holes and the production of •O2-. In addition, Br0.2@UiO-66 had a better adsorption performance than 300UiO-66, mainly because of the increased Lewis acidity of the metal active sites due to Br doping. Radical capture experiments indicated that •O2- and e- were the primary active substances in acetaldehyde oxidation, and allowed establishing the possible mechanism of acetaldehyde oxidation. This work shows that MOFs can have high catalytic oxidation performances toward volatile organic compounds (VOCs) while retaining their adsorption capacity, and can be used for practical applications in the adsorption-catalytic integrated degradation of VOCs.

14.
J Hazard Mater ; 472: 134382, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703675

ABSTRACT

The photocatalytic efficiency for removing volatile organic compounds (VOCs) is significantly influenced by operational parameters like humidity and flow velocity, exhibiting notable and inconsistent fluctuations in both lab-scale and large-scale demonstrations. In this study, operando spectroscopy and isotope analysis were employed to investigate the correlation between humidity levels and degradation of gaseous acetaldehyde using TiO2 photocatalysts, aiming to demonstrate the scaling-up of photocatalytic air purifier. It was observed that rate constants for the mineralization of acetaldehyde rapidly decreased by 30% as relative humidity increased from 25% to 80% in the flow system (with an air velocity, v = 0.78 m/s). However, batch system showed smaller change with only a 10% reduction of the rate constant. Humidity fluctuations were more pronounced under high-speed conditions and were amplified in air purifier (v = 3.8 m/s). Time-resolved operando spectroscopy using an 13C isotope of acetaldehyde revealed that humidity's distinct role in dark adsorption and photocatalytic reactions. Water was found to inhibit the formation of crotonaldehyde during aldol condensation reaction in dark condition. Moreover, water suppressed photocatalytic mineralization by inhibiting acetate oxidation to formate. These findings provide valuable insights for improving realistic air purification processes, underscoring the importance of identifying key intermediates and controlling humidity to enhance the selectivity of gaseous pollutant oxidation reactions.

15.
JMIR Public Health Surveill ; 10: e49826, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38796304

ABSTRACT

BACKGROUND: The alcohol-induced facial flushing phenotype (flushing) is common among East Asians. Despite a small intake of alcohol, they experience heightened levels of acetaldehyde, a group-1 carcinogen, which, in turn, causes unpleasant symptoms such as redness, acting as a robust protective mechanism against consuming alcohol. However, some individuals with this genetic trait exhibit weakened alcohol restraint, which increases the risk of developing alcohol-related cancers, such as esophageal and head or neck cancer, by several times. Although this flushing phenomenon is crucial for public health, there is a paucity of studies that have comprehensively investigated the effect of flushing or its genotype on alcohol consumption in a large group of East Asians while controlling for various sociodemographic and health-related variables at a country level. OBJECTIVE: This 2-year cross-sectional study aims to explore the effect of flushing on drinking behavior in Koreans and to examine whether the effect varies across sociodemographic and health-related factors. METHODS: We used data from the Korea National Health and Nutrition Examination Survey (KNHANES) for 2019 and 2020 conducted by the Korea Disease Control and Prevention Agency. Our sample comprised 10,660 Korean adults. The study investigated the association of 26 variables, including flushing, with drinking frequency and amount. The effect of flushing was examined with and without adjusting for the other 25 variables using multinomial logistic regression analysis. In addition, we tested the interaction effect with flushing and conducted a simple effect analysis. We used complex sample design elements, including strata, clusters, and weights, to obtain unbiased results for the Rao-Scott χ2 test, 2-tailed t test, and multinomial logistic regression analysis. RESULTS: The suppressive effect of flushing was significant (P<.001) across all pronounced categories of alcohol consumption in 2019. The ranges of standardized regression slopes and odds ratios (ORs) were -6.70≥ß≥-11.25 and 0.78≥OR≥0.50 for frequency and -5.37≥ß≥-17.64 and 0.73≥OR≥0.36 for amount, respectively. The effect became somewhat stronger when adjusted for confounders. The effect also exhibited an overall stronger trend as the severity of alcohol consumption increased. The ß values and ORs were consistently smaller in 2020 compared to the previous year. A simple effect analysis revealed a diminished alcohol-suppressive effect of flushing on alcohol consumption for specific groups (eg, those with low levels of education, limited family support, physical labor, or health-related issues). CONCLUSIONS: Our findings suggest that flushing suppresses drinking in Koreans overall but has little or no effect in certain susceptible populations. Therefore, health authorities should conduct targeted epidemiological studies to assess drinking patterns and disease profiles, particularly regarding alcohol-related cancers, and establish effective preventive measures tailored to this population.


Subject(s)
Alcohol Drinking , Flushing , Phenotype , Humans , Republic of Korea/epidemiology , Male , Cross-Sectional Studies , Alcohol Drinking/epidemiology , Alcohol Drinking/adverse effects , Female , Flushing/epidemiology , Adult , Middle Aged , Nutrition Surveys , Aged
16.
Fungal Biol Biotechnol ; 11(1): 4, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664850

ABSTRACT

BACKGROUND: Although Basidiomycota produce pharmaceutically and ecologically relevant natural products, knowledge of how they coordinate their primary and secondary metabolism is virtually non-existent. Upon transition from vegetative mycelium to carpophore formation, mushrooms of the genus Psilocybe use L-tryptophan to supply the biosynthesis of the psychedelic tryptamine alkaloid psilocybin with the scaffold, leading to a strongly increased demand for this particular amino acid as this alkaloid may account for up to 2% of the dry mass. Using Psilocybe mexicana as our model and relying on genetic, transcriptomic, and biochemical methods, this study investigated if L-tryptophan biosynthesis and degradation in P. mexicana correlate with natural product formation. RESULTS: A comparative transcriptomic approach of gene expression in P. mexicana psilocybin non-producing vegetative mycelium versus producing carpophores identified the upregulation of L-tryptophan biosynthesis genes. The shikimate pathway genes trpE1, trpD, and trpB (encoding anthranilate synthase, anthranilate phosphoribosyltransferase, and L-tryptophan synthase, respectively) were upregulated in carpophores. In contrast, genes idoA and iasA, encoding indole-2,3-dioxygenase and indole-3-acetaldehyde synthase, i.e., gateway enzymes for L-tryptophan-consuming pathways, were massively downregulated. Subsequently, IasA was heterologously produced in Escherichia coli and biochemically characterized in vitro. This enzyme represents the first characterized microbial L-tryptophan-preferring acetaldehyde synthase. A comparison of transcriptomic data collected in this study with prior data of Psilocybe cubensis showed species-specific differences in how L-tryptophan metabolism genes are regulated, despite the close taxonomic relationship. CONCLUSIONS: The upregulated L-tryptophan biosynthesis genes and, oppositely, the concomitant downregulated genes encoding L-tryptophan-consuming enzymes reflect a well-adjusted cellular system to route this amino acid toward psilocybin production. Our study has pilot character beyond the genus Psilocybe and provides, for the first time, insight in the coordination of mushroom primary and secondary metabolism.

17.
Plants (Basel) ; 13(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674574

ABSTRACT

Volatile organic compounds (VOCs) emitted by plants may help in understanding the status of a plant's physiology and its coping with mild to severe stress. Future climatic projections reveal that shifts in temperature and CO2 availability will occur, and plants may incur the uncoupling of carbon assimilation and synthesis of key molecules. This study explores the patterns of emissions of key VOCs (isoprene, methanol, acetaldehyde, and acetic acid) emitted by poplar leaves (more than 350) under a combined gradient of temperature (12-42 °C) and air CO2 concentration (400-1500 ppm), along with measurements of photosynthetic rates and stomatal conductance. Isoprene emission exhibited a rise with temperature and CO2 availability, peaking at 39 °C, the temperature at which methanol emission started to peak, illustrating the limit of stress tolerance to severe damage. Isoprene emission was uncoupled from the photosynthesis rate, indicating a shift from the carbon source for isoprene synthesis, while assimilation was decreased. Methanol and acetaldehyde emissions were correlated with stomatal conductance and peaked at 25 °C and 1200 ppm CO2. Acetic acid emissions lacked a clear correlation with stomatal conductance and the emission pattern of its precursor acetaldehyde. This study offers crucial insights into the limitations of photosynthetic carbon and stress tolerance.

18.
Cell Cycle ; 23(4): 369-384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38571319

ABSTRACT

Acetaldehyde, a chemical that can cause DNA damage and contribute to cancer, is prevalently present in our environment, e.g. in alcohol, tobacco, and food. Although aldehyde potentially promotes crosslinking reactions among biological substances including DNA, RNA, and protein, it remains unclear what types of DNA damage are caused by acetaldehyde and how they are repaired. In this study, we explored mechanisms involved in the repair of acetaldehyde-induced DNA damage by examining the cellular sensitivity to acetaldehyde in the collection of human TK6 mutant deficient in each genome maintenance system. Among the mutants, mismatch repair mutants did not show hypersensitivity to acetaldehyde, while mutants deficient in base and nucleotide excision repair pathways or homologous recombination (HR) exhibited higher sensitivity to acetaldehyde than did wild-type cells. We found that acetaldehyde-induced RAD51 foci representing HR intermediates were prolonged in HR-deficient cells. These results indicate a pivotal role of HR in the repair of acetaldehyde-induced DNA damage. These results suggest that acetaldehyde causes complex DNA damages that require various types of repair pathways. Mutants deficient in the removal of protein adducts from DNA ends such as TDP1-/- and TDP2-/- cells exhibited hypersensitivity to acetaldehyde. Strikingly, the double mutant deficient in both TDP1 and RAD54 showed similar sensitivity to each single mutant. This epistatic relationship between TDP1-/- and RAD54-/- suggests that the protein-DNA adducts generated by acetaldehyde need to be removed for efficient repair by HR. Our study would help understand the molecular mechanism of the genotoxic and mutagenic effects of acetaldehyde.


Subject(s)
Acetaldehyde , DNA Damage , DNA Repair , Homologous Recombination , Acetaldehyde/toxicity , Humans , Homologous Recombination/drug effects , Homologous Recombination/genetics , DNA Repair/drug effects , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Mutation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line
19.
Chemphyschem ; 25(13): e202400208, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38594204

ABSTRACT

Photoionization and dissociative photoionization of acetaldehyde (CH3CHO) in the 10.0-13.7 eV energy range are studied by using synchrotron radiation double imaging photoelectron photoion coincidence spectroscopy (i2PEPICO). The X2A' and A2A" electronic states of CH3CHO+ as well as the Franck-Condon gap region between these two states have been populated with several vibrational sequences and assigned in the high-resolution slow photoelectron spectrum (SPES). The adiabatic ionization energies (AIEs) of the X2A' and A2A" states are measured at 10.228±0.006 and 12.52±0.05 eV, respectively. The present results show that the X2A' state is a stable state while the A2A" state is fully dissociative to produce CH3CO+, CHO+ and CH4 + fragment ions. The 0 K appearance energies (AE0K) of CH3CO+ and CHO+ fragment ions are determined through the modeling of the breakdown diagram, i. e., AE0K(CH3CO+)=10.89±0.01 eV (including a reverse barrier of ~0.19 eV) and AE0K(CHO+)=11.54±0.05 eV. In addition, the dissociation mechanisms of CH3CHO+ including statistical dissociation, direct bond breaking and isomerization are discussed with the support of the calculated dissociation limits and transition state energies.

20.
Biodegradation ; 35(5): 539-549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38573500

ABSTRACT

Acetaldehyde (AL), a primary carcinogen, not only pollutes the environment, but also endangers human health after drinking alcohol. Here a promising bacterial strain was successfully isolated from a white wine cellar pool in the province of Shandong, China, and identified as Bacillus velezensis-YW01 with 16 S rDNA sequence. Using AL as sole carbon source, initial AL of 1 g/L could be completely biodegraded by YW01 within 84 h and the cell-free extracts of YW01 has also been detected to biodegrade the AL, which indicate that YW01 is a high-potential strain for the biodegradation of AL. The optimal culture conditions and the biodegradation of AL of YW01 are at pH 7.0 and 38 °C, respectively. To further analyze the biodegradation mechanism of AL, the whole genome of YW01 was sequenced. Genes ORF1040, ORF1814 and ORF0127 were revealed in KEGG, which encode for acetaldehyde dehydrogenase. Furthermore, ORF0881 and ORF052 encode for ethanol dehydrogenase. This work provides valuable information for exploring metabolic pathway of converting ethanol to AL and subsequently converting AL to carboxylic acid compounds, which opened up potential pathways for the development of microbial catalyst against AL.


Subject(s)
Acetaldehyde , Bacillus , Biodegradation, Environmental , Genome, Bacterial , Bacillus/genetics , Bacillus/metabolism , Acetaldehyde/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL