Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
1.
EJNMMI Radiopharm Chem ; 9(1): 53, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042331

ABSTRACT

BACKGROUND: 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is commonly used for diagnosis of dementia because brain glucose metabolism reflects neuronal activity. However, as [18F]FDG is an analogue of glucose, accumulation of tracer in the brain is affected by plasma glucose levels. In contrast, cerebral blood flow (CBF) tracers are theoretically unaffected by plasma glucose levels and are therefore expected to be useful alternatives for the diagnosis of dementia in patients with diabetes. The techniques currently used for CBF imaging using single photon emission computed tomography (SPECT) and [15O]H2O positron emission tomography (PET), but these are limited by their insufficient resolution and sensitivity for regional brain imaging, especially in patients with brain atrophy. N-isopropyl-4-[11C]methylamphetamine ([11C]MMP) is a possible CBF tracer with high resolution and sensitivity that exhibits comparable performance to that of [15O]H2O in conscious monkey brains. We performed process validation of the radiosynthesis and preclinical development of [11C]MMP prior to clinical translation. RESULTS: The decay-corrected yields of [11C]MMP at the end of synthesis were 41.4 ± 6.5%, with 99.7 ± 0.3% radiochemical purity, and 192.3 ± 22.5 MBq/nmol molar activity. All process validation batches complied with the product specifications. The acute toxicity of MMP was evaluated at a dose of 3.55 mg/kg body weight, which is 10,000 times the potential maximum clinical dose of [11C]MMP. The acute toxicity of [11C]MMP injection at 150 or 200 times, to administer a postulated dose of 740 MBq of [11C]MMP, was also evaluated after the decay-out of 11C. No acute toxicity of MMP and [11C]MMP injection was found. No mutagenic activity was observed for MMP. The effective dose calculated according to the Medical Internal Radiation Dose (MIRD) method was 5.4 µSv/MBq, and the maximum absorbed dose to the bladder wall was 57.6 µGy/MBq. MMP, a derivative of phenylalkylamine, showed binding to the sigma receptor, but had approximately 1/100 of the affinity of existing sigma receptor imaging agents. The affinity for other brain neuroreceptors was low. CONCLUSIONS: [11C]MMP shows acceptable pharmacological safety at the dose required for adequate PET imaging. The potential risk associated with [11C]MMP PET imaging is well within the acceptable dose limit.

2.
J Labelled Comp Radiopharm ; 67(9): 324-329, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38845124

ABSTRACT

A new automated radiosynthesis of [11C]2-(2,6-difluoro-4-((2-(N-methylphenylsulfonamido)ethyl)thio)phenoxy)acetamide ([11C]K2), a radiopharmaceutical for the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, is reported. Although manual syntheses have been described, these are unsuitable for routine production of larger batches of [11C]K2 for (pre)clinical PET imaging applications. To meet demands for the imaging agent from our functional neuroimaging collaborators, herein, we report a current good manufacturing practice (cGMP)-compliant synthesis of [11C]K2 using a commercial synthesis module. The new synthesis is fully automated and has been validated for clinical use. The total synthesis time is 33 min from end of bombardment, and the production method provides 2.66 ± 0.3 GBq (71.9 ± 8.6 mCi) of [11C]K2 in 97.7 ± 0.5% radiochemical purity and 754.1 ± 231.5 TBq/mmol (20,382.7 ± 6256.1 Ci/mmol) molar activity (n = 3). Batches passed all requisite quality control testing confirming suitability for clinical use.


Subject(s)
Acetamides , Carbon Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, AMPA , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Carbon Radioisotopes/chemistry , Acetamides/chemical synthesis , Acetamides/chemistry , Receptors, AMPA/metabolism , Radiochemistry/methods , Automation , Chemistry Techniques, Synthetic , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
3.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673791

ABSTRACT

Agriculture in the 21st century faces many formidable challenges with the growing global population. Increasing demands on the planet's natural resources already tax existing agricultural practices. Today, many farmers are using biochemical treatments to improve their yields. Commercialized organic biostimulants exist in the form of pyroligneous acid generated by burning agricultural waste products. Recently, we examined the mechanisms through which a commercial pyroligneous acid product, Coriphol™, manufactured by Corigin Solutions, Inc., stimulates plant growth. During the 2023 growing season, outdoor studies were conducted in soybean to examine the effects of different Coriphol™ treatment concentrations on plant growth. Plant height, number of leaves, and leaf size were positively impacted in a dose-dependent manner with 2 gallon/acre soil treatments being optimal. At harvest, this level of treatment boosted crop yield by 40%. To gain an understanding of why Coriphol™ improves plant fitness, follow-up laboratory-based studies were conducted using radiocarbon flux analysis. Here, radioactive 11CO2 was administered to live plants and comparisons were made between untreated soybean plants and plants treated at an equivalent Coriphol™ dose of 2 gallons/acre. Leaf metabolites were analyzed using radio-high-performance liquid chromatography for [11C]-chlorophyll (Chl) a and b components, as well as [11C]-ß-carotene (ß-Car) where fractional yields were used to calculate metabolic rates of synthesis. Altogether, Coriphol™ treatment boosted rates of Chl a, Chl b, and ß-Car biosynthesis 3-fold, 2.6-fold, and 4.7-fold, respectively, and also increased their metabolic turnover 2.2-fold, 2.1-fold, and 3.9-fold, respectively. Also, the Chl a/b ratio increased from 3.1 to 3.4 with treatment. Altogether, these effects contributed to a 13.8% increase in leaf carbon capture.


Subject(s)
Glycine max , Plant Leaves , Glycine max/metabolism , Glycine max/growth & development , Plant Leaves/metabolism , Plant Leaves/growth & development , Carbon Radioisotopes , Plant Development , Soil/chemistry , Chlorophyll/metabolism
4.
EJNMMI Radiopharm Chem ; 9(1): 24, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526746

ABSTRACT

BACKGROUND: Production of [11C]CH4 from gas targets is notorious for weak performance with respect to yield, especially when using high beam currents. Post-target conversion of [11C]CO2 to [11C]CH4 is a widely used roundabout method in 11C-radiochemistry, but the added complexity increase the challenge to control carrier carbon. Thus in-target-produced [11C]CH4 is superior with respect to molar activity. We studied the in-target production of [11C]CO2 and [11C]CH4 from nitrogen gas targets as a function of beam current, irradiation time, and target temperature. RESULTS: [11C]CO2 production was practically unchanged across the range of varied parameters, but the [11C]CH4 yield, presented in terms of saturation yield YSAT(11CH4), had a negative correlation with beam current and a positive correlation with target chamber temperature. A formulated model equation indicates behavior where the [11C]CH4 formation follows a parabolic graph as a function of beam current. The negative square term, i.e., the yield loss, is postulated to arise from Haber-Bosch-like NH3 formation: N2 + 3H2 → 2NH3. The studied conditions suggest that the NH3 (liq.) would be condensed on the target chamber walls, thus depleting the hydrogen reserve needed for the conversion of nascent 11C to [11C]CH4. CONCLUSIONS: [11C]CH4 production can be improved by increasing the target chamber temperature, which is presented in a mathematical formula. Our observations have implications for targetry design (geometry, gas volume and composition, pressure) and irradiation conditions, providing specific knowledge to enhance [11C]CH4 production at high beam currents. Increased [11C]CH4 radioactivity is an obvious benefit in radiosynthesis in terms of product yield and molar radioactivity.

5.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474602

ABSTRACT

Tozadenant (4-hydroxy-N-(4-methoxy-7-morpholinobenzo[d]thiazol-2-yl)-4-methylpiperidine-1-carboxamide) is a highly selective adenosine A2A receptor (A2AR) antagonist and a promising lead structure for the development of A2AR-selective positron emission tomography (PET) probes. Although several 18F-labelled tozadenant derivatives showed favorable in vitro properties, recent in vivo PET studies observed poor brain penetration and lower specific binding than anticipated from the in vitro data. While these findings might be attributable to the structural modification associated with 18F-labelling, they could also reflect inherent properties of the parent compound. However, PET studies with radioisotopologues of tozadenant to evaluate its cerebral pharmacokinetics and brain distribution are still lacking. In the present work, we applied N-Boc-O-desmethyltozadenant as a suitable precursor for the preparation of [O-methyl-11C]tozadenant ([11C]tozadenant) by O-methylation with [11C]methyl iodide followed by acidic deprotection. This approach afforded [11C]tozadenant in radiochemical yields of 18 ± 2%, with molar activities of 50-60 GBq/µmol (1300-1600 mCi/µmol) and radiochemical purities of 95 ± 3%. In addition, in vitro autoradiography in pig and rat brain slices demonstrated the expected striatal accumulation pattern and confirmed the A2AR specificity of the radioligand, making it a promising tool for in vivo PET studies on the cerebral pharmacokinetics and brain distribution of tozadenant.


Subject(s)
Brain , Receptor, Adenosine A2A , Rats , Animals , Swine , Receptor, Adenosine A2A/metabolism , Brain/metabolism , Benzothiazoles/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals
6.
Chemistry ; 30(28): e202400581, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38470445

ABSTRACT

α,ß-aromatic lactams are highly abundant in biologically active molecules, yet so far they cannot be radiolabeled with short-lived (t1/2=20.3 min), ß+-decaying carbon-11, which has prevented their application as positron emission tomography tracers. Herein, we developed, optimized, and applied a widely applicable, one-pot, quick, robust and automatable radiolabeling method for α,ß-aromatic lactams starting from [11C]CO2 using the reagent POCl3⋅AlCl3. This method proceeds via intramolecular Friedel-Crafts acylation of in situ formed [11C]isocyanates and shows a broad substrate scope for the formation of five- and six-membered rings. We implemented our developed labeling method for the radiosynthesis of the potential PARP1 PET tracer [carbonyl-11C]DPQ in a clinical radiotracer production facility following the standards of the European Pharmacopoeia.


Subject(s)
Carbon Radioisotopes , Isocyanates , Positron-Emission Tomography , Radiopharmaceuticals , Carbon Radioisotopes/chemistry , Acylation , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Isocyanates/chemistry , Positron-Emission Tomography/methods , Isotope Labeling/methods , Lactams/chemistry
7.
EJNMMI Radiopharm Chem ; 9(1): 10, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334858

ABSTRACT

BACKGROUND: Multidrug resistance-associated protein 1 (MRP1), an energy-dependent efflux pump, is expressed widely in various tissues and contributes to many physiological and pathophysiological processes. 6-Bromo-7-[11C]methylpurine ([11C]7m6BP) is expected to be useful for the assessment of MRP1 activity in the human brain and lungs. However, the radiochemical yield (RCY) in the synthesis of [11C]7m6BP was low, limiting its clinical application, because the methylation of the precursor with [11C]CH3I provided primarily the undesired isomer, 6-bromo-9-[11C]methylpurine ([11C]9m6BP). To increase the RCY of [11C]7m6BP, we investigated conditions for improving the [11C]7m6BP/[11C]9m6BP selectivity of the methylation reaction. RESULTS: [11C]7m6BP was manually synthesized via the methylation of 6-bromopurine with [11C]CH3I in various solvents and at different temperatures in the presence of potassium carbonate for 5 min. Several less polar solvents, including tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), and ethyl acetate (AcOEt) improved the [11C]7m6BP/[11C]9m6BP selectivity from 1:1 to 2:1, compared with the conventionally used solvents for the alkylation of 6-halopurines, acetone, acetonitrile, and N,N-dimethylformamide. However, a higher temperature (140 °C or 180 °C) was needed to progress the 11C-methylation in the less polar solvents, and the manual conditions could not be directly translated to an automated synthesis. [11C]Methyl triflate ([11C]CH3OTf) was thus used as a methylating agent to increase the conversion at a lower temperature. The 11C-methylation using [11C]CH3OTf at 100 °C proceeded efficiently in THF, 2-MeTHF, and AcOEt with maintenance of the improved selectivity. Starting from 28 to 34 GBq [11C]CO2, [11C]7m6BP was produced with 2.3-2.6 GBq for THF, 2.7-3.3 GBq for AcOEt, and 2.8-3.9 GBq for 2-MeTHF at approximately 30 min after the end of bombardment (n = 3 per solvent). The isolated RCYs (decay corrected) for THF, 2-MeTHF, and AcOEt were 24-28%, 29-35%, and 22-31% (n = 3), respectively. CONCLUSIONS: The use of THF, 2-MeTHF, and AcOEt improved the [11C]7m6BP/[11C]9m6BP selectivity in the methylation reaction, and the improved method provided [11C]7m6BP with sufficient radioactivity for clinical use.

8.
Drug Des Devel Ther ; 18: 215-222, 2024.
Article in English | MEDLINE | ID: mdl-38312991

ABSTRACT

Purpose: Orexin receptors (OXRs) play a crucial role in modulating various physiological and neuropsychiatric functions within the central nervous system (CNS). Despite their significance, the precise role of OXRs in the brain remains elusive. Positron emission tomography (PET) imaging is instrumental in unraveling CNS functions, and the development of specific PET tracers for OXRs is a current research focus. Methods: The study investigated MDK-5220, an OX2R-selective agonist with promising binding properties (EC50 on OX2R: 0.023 µM, Ki on hOX2R: 0.14 µM). Synthesized and characterized as an OX2R PET probe, [11C]MDK-5220 was evaluated for its potential as a tracer. Biodistribution studies in mice were conducted to assess OX2R binding selectivity, with particular attention to its interaction with P-glycoprotein (P-gp) on the blood-brain barrier. Results: [11C]MDK-5220 exhibited promising attributes as an OX2R PET probe, demonstrating robust OX2R binding selectivity in biodistribution studies. However, an observed interaction with P-gp impacted its brain uptake. Despite this limitation, [11C]MDK-5220 presents itself as a potential candidate for further development. Discussion: The study provides insights into the functionality of the OX system and the potential of [11C]MDK-5220 as an OX2R PET probe. The observed interaction with P-gp highlights a consideration for future modifications to enhance brain uptake. The findings pave the way for innovative tracer development and propel ongoing research on OX systems, contributing to a deeper understanding of their role in the CNS. Conclusion: [11C]MDK-5220 emerges as a promising OX2R PET probe, despite challenges related to P-gp interaction. This study lays the foundation for further exploration and development of PET probes targeting OXRs, opening avenues for advancing our understanding of OX system functionality within the brain.


Subject(s)
Carbon Radioisotopes , Neuroimaging , Positron-Emission Tomography , Mice , Animals , Orexins , Tissue Distribution , Positron-Emission Tomography/methods , Orexin Receptors/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
9.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256240

ABSTRACT

The short-lived positron-emitter carbon-11 (t1/2 = 20.4 min; ß+, 99.8%) is prominent for labeling tracers for use in biomedical research with positron emission tomography (PET). Carbon-11 is produced for this purpose with a cyclotron, nowadays almost exclusively by the 14N(p,α)11C nuclear reaction, either on nitrogen containing a low concentration of oxygen (0.1-0.5%) or hydrogen (~5%) to produce [11C]carbon dioxide or [11C]methane, respectively. These primary radioactive products can be produced in high yields and with high molar activities. However, only [11C]carbon dioxide has some utility for directly labeling PET tracers. Primary products are required to be converted rapidly and efficiently into secondary labeling synthons to provide versatile radiochemistry for labeling diverse tracer chemotypes at molecular positions of choice. This review surveys known gas phase transformations of carbon-11 and summarizes the important roles that many of these transformations now play for producing a broad range of labeling synthons in carbon-11 chemistry.


Subject(s)
Biomedical Research , Carbon Dioxide , Carbon Radioisotopes , Hydrogen
10.
Angew Chem Int Ed Engl ; 63(14): e202317136, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38135665

ABSTRACT

This review discusses recent advances in light-driven radiochemistry for three key isotopes: fluorine-18, carbon-11, and zirconium-89, and their applications in positron emission tomography (PET). In the case of fluorine-18, the predominant approach involves the use of cyclotron-produced [18F]fluoride or reagents derived thereof. Light serves to activate either the substrate or the fluorine-18 labeled reagent. Advancements in carbon-11 photo-mediated radiochemistry have been leveraged for the radiolabeling of small molecules, achieving various transformations, including 11C-methylation, 11C-carboxylation, 11C-carbonylation, and 11C-cyanation. Contrastingly, zirconium-89 photo-mediated radiochemistry differs from fluorine-18 and carbon-11 approaches. In these cases, light facilitates a postlabeling click reaction, which has proven valuable for the labeling of large biomolecules such as monoclonal antibodies (mAbs). New technological developments, such as the incorporation of photoreactors in commercial radiosynthesizers, illustrate the commitment the field is making in embracing photochemistry. Taken together, these advances in photo-mediated radiochemistry enable radiochemists to apply new retrosynthetic strategies in accessing novel PET radiotracers.


Subject(s)
Carbon Radioisotopes , Fluorine Radioisotopes , Positron-Emission Tomography , Radioisotopes , Zirconium , Radiochemistry/methods , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry
11.
J Labelled Comp Radiopharm ; 67(6): 245-249, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38124264

ABSTRACT

AZD4747 is a KRASG12C inhibitor recently shown to cross the non-human primate blood-brain barrier efficiently. In the current study, a GMP-compliant production of [11C]AZD4747 was developed to enable PET studies in human subjects. The validated procedure afforded [11C]AZD4747 as an injectable solution in good radioactivity yield (1656 ± 532 MBq), excellent radiochemical purity (100%), and a molar activity of 77 ± 13 GBq/µmol at the end of the synthesis, which took 46 ± 1 min from the end of the bombardment. Quality control on the final product was performed satisfactorily and met all acceptance criteria.


Subject(s)
Carbon Radioisotopes , Proto-Oncogene Proteins p21(ras) , Humans , Carbon Radioisotopes/chemistry , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , Radiochemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics
12.
Nucl Med Biol ; 128-129: 108873, 2024.
Article in English | MEDLINE | ID: mdl-38154168

ABSTRACT

This report describes an updated, fully automated method for the production of [11C]PIB on a cassette-based automated synthesis module. The method allows for two separate productions of [11C]PIB, both of which meet all specification for use in clinical studies. The GE FASTlab developer system was used to create the cassette design as well as the controlling tracer package. The method takes 16 min from the delivery of [11C]MeOTf to the FASTlab, or 35 min from the End of Bombardment; and reliably produces 3547 ± 586 MBq of [11C]PIB in high radiochemical purity (> 98 %). This methodology increases the production capacity of radiopharmaceutical facilities for [11C]PIB, and can easily produce 4 batches in a single day with limited infrastructure footprint.


Subject(s)
Radiopharmaceuticals , Radiochemistry/methods
13.
Article in English | MEDLINE | ID: mdl-38073118

ABSTRACT

Carbon-11 (11 C) is a widely used radionuclide for positron emission tomography (PET) owing to the omnipresence of carbon atoms in organic molecules. While its half-life of 20.4 min is ideal for imaging and dosimetry, it also limits the synthetic possibilities. As such, the development of fast and easy, high-yielding synthesis methods is crucial for the application of 11 C-labeled tracers in humans. In this study, we present a novel and efficient method for the reaction of [11 C]CO2 with amine precursors using benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (BOP) to access 11 C-labeled ureas. Our method is extremely fast as it only requires transfer of [11 C]CO2 into a solution with precursor and BOP at room temperature, where it reacts momentary into the desired 11 C-labeled urea. This simple procedure makes it possible to radiolabel urea directly from [11 C]CO2 without the need for advanced equipment, making the method applicable for all laboratories where [11 C]CO2 is available. We synthesized a small series of aliphatic symmetrical and non-symmetrical 11 C-labeled ureas using this method, and achieved good to excellent yields. The novelty of our study lies in the fact that peptide coupling reagent BOP is used for the first time in radiochemistry to activate [11 C]CO2 , facilitating its reaction with amines to obtain 11 C-labeled ureas.

14.
Article in English | MEDLINE | ID: mdl-37941130

ABSTRACT

Fast and straightforward incorporation of radionuclides into pharmaceutically relevant molecules is one of the main barriers to preclinical and clinical tracer research. Late-stage direct incorporation of cyclotron-produced [11 C]CO2 to afford carbon-11-labeled radiopharmaceuticals has the potential to provide ready-to-inject positron emission tomography agents in less than an hour. The present work describes photocatalyzed carboxylation of alkylbenzene derivatives to afford 11 C-phenylacetic acids. Reaction conditions and scope are investigated followed by application of this methodology to the preparative radiosynthesis of [11 C]fenoprofen, a nonsteroidal anti-inflammatory drug.

15.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38004488

ABSTRACT

A novel gas chromatography method was developed using automatic injections to identify and quantify the amount of residual solvents or analytes in samples of fluorine-18 and carbon-11 radiopharmaceuticals. This approach evaluates seven analytes in less than 5 versus 13 min of acquisition time. The method additionally includes a 3 min bakeout to aid in the removal and carry-over of higher-boiling impurities. Chromatographic parameters such as column temperature, hold time, column pressure, flow rate, and split ratios were adjusted and optimized to analyze radioactive drug samples containing analytes which include methanol, ethanol, acetone, acetonitrile, triethylamine, N,N-dimethylformamide, and dimethyl sulfoxide. The relative standard deviation for each solvent was determined to be no greater than 1.6%. The method limit of detection (LOD) and limit of quantification (LOQ) were between 0.053 and 0.163 and 0.000 (5.791 × 10-6) and 0.520 mg/mL, respectively. This GC technique, using flame ionization detection (FID), was validated and is currently employed for the routine quality control of all approved IND and RDRC PET radiopharmaceuticals at our center.

16.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958493

ABSTRACT

The effect of high-temperature (HT) stress on nicotine biosynthesis in Nicotiana attenuata was examined. Nicotine content was measured in mature leaves, young sink leaves, and in roots from well-watered plants grown at 25 °C as controls and from plants exposed to 38 °C and 43 °C temperatures applied for 24, 48, 72, and 96 h duration. At 38 °C, all leaf nicotine levels were significantly less than control plants for up to 72 h exposure but rose sharply thereafter to levels significantly greater than controls with 96 h exposure. In contrast, plants exposed to 43 °C never exhibited a reduction in leaf nicotine content and showed an increase in content with just 48 h exposure. Using radioactive 11CO2 and 13NO3-, we found that HT stress reduced both CO2 fixation and nitrate uptake. Furthermore, radiocarbon flux analysis revealed that 'new' carbon partitioning (as 11C) into the 11C-radiolabeled amino acid (AA) pool was significantly reduced with HT stress as were yields of [11C]-aspartic acid, an important AA in nicotine biosynthesis, and its beta-amido counterpart [11C]-asparagine. In contrast, [12C]-aspartic acid levels appeared unaffected at 38 °C but were elevated at 43 °C relative to controls. [12C]-Asparagine levels were noted to be elevated at both stress temperatures. Since HT reductions in carbon input and nitrogen uptake were noted to impede de novo AA biosynthesis, protein degradation at HT was examined as a source of AAs. Here, leaf total soluble protein (TSP) content was reduced 39% with long exposures to both stress temperatures. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) which was 41% TSP appeared unaffected. Altogether, these results support the theory that plant proteins other than Rubisco degrade at elevated temperatures freeing up essential AAs in support of nicotine biosynthesis.


Subject(s)
Nicotiana , Nicotine , Nicotiana/metabolism , Nicotine/metabolism , Hot Temperature , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide/metabolism , Asparagine/metabolism , Aspartic Acid/metabolism , Photosynthesis , Carbon , Plant Leaves/metabolism
17.
Article in English | MEDLINE | ID: mdl-37957035

ABSTRACT

A labeling technique was developed for the imidazoline I2 receptor ligand 2-(3-fluoro-tolyl)-4, 5-dihydro-1H-imidazole (FTIMD) using Pd(0)-mediated 11 C-carbomethoxylation with [11 C]CO, followed by imidazoline ring formation with ethylenediamine-trimethylaluminium (EDA-AlMe3 ). To achieve this, [11 C]CO was passed through a methanol (MeOH) solution containing 3-fluoro-4-methylphenylboronic acid (1), palladium (II) acetate (Pd [OAc]2 ), triphenylphosphine (PPh3 ), and p-benzoquinone (PBQ). The mixture was then heated at 65°C for 5 min. EDA was introduced into the reaction mixture, and MeOH was completely evaporated at temperatures exceeding 100°C. The dried reaction mixture was combined with an EDA-AlMe (1:1) toluene solution and heated at 145°C for 10 min. Portions of the reaction mixture were analyzed through high-performance liquid chromatography, resulting in [11 C]FTIMD with 26% (n = 2) decay-corrected radiochemical yield (RCY). This method could be utilized for various arylborons to produce [2-11 C]imidazolines 4a-h with RCYs ranging from low to moderate. Notably, [2-11 C]benazoline was obtained with a moderate RCY of 65%. The proposed technique serves as an alternative to the Grignard method, which uses [11 C]CO to generate a [2-11 C]-labeled imidazoline ring.

18.
Article in English | MEDLINE | ID: mdl-37691152

ABSTRACT

Evobrutinib is a second-generation, highly selective, irreversible Bruton's tyrosine kinase (BTK) inhibitor that has shown efficacy in the autoimmune diseases arthritis and multiple sclerosis. Its development as a positron emission tomography (PET) radiotracer has potential for in vivo imaging of BTK in various disease models including several cancers, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), and lipopolysaccharide (LPS)-induced lung damage. Herein, we report the automated radiosynthesis of [11 C]evobrutinib using a base-aided palladium-NiXantphos-mediated 11 C-carbonylation reaction. [11 C]Evobrutinib was reliably formulated in radiochemical yields of 5.5 ± 1.5% and a molar activity of 34.5 ± 17.3 GBq/µmol (n = 12) with 99% radiochemical purity. Ex vivo autoradiography studies showed high specific binding of [11 C]evobrutinib in HT-29 colorectal cancer mouse xenograft tissues (51.1 ± 7.1%). However, in vivo PET/computed tomography (CT) imaging with [11 C]evobrutinib showed minimal visualization of HT-29 colorectal cancer xenografts and only a slight increase in radioactivity accumulation in the associated time-activity curves. In preliminary PET/CT studies, [11 C]evobrutinib failed to visualize either SARS-CoV-2 pseudovirus infection or LPS-induced injury in mouse models. In conclusion, [11 C]evobrutinib was successfully synthesized by 11 C-carbonylation and based on our preliminary studies does not appear to be a promising BTK-targeted PET radiotracer in the rodent disease models studied herein.

19.
J Labelled Comp Radiopharm ; 66(12): 393-399, 2023 10.
Article in English | MEDLINE | ID: mdl-37653688

ABSTRACT

CRANAD-102, a selective near-infrared fluorescent tracer targeting soluble amyloid-ß (Aß) species, has recently attracted attention due to its potential to be used as a diagnostic tool for early stages of Alzheimer's disease (AD). Development of a positron emission tomography (PET) tracer based on CRANAD-102 could as such allow to noninvasively study soluble and protofibrillar species of Aß in humans. These soluble and protofibrillar species are thought to be responsible to cause AD. Within this work, we successfully 11 C-labeled CRANAD-102 via a Suzuki-Miyaura reaction in a RCС of 48 ± 9%, with a RCP of >96% and a molar activity (Am ) of 25 ± 7 GBq/µmol. Future studies have to be conducted to evaluate if [11 C]CRANAD-102 can be used to detect soluble protofibrils in vivo and if [11 C]CRANAD-102 can be used to detect AD earlier as possible with current diagnostics.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Brain/metabolism , Fluorescent Dyes , Positron-Emission Tomography/methods
20.
Article in English | MEDLINE | ID: mdl-37608567

ABSTRACT

An in-loop 11 C-carbonylation process for the radiosynthesis of 11 C-carboxylic acids and esters from halide precursors has been developed. The reaction proceeds at room temperature under mild conditions and enables 11 C-carbonylation of both electron deficient and electron rich (hetero)aromatic halides to provide 11 C-carboxylic acids and esters in good to excellent radiochemical yields, high radiochemical purity, and excellent molar activity. The process has been fully automated using commercial radiochemistry synthesis modules, and application to clinical production is demonstrated via validated cGMP radiosyntheses of [11 C]bexarotene and [11 C]acetoacetic acid.

SELECTION OF CITATIONS
SEARCH DETAIL