Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(33): 44236-44248, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39121451

ABSTRACT

Hybrid battery cells that combine a garnet-type Li7La3Zr2O12 (LLZO) solid electrolyte with other solid, polymer or liquid electrolytes are increasingly investigated. In such cells with layered electrolytes, ensuring a low-resistive heteroionic interface between neighboring electrolytes is crucial for preventing major additional overpotentials during operation. Electrochemical impedance spectroscopy is frequently used to extract such parameters, usually on multilayer symmetrical model cells that contain the different electrolytes stacked in series. Unfortunately, the impedance contributions of the heteroionic interfaces often overlap with those of the electrolyte|electrode interfaces, necessitating the use of sophisticated four-point cells that probe the electrochemical potential away from the polarization source. In this work, an alternative solution to this problem is demonstrated by taking advantage of the inherent fast charge transfer kinetics of LLZO with its parent metal electrode. The "resistance-free" nature of a reversible Li|LLZO interface enables a precise evaluation of the heteroionic interface impedance in symmetric two-point cells of the type Li|LLZO|electrolyte|LLZO|Li with negligible electrode contribution. This is exemplified for symmetric multilayer cells containing tantalum-doped LLZO and a poly(ethylene oxide) (PEO)-based dry polymer electrolyte. Validation and comparison of impedance data with results from symmetric four-point cells and two-point cells with ion-blocking electrodes demonstrate the advantage of the proposed method. Overall, this study presents a simple and reliable method for studying heteroionic interface impedances in LLZO-containing multilayer cells.

2.
Adv Sci (Weinh) ; : e2401130, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39033538

ABSTRACT

Semiconductor ion fuel cells (SIFCs) have demonstrated impressive ionic conductivity and efficient power generation at temperatures below 600 °C. However, the lack of understanding of the ionic conduction mechanisms associated with composite electrolytes has impeded the advancement of SIFCs toward lower operating temperatures. In this study, a CeO2/ß″-Al2O3 heterostructure electrolyte is introduced, incorporating ß″-Al2O3 and leveraging the local electric field (LEF) as well as the manipulation of the melting point temperature of carbonate/hydroxide (C/H) by Na+ and Mg2+ from ß″-Al2O3. This design successfully maintains swift interfacial conduction of oxygen ions at 350 °C. Consequently, the fuel cell device achieved an exceptional ionic conductivity of 0.019 S/cm and a power output of 85.9 mW/cm2 at 350 °C. The system attained a peak power density of 1 W/cm2 with an ultra-high ionic conductivity of 0.197 S/cm at 550 °C. The results indicate that through engineering the LEF and incorporating the lower melting point C/H, there approach effectively observed oxygen ion transport at low temperatures (350 °C), effectively overcoming the issue of cell failure at temperatures below 419 °C. This study presents a promising methodology for further developing high-performance semiconductor ion fuel cells in the low temperature range of 300-600 °C.

3.
Materials (Basel) ; 17(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998178

ABSTRACT

Replacing the flammable liquid electrolytes with solid ones has been considered to be the most effective way to improve the safety of the lithium batteries. However, the solid electrolytes often suffer from low ionic conductivity and poor rate capability due to their relatively stable molecular/atomic architectures. In this study, we report a composite solid electrolyte, in which polyethylene oxide (PEO) is the matrix and Li6.4La3Zr1.45Ta0.5Mo0.05O12 (LLZTMO) and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) are the fillers. Ta/Mo co-doping can further promote the ion transport capacity in the electrolyte. The synthesized composite electrolytes exhibit high thermal stability (up to 413 °C) and good ionic conductivity (LLZTMO-PEO 2.00 × 10-4 S·cm-1, LLZTO-PEO 1.53 × 10-4 S·cm-1) at 35 °C. Compared with a pure PEO electrolyte, whose ionic conductivity is in the range of 10-7~10-6 S·cm-1, the ionic conductivity of composite solid electrolytes is greatly improved. The full cell assembled with LiFePO4 as the positive electrode exhibits excellent rate performance and good cycling stability, indicating that prepared solid electrolytes have great potential applications in lithium batteries.

4.
ACS Appl Mater Interfaces ; 16(31): 41487-41494, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39001811

ABSTRACT

Composite electrolytes have been accepted as the most promising species for solid-state batteries, exhibiting the synergistic advantages of solid polymer electrolytes (SPEs) and solid ceramic electrolytes (SCEs). Unfortunately, the interrupted Li+ conduction across the SPE and SCE interface hinders the ionic conductivity improvement of composite electrolytes. In our study on a ceramic-rich composite electrolyte (CRCE) membrane composed of borate polyanion-based lithiated poly(vinyl formal) (LiPVFM) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) particles, it is found that the strong interaction between the polyanions in LiPVFM and LATP particles results in a uniform distribution of ceramic particles at a high proportion of 50 wt % and good robustness of the electrolyte membrane with a Young's modulus of 9.20 GPa. More importantly, ab initio molecular dynamics simulation and experimental results demonstrate that Li+ conduction across the SPE and SCE interface is induced by the polyanion-based polymer due to its high lithium-ion transference number and similar Li+ diffusion coefficient with the SCE. Therefore, the unblocked Li+ conduction among ceramic particles dominates in the CRCE membrane with a high ionic conductivity of 6.60 × 10-4 S cm-1 at 25 °C, a lithium-ion transference number of 0.84, and a wide electrochemical stable window of 5.0 V (vs Li/Li+). Consequently, the high nickel ternary cathode LiNi0.8Mn0.1Co0.1O2-based batteries with CRCE deliver a high-rate capability of 135.08 mAh g-1 at 1.0 C and a prolonged cycle life of 100 cycles at 0.2 C between 3.0 and 4.3 V. The polyanion-induced Li+ conduction across the interface sheds new light on solving composite electrolyte problems for solid-state batteries.

5.
ACS Appl Mater Interfaces ; 16(26): 33307-33315, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38913824

ABSTRACT

Poly(ethylene oxide) (PEO)-based composite electrolytes (PCEs) are considered as promising candidates for next-generation lithium-metal batteries (LMBs) due to their high safety, easy fabrication, and good electrochemical stability. Here, we utilize operando grazing-incidence small-angle and wide-angle X-ray scattering to probe the correlation of electrochemically induced changes and the buried morphology and crystalline structure of the PCE. Results show that the two irreversible reactions, PEO-Li+ reduction and TFSI- decomposition, cause changes in the crystalline structure, array orientation, and morphology of the PCE. In addition, the reversible Li plating/stripping process alters the inner morphology, especially the PEO-LiTFSI domain radius and distance between PEO-LiTFSI domains, rather than causing crystalline structure and orientation changes. This work provides a new path to monitor a working battery in real time and to a detailed understanding of the Li+ diffusion mechanism, which is essential for developing highly transferable and interface-stable PCE-based LMBs.

6.
Polymers (Basel) ; 16(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891549

ABSTRACT

Solid polymer electrolytes (SPEs) are the key components of lithium metal batteries to overcome the obstacle of insecurity in conventional liquid electrolytes; however, the trade-off between their ionic conductivity and mechanical properties remains a significant challenge. In this work, two-dimensional ZSM-5 nanosheets as fillers are incorporated into a poly(ethylene oxide) (PEO) matrix and lithium salts to obtain composite polymer electrolytes (CPEs). The improved physicochemical and electrochemical properties of the CPE membranes are characterized in full detail. Stripping/plating measurements in symmetric Li/Li cells and cyclic charge/discharge tests are performed to investigate the cyclability and stability of the CPEs. All-solid-state LiFePO4/Li batteries deliver excellent cycling performance with an initial discharge capacity of 152.3 mAh g-1 and 91.4% capacity retention after 200 cycles at 0.2 C, with a discharge specific capacity of 118.8 mAh g-1 remaining after 350 cycles at 0.5 C. Therefore, CPEs containing ZSM-5 nanosheets are a promising option for all-solid-state lithium-ion batteries.

7.
ACS Nano ; 18(25): 16285-16296, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865278

ABSTRACT

Sulfide- and halide-based ceramic ionic conductors exhibit comparable ionic conductivity with liquid electrolytes and are candidates for high-energy- and high-power-density all-solid-state batteries. These materials, however, are inherently brittle, making them unfavorable for applications. Here, we report a mechanically enhanced composite Na+ conductor that contains 92.5 wt % of sodium thioantimonate (Na3SbS4, NSS) and 7.5 wt % of sodium carboxymethyl cellulose (CMC); the latter serves as the binder and an electrochemically inert encapsulation layer. The ceramic and binder constituents were integrated at the particle level, providing ceramic NSS-level Na+ conductivity in the NSS-CMC composite. The more than 5-fold decrease of electrolyte thickness obtained in NSS-CMC composite provided a 5-fold increase in Na+ conductance compared to NSS ceramic pellets. As a result of the CMC encapsulation, this NSS-CMC composite shows increased moisture resistivity and electrochemical stability, which significantly promotes the cycling performance of NSS-based solid-state batteries. This work demonstrates a well-controlled, orthogonal process of ceramic-rich, composite electrolyte processing: independent streams for ceramic particle formation along with binder encapsulation in a solvent-assisted environment. This work also provides insights into the interplay among the solvent, the polymeric binder, and the ceramic particles in composite electrolyte synthesis and implies the critical importance of identifying the appropriate solvent/binder system for precise control of this complicated process.

8.
Adv Mater ; : e2313572, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809501

ABSTRACT

Sodium-ion batteries (NIBs) have recently garnered significant interest in being employed alongside conventional lithium-ion batteries, particularly in applications where cost and sustainability are particularly relevant. The rapid progress in NIBs will undoubtedly expedite the commercialization process. In this regard, tailoring and designing electrolyte formulation is a top priority, as they profoundly influence the overall electrochemical performance and thermal, mechanical, and dimensional stability. Moreover, electrolytes play a critical role in determining the system's safety level and overall lifespan. This review delves into recent electrolyte advancements from liquid (organic and ionic liquid) to solid and quasi-solid electrolyte (dry, hybrid, and single ion conducting electrolyte) for NIBs, encompassing comprehensive strategies for electrolyte design across various materials, systems, and their functional applications. The objective is to offer strategic direction for the systematic production of safe electrolytes and to investigate the potential applications of these designs in real-world scenarios while thoroughly assessing the current obstacles and forthcoming prospects within this rapidly evolving field.

9.
ACS Appl Mater Interfaces ; 16(17): 22482-22492, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38651802

ABSTRACT

Herein, we present the preparation and properties of an ultrathin, mechanically robust, quasi-solid composite electrolyte (SEO-QSCE) for solid-state lithium metal battery (SLB) from a well-defined polystyrene-b-poly(ethylene oxide) diblock copolymer (SEO), Li6.75La3Zr1.75Ta0.25O12 nanofiller, and fluoroethylene carbonate plasticizer. Compared with the ordered lamellar microphase separation of SEO, the SEO-QSCE displays bicontinuous phases, consisting of a Li+ ion conductive poly(ethylene oxide) domain and a mechanically robust framework of the polystyrene domain. Therefore, the 12 µm-thick SEO-QSCE membrane exhibits an exceptional ionic conductivity of 1.3 × 10-3 S cm-1 at 30 °C, along with a remarkable tensile strength of 5.1 MPa and an elastic modulus of 2.7 GPa. The high mechanical robustness and the self-generated LiF-rich SEI enable the SEO-QSCE to have an extraordinary lithium dendrite prohibition effect. The SLB of Li|SEO-QSCE|LiFePO4 reveals superior cycling performances at 30 °C for over 600 cycles, maintaining an initial discharge capacity of 145 mAh g-1 and a remarkable capacity retention of 81% (117 mAh g-1) after 400 cycles at 0.5 C. The high-voltage SLB of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 displays good cycling stability for over 150 cycles at 30 °C. Moreover, the exceptional robustness of SEO-QSCE enables the high-voltage solid-state pouch cell of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 with high flexibility and excellent safety features. The current investigation delivers a promising and innovative approach for preparing quasi-solid electrolytes with features of ultrathin design, mechanical robustness, and exceptional electrochemical performance for high-voltage SLBs.

10.
Adv Sci (Weinh) ; 11(22): e2310005, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572525

ABSTRACT

Inferior air stability is a primary barrier for large-scale applications of garnet electrolytes in energy storage systems. Herein, a deeply hydrated hydrogarnet electrolyte generated by a simple ion-exchange-induced phase transition from conventional garnet, realizing a record-long air stability of more than two years when exposed to ambient air is proposed. Benefited from the elimination of air-sensitive lithium ions at 96 h/48e sites and unobstructed lithium conduction path along tetragonal sites (12a) and vacancies (12b), the hydrogarnet electrolyte exhibits intrinsic air stability and comparable ion conductivity to that of traditional garnet. Moreover, the unique properties of hydrogarnet pave the way for a brand-new aqueous route to prepare lithium metal stable composite electrolyte on a large-scale, with high ionic conductivity (8.04 × 10-4 S cm-1), wide electrochemical windows (4.95 V), and a high lithium transference number (0.43). When applied in solid-state lithium batteries (SSLBs), the batteries present impressive capacity and cycle life (164 mAh g-1 with capacity retention of 89.6% after 180 cycles at 1.0C under 50 °C). This work not only designs a new sort of hydrogarnet electrolyte, which is stable to both air and lithium metal but also provides an eco-friendly and large-scale fabrication route for SSLBs.

11.
Polymers (Basel) ; 16(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38475249

ABSTRACT

Numerous endeavors have been dedicated to the development of composite polymer electrolyte (CPE) membranes for all-solid-state batteries (SSBs). However, insufficient ionic conductivity and mechanical properties still pose great challenges in practical applications. In this study, a flexible composite electrolyte membrane (FCPE) with fast ion transport channels was prepared using a phase conversion process combined with in situ polymerization. The polyvinylidene fluoride-hexafluoro propylene (PVDF-HFP) polymer matrix incorporated with lithium lanthanum zirconate (LLZTO) formed a 3D net-like structure, and the in situ polymerized polyvinyl ethylene carbonate (PVEC) enhanced the interface connection. This 3D network, with multiple rapid pathways for Li+ that effectively control Li+ flux, led to uniform lithium deposition. Moreover, the symmetrical lithium cells that used FCPE exhibited high stability after 1200 h of cycling at 0.1 mA cm-2. Specifically, all-solid-state lithium batteries coupled with LiFePO4 cathodes can stably cycle for over 100 cycles at room temperature with high Coulombic efficiencies. Furthermore, after 100 cycles, the infrared spectrum shows that the structure of FCPE remains stable. This work demonstrates a novel insight for designing a flexible composite electrolyte for highly safe SSBs.

12.
Nanomicro Lett ; 16(1): 127, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381226

ABSTRACT

Polymer solid-state lithium batteries (SSLB) are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety. Ion conductivity, interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB. As the main component of SSLB, poly(1,3-dioxolane) (PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid electrolyte, for their high ion conductivity at room temperature, good battery electrochemical performances, and simple assembly process. This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB. The focuses include exploring the polymerization mechanism of DOL, the performance of PDOL composite electrolytes, and the application of PDOL. Furthermore, we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB. The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.

13.
ACS Appl Mater Interfaces ; 16(8): 10832-10844, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38359779

ABSTRACT

Due to its good mechanical properties and high ionic conductivity, the sulfide-type solid electrolyte (SE) can potentially realize all-solid-state batteries (ASSBs). Nevertheless, challenges, including limited electrochemical stability, insufficient solid-solid contact with the electrode, and reactivity with lithium, must be addressed. These challenges contribute to dendrite growth and electrolyte reduction. Herein, a straightforward and solvent-free method was devised to generate a robust artificial interphase between lithium metal and a SE. It is achieved through the incorporation of a composite electrolyte composed of Li6PS5Cl (LPSC), polyethylene glycol (PEG), and lithium bis(fluorosulfonyl)imide (LiFSI), resulting in the in situ creation of a LiF-rich interfacial layer. This interphase effectively mitigates electrolyte reduction and promotes lithium-ion diffusion. Interestingly, including PEG as an additive increases mechanical strength by enhancing adhesion between sulfide particles and improves the physical contact between the LPSC SE and the lithium anode by enhancing the ductility of the LPSC SE. Moreover, it acts as a protective barrier, preventing direct contact between the SE and the Li anode, thereby inhibiting electrolyte decomposition and reducing the electronic conductivity of the composite SE, thus mitigating the dendrite growth. The Li|Li symmetric cells demonstrated remarkable cycling stability, maintaining consistent performance for over 3000 h at a current density of 0.1 mA cm-2, and the critical current density of the composite solid electrolyte (CSE) reaches 4.75 mA cm-2. Moreover, the all-solid-state lithium metal battery (ASSLMB) cell with the CSEs exhibits remarkable cycling stability and rate performance. This study highlights the synergistic combination of the in-situ-generated artificial SE interphase layer and CSEs, enabling high-performance ASSLMBs.

14.
Heliyon ; 10(4): e25847, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38384559

ABSTRACT

Molten Carbonate Fuel Cells (MCFCs) are a promising technology as sustainable power generators as well as CO2 selective concentrators for carbon capture applications. Looking at the current cell configuration, several issues, which hinders a stable long-term operation of the system, are still unsettled. According to reference studies, the ceramic matrix is one of the most critical components in view of its high impact on the cell performance since it can influence both the stability and the reaction path. Indeed, it provides the structural support and holds the molten carbonates used as electrolyte, requiring a good mechanical strength despite of a porous structure, a high specific surface area and a sufficient electrolyte wettability to avoid the electrode flooding. The matrix structure, its key-features and degradation issues are discussed starting from the state-of-the-art lithium aluminate LiAlO2 usually strengthened with Al based reinforcement agents. Since the achievable performance is strictly dependent on manufacturing, a devoted section focuses on available techniques with a view also of their environmental impacts. Considering a still insufficient performance due to the material structural and chemical instability favoured by stressful working conditions, the electric conductive ceramics are presented as alternative matrixes permitting to increase the cell performance combining oxygen and carbonate ion paths.

15.
ChemSusChem ; 17(14): e202301262, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38415928

ABSTRACT

In the current challenging energy storage and conversion landscape, solid-state lithium metal batteries with high energy conversion efficiency, high energy density, and high safety stand out. Due to the limitations of material properties, it is difficult to achieve the ideal requirements of solid electrolytes with a single-phase electrolyte. A composite solid electrolyte is composed of two or more different materials. Composite electrolytes can simultaneously offer the advantages of multiple materials. Through different composite methods, the merits of various materials can be incorporated into the most essential part of the battery in a specific form. Currently, more and more researchers are focusing on composite methods for combining components in composite electrolytes. The ion transport capacity, interface stability, machinability, and safety of electrolytes can be significantly improved by selecting appropriate composite methods. This review summarizes the composite methods used for the components of composite electrolytes, such as filler blending, embedded framework, and multilayer bonding. It also discusses the future development trends of all-solid-state lithium batteries (ASSLBs).

16.
ChemSusChem ; 17(13): e202301920, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38400831

ABSTRACT

All-solid-state batteries have the potential for enhanced safety and capacity over conventional lithium ion batteries, and are anticipated to dominate the energy storage industry. As such, strategies to enable recycling of the individual components are crucial to minimize waste and prevent health and environmental harm. Here, we use cold sintering to reprocess solid-state composite electrolytes, specifically Mg and Sr doped Li7La3Zr2O12 with polypropylene carbonate (PPC) and lithium perchlorate (LLZO-PPC-LiClO4). The low sintering temperature allows co-sintering of ceramics, polymers and lithium salts, leading to re-densification of the composite structures with reprocessing. Reprocessed LLZO-PPC-LiClO4 exhibits densified microstructures with ionic conductivities exceeding 10-4 S/cm at room temperature after 5 recycling cycles. All-solid-state lithium batteries fabricated with reprocessed electrolytes exhibit a high discharge capacity of 168 mA h g-1 at 0.1 C, and retention of performance at 0.2 C for over 100 cycles. Life cycle assessment (LCA) suggests that recycled electrolytes outperforms the pristine electrolyte process in all environmental impact categories, highlighting cold sintering as a promising technology for recycling electrolytes.

17.
Article in English | MEDLINE | ID: mdl-38048569

ABSTRACT

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) are favorable for all-solid-state lithium metal batteries (ASSLBs) to ensure safety and enhance energy density. However, their narrow work windows and unstable electrode/electrolyte interfaces hinder their practical application in high-voltage ASSLBs. Although introducing additives in SPEs has been proven to be effective to address the above issues, it could hardly optimize both cathode and anode interfaces by an individual additive. Herein, heterogeneously double-layer SPEs are constructed with two typical additives (LiPO2F2 and LiFSI), which are used to modify the LiNi0.6Co0.2Mn0.2O2 (NCM)-cathode/electrolyte interface (CEI) and lithium-anode/solid electrolyte interface (SEI), and further understand their respective mechanism in enhancing the capacity and cycling stability of ASSLBs. Specifically, LiPO2F2 not only leads to a uniform CEI layer to prevent the oxidation decomposition of PEO and LiTFSI but also ensures fast Li+ diffusion at high voltage (>3.9 V), improving the rate performances and life spans of the cells. The LiFSI contributes to a stable SEI layer with rich LiF, suppressing the growth of lithium dendrites and maximizing the specific capacity for ASSLBs. Integrating the advantages of the two functional molecules, the optimized ASSLB displays an excellent capacity of 141.4 mAh g-1 at 1C and an outstanding capacity retention of 81.6% after 400 cycles when using the NCM cathode, even reaching 154.2 mAh g-1 at 0.1 mA cm-2 with a high mass loading (6.4 mg cm-2). Additionally, the bilayer SPEs also match well with a LiFePO4 electrode with a high mass loading of 11.0 mg cm-2, displaying a high capacity of 155.7 mAh g-1 at 0.1 mA cm-2.

18.
J Colloid Interface Sci ; 652(Pt A): 567-576, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37611466

ABSTRACT

The garnet-type solid electrolyte Li6.4La3Zr1.4Ta0.6O12 (LLZTO) was modified with a cationic surfactant Cetyltrimethylammonium Bromide (CTAB) to improve the dispersion of LLZTO inorganic particles in Poly (ethylene oxide) (PEO) electrolyte (PEO-LLZTO@CTAB) by a liquid phase casting method. During fabrication, the cationic modifier CTAB is uniformly adsorbed on the surface of LLZTO particles, which can effectively reduce their surface energy and lead to a thin CTAB surface coating layer. This fabricated PEO-LLZTO@CTAB can avoid the aggregation of LLZTO particles in the composite solid-state electrolyte (CSSE) and improve the interfacial contact at the PEO/LLZTO interface, thus reducing the overall resistance of PEO-LLZTO@CTAB/Li half-cell and inhibiting the dendrite growth during cycling. The all-solid-state batteries (ASSBs) with LiFePO4 (LFP) as the cathode, PEO-LLZTO@CTAB as the electrolyte and Li as the anode exhibit a high initial discharge capacity of 146.6 mAh-g-1, excellent rate performance and high-capacity retention of 91.0 % after 300 cycles at 0.2 C multiplier and 60 °C within the voltage range of 2.7-4.0 V.

19.
ACS Appl Mater Interfaces ; 15(32): 38759-38768, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37527524

ABSTRACT

High Li+ conductivity, good interfacial compatibility, and nano-scale particle size have always been essential conditions for selecting inorganic fillers in high-performance composite solid electrolytes. In this study, non-milled in situ LLZO fillers with nanosize was synthesized via the sol-gel method by rapid heating sintering, which resulted in more surface defects and fewer impurities in LLZO. Compared with milled LLZO fillers, these non-milled LLZO fillers with more surface defects and fewer impurities can effectively reduce the crystallinity of PEO and agglomeration in PEO, which can form composite electrolytes with high Li+ conductivity. Most importantly, the discharge capacity of the 7.5% non-milled LLZO-PEO-based LiFePO4/Li battery is about 135.5 mA h g-1 at 1C and 60 °C. After 100 cycles, the discharge specific capacity remains at 99%. It is worth noting that nano-sized non-milled LLZO will improve the discharge capacity of LiFePO4/Li batteries to 122.1 mA h g-1 at 0.2C and 30 °C.

20.
ACS Appl Mater Interfaces ; 15(31): 37884-37892, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37523717

ABSTRACT

Composite electrolytes have been regarded as the most prospective electrolytes for commercial application because they acquire the advantages of both polymer and inorganic electrolytes, commonly exhibiting appreciated flexibility and suitable ionic conductivity. Nevertheless, the conventional solution-casting method with toxic solvent and poor interfacial contact still hamper their commercialization process. Moreover, electrolytes with higher ionic conductivity and transference number are urgently needed for satisfying fast-charging batteries. Herein, a novel composite electrolyte (LZEC) reinforced by mechanically robust LLZTO nanoparticles and flexible cellulose mesh was fabricated by a simple and advanced in situ thermal polymerization method, with adding of highly ion-conductive liquid plasticizer. Consequently, the rationally designed LZEC composite electrolyte exhibits superior flexibility and remarkable electrochemical properties in the form of high ionic conductivity, wide electrochemical stability window, and high Li+ transference number. Importantly, the in situ synthesis method is expected to help construct an enhanced electrolyte/electrode interface inside the battery, and the LZEC composite electrolyte is capable of suppressing Li dendrite growth effectively, as evidenced by the prolonged stable cycling of the Li/Li symmetric cell. Therefore, the LFP/LZEC/Li full cell exhibits superior rate performance and long cyclic life. These attractive properties make LZEC a potential composite electrolyte for boosting the practical application of safe and long-life Li metal batteries.

SELECTION OF CITATIONS
SEARCH DETAIL