Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Physiol Nutr Metab ; 45(1): 101-111, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31167081

ABSTRACT

High-intensity interval training (HIIT) induces vascular adaptations that might be attenuated by postexercise cold-water immersion (CWI). Circulating angiogenic cells (CAC) participate in the vascular adaptations and circulating endothelial cells (CEC) indicate endothelial damage. CAC and CEC are involved in vascular adaptation. Therefore, the aim of the study was to investigate postexercise CWI during HIIT on CAC and CEC and on muscle angiogenesis-related molecules. Seventeen male subjects performed 13 HIIT sessions followed by 15 min of passive recovery (n = 9) or CWI at 10 °C (n = 8). HIIT comprised cycling (8-12 bouts, 90%-110% peak power). The first and the thirteenth sessions were similar (8 bouts at 90% of peak power). Venous blood was drawn before exercise (baseline) and after the recovery strategy (postrecovery) in the first (pretraining) and in the thirteenth (post-training) sessions. For CAC and CEC identification lymphocyte surface markers (CD133, CD34, and VEGFR2) were used. Vastus lateralis muscle biopsies were performed pre- and post-training for protein (p-eNOSser1177) and gene (VEGF and HIF-1) expression analysis related to angiogenesis. CAC was not affected by HIIT or postexercise CWI. Postexercise CWI increased acute and baseline CEC number. Angiogenic protein and genes were not differently modulated by post-CWI. HIIT followed by either recovery strategy did not alter CAC number. Postexercise CWI increased a marker of endothelial damage both acutely and chronically, suggesting that this postexercise recovery strategy might cause endothelial damage. Novelty HIIT followed by CWI did not alter CAC. HIIT followed by CWI increased CEC. Postexercise CWI might cause endothelial damage.


Subject(s)
Blood Cells/physiology , Cold Temperature , Endothelial Cells , High-Intensity Interval Training , Immersion , Adult , Angiogenic Proteins/analysis , Endothelial Cells/cytology , Endothelial Cells/physiology , Humans , Male , Quadriceps Muscle/physiology , Water , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL