Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Food Microbiol ; 124: 104593, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244355

ABSTRACT

Yeast assimilable nitrogen (YAN) is one of the important factors affecting yeast growth and metabolism. However, the nitrogen requirement of indigenous commercial S. cerevisiae NX11424 is unclear. In this study, metabolomics was used to analyze the metabolite profiles of the yeast strain NX11424 under high (433 mg/L) and low (55 mg/L) YAN concentrations. It was found that yeast biomass exhibited different trends under different YAN conditions and was generally positively correlated with the initial YAN concentration, while changes of key biomarkers of yeast strain NX11424 at different stages of fermentation showed a similar trend under high and low YAN concentrations. The YAN concentration affected the metabolite levels of the yeast strain NX11424, which resulted in the significant difference in the levels of pyruvic acid, α-oxoglutarate, palmitoleic acid, proline, butane-2,3-diol, citrulline, ornithine, galactinol, citramalic acid, tryptophan, alanine, phosphate and phenylethanol, mainly involving pathways such as central carbon metabolism, amino acid metabolism, fatty acid metabolism, purine metabolism, and energy metabolism. Yeast strain NX11424 could utilize proline to produce protein under a low YAN level. The intracellular level of citrulline and ornithine under high YAN concentration was higher than that under low YAN level. Yeast strain NX11424 is more suitable for fermentation at lower YAN level. The results obtained here will help to rational utilize of YAN by S. cerevisiae NX11424, and is conducive to precise control of the alcohol fermentation and improve wine quality.


Subject(s)
Fermentation , Metabolomics , Nitrogen , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Nitrogen/metabolism , Wine/analysis , Wine/microbiology , Biomass , Amino Acids/metabolism
2.
Vet Sci ; 11(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39195787

ABSTRACT

Our previous study demonstrated that moderate inhibition of intestinal autophagy was beneficial to alleviate early weaning stress in piglets, but the detailed mechanism behind this was unclear. Microbiota-mediated enterocyte autophagy helps maintain intestinal homeostasis. This study investigated the effects of inhibition or activation of autophagy in intestinal microbial community compositions and metabolite profiles in piglets. Eighteen 24-day-old weaned piglets were divided into three groups (each treatment of six piglets) and treated daily with rapamycin (RAPA), chloroquine (CQ) or a control volume of normal saline (CON group). Before the formal trial, the piglets were allowed to acclimatize for 3 days, and then the trial period was 14 days. Collected samples from the ileum and colon underwent 16S rRNA gene sequencing and metabolite analysis. Significant differences in microbial composition were observed in both the ileum and colon of the RAPA and CQ groups compared to the CON group (p < 0.05). In addition, the relative levels of abundance of Peptostreptococcus, Fusobacterium, Dialister, Selenomonas and Oceanobacillus in the ileum and Porphyromonas, Bacteroides, unidentified_Lachnospiraceae, Akkermansia, Sharpea, Peptococcus, Pseudoalteromonas, Peptoclostridium and unidentified_Acidobacteria in the colon were improved in piglets fed the RAPA diet, whereas the relative levels of abundance of Turicibacter, Rickettsiella and Sarcina in the ileum and Roseburia and Kroppenstedtia in the colon were enhanced in the CQ group (p < 0.05). Meanwhile, metabolomic analysis showed that there were significant differences in metabolites among all groups (p < 0.05), and KEGG enrichment analysis revealed that differential metabolites were mainly enriched in the ABC transporters and biosynthesis of amino acids pathways. Furthermore, these metabolites were closely related to differential microorganisms (p < 0.05). Overall, autophagy inhibition regulates the composition of intestinal microorganisms and their metabolites, and these differential metabolites are significantly correlated with differential intestinal microorganisms, which may in turn affect the production performance of weaned piglets.

3.
Plant Cell Environ ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935880

ABSTRACT

Climate warming poses major threats to temperate forests, but the response of tree root metabolism has largely remained unclear. We examined the impact of long-term soil warming (>14 years, +4°C) on the fine root metabolome across three seasons for 2 years in an old spruce forest, using a liquid chromatography-mass spectrometry platform for primary metabolite analysis. A total of 44 primary metabolites were identified in roots (19 amino acids, 12 organic acids and 13 sugars). Warming increased the concentration of total amino acids and of total sugars by 15% and 21%, respectively, but not organic acids. We found that soil warming and sampling date, along with their interaction, directly influenced the primary metabolite profiles. Specifically, in warming plots, concentrations of arginine, glycine, lysine, threonine, tryptophan, mannose, ribose, fructose, glucose and oxaloacetic acid increased by 51.4%, 19.9%, 21.5%, 19.3%, 22.1%, 23.0%, 38.0%, 40.7%, 19.8% and 16.7%, respectively. Rather than being driven by single compounds, changes in metabolite profiles reflected a general up- or downregulation of most metabolic pathway network. This emphasises the importance of metabolomics approaches in investigating root metabolic pathways and understanding the effects of climate change on tree root metabolism.

4.
Biomed Chromatogr ; 38(8): e5930, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38881164

ABSTRACT

Chuanwang Xiaoyan (CWXY) capsule is primarily used to treat a variety of acute and chronic inflammations, including acute and chronic pharyngitis and tonsillitis. However, a systematic study of its chemical constituents is still not available. This study evaluated the chemical constituents in vitro and metabolite profiles in vivo of CWXY using ultra-high-performance liquid chromatography (UHPLC) coupled with Q-Exactive Orbitrap mass spectrometry, and the pharmacokinetic behaviors of the nine main components in rats were detected using ultra-high-performance liquid chromatography-triple quadrupole-mass spectrometry (UPLC-QQQ-MS/MS). A total of 92 chemical constituents in CWXY were preliminarily identified in vitro. After oral administration to rats, 56 prototype components and 128 metabolites of CWXY were detected in the biological samples of rat plasma, urine, bile, and feces. Of these prototype components and metabolites, seven new compounds, namely M15, M16, M25, M30, M31, M71, and M128, were detected for the first time. The quantitation method of nine components in rat plasma was developed using a pharmacokinetic study. To the best of our knowledge, this study was the first to investigate the pharmacokinetic behavior of triumbelletin.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Tandem Mass Spectrometry/methods , Rats , Male , Reproducibility of Results , Linear Models , Limit of Detection
5.
Front Cell Infect Microbiol ; 14: 1373737, 2024.
Article in English | MEDLINE | ID: mdl-38686094

ABSTRACT

Background: The mechanism by which high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) improves swallowing function by regulating intestinal flora remains unexplored. We aimed to evaluate this using fecal metabolomics and 16S rRNA sequencing. Methods: A Post-stroke dysphagia (PSD) rat model was established by middle cerebral artery occlusion. The magnetic stimulation group received HF-rTMS from the 7th day post-operation up to 14th day post-surgery. Swallowing function was assessed using a videofluoroscopic swallowing study (VFSS). Hematoxylin-eosin (H&E) staining was used to assess histopathological changes in the intestinal tissue. Intestinal flora levels were evaluated by sequencing the 16S rRNA V3-V4 region. Metabolite changes within the intestinal flora were evaluated by fecal metabolomics using liquid chromatography-tandem mass spectrometry. Results: VFSS showed that the bolus area and pharyngeal bolus speed were significantly decreased in PSD rats, while the bolus area increased and pharyngeal transit time decreased after HF-rTMS administration (p < 0.05). In the PSD groups, H&E staining revealed damaged surface epithelial cells and disrupted cryptal glands, whereas HF-rTMS reinforced the integrity of the intestinal epithelial cells. 16S rRNA sequencing indicated that PSD can disturb the intestinal flora and its associated metabolites, whereas HF-rTMS can significantly regulate the composition of the intestinal microflora. Firmicutes and Lactobacillus abundances were lower in the PSD group than in the baseline group at the phylum and genus levels, respectively; however, both increased after HF-rTMS administration. Levels of ceramides (Cer), free fatty acids (FA), phosphatidylethanolamine (PE), triacylglycerol (TAG), and sulfoquinovosyl diacylglycerol were increased in the PSD group. The Cer, FA, and DG levels decreased after HF-rTMS treatment, whereas the TAG levels increased. Peptococcaceae was negatively correlated with Cer, Streptococcus was negatively correlated with DG, and Acutalibacter was positively correlated with FA and Cer. However, these changes were effectively restored by HF-rTMS, resulting in recovery from dysphagia. Conclusion: These findings suggest a synergistic role for the gut microbiota and fecal metabolites in the development of PSD and the therapeutic mechanisms underlying HF-rTMS.


Subject(s)
Deglutition Disorders , Disease Models, Animal , Feces , Gastrointestinal Microbiome , Metabolomics , RNA, Ribosomal, 16S , Stroke , Animals , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Feces/chemistry , Rats , Metabolomics/methods , Stroke/complications , Stroke/therapy , Deglutition Disorders/therapy , Male , Transcranial Magnetic Stimulation/methods , Rats, Sprague-Dawley , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/metabolism
6.
Front Microbiol ; 14: 1294055, 2023.
Article in English | MEDLINE | ID: mdl-38143857

ABSTRACT

Background: Mycoplasmas are among the smallest prokaryotic microbes that can grow and proliferate on non-living media. They have reduced genomes, which may be associated with a concomitant reduction in their metabolic capacity. Mycoplasma capricolum subsp. capripneumoniae (Mccp) and Mycoplasma capricolum subsp. capricolum (Mcc), both belong to the Mycoplasma mycoides cluster, are significant important pathogenic Mycoplasma species in veterinary research field. They share high degree of genome homology but Mcc grows markedly faster and has higher growth titer than Mccp. Methods: This study investigated the metabolites of these two pathogenic bacteria from the middle and late stages of the logarithmic growth phase through liquid chromatography-mass spectrometry-based metabolomics and targeted energy metabolomics. The multivariate analysis was conducted to identify significant differences between the two important Mycoplasma species. Results: A total of 173 metabolites were identified. Of them, 33 and 34 metabolites involved in purine and pyrimidine, pyruvate metabolism, and amino acid synthesis were found to significantly differ in the middle and late stages, respectively. The abundance of fructose 1,6-bisphosphate, ADP, and pyruvate was higher in Mcc than in Mccp during the whole logarithmic period. Lactate was upregulated in slow-growing Mccp. The pH buffering agent N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] added to media effectively prevented pH reduction and increase bacterial viability and protein biomass. The multivariate analysis revealed that the two Mycoplasma species significantly differed in glucose metabolism, growth factor transport and metabolism, cholesterol utilization, and environmental regulation. Conclusion: The study data are beneficial for understanding the metabolomic characteristics of these two crucial Mycoplasma species and shedding more light on mycoplasma metabolism, and serve as a resource for the pathogenesis and development of related vaccines.

7.
Biotechnol Biofuels Bioprod ; 16(1): 184, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017535

ABSTRACT

BACKGROUND: Ensiling technology holds promise for preserving and providing high-quality forage. However, the preservation of rice straw poses challenges due to its high lignocellulosic content and low water-soluble carbohydrate levels. Developing highly effective lactic acid bacteria (LAB) for rice straw silage remains a priority. RESULTS: This study evaluated the impact of three LAB strains, Lactobacillus brevis R33 (Lac33), L. buchneri R17 (Lac17), and Leuconostoc pseudomesenteroides (Leu), on the fermentation quality of rice straw silage. Rice straw silage inoculated with Lac33 alone or in combination with other strains exhibited significantly lower neutral detergent fiber (NDF) (66.5% vs. 72.3%) and acid detergent fiber (ADF) (42.1% vs. 47%) contents, along with higher lactic acid (19.4 g/kg vs. not detected) and propionic acid (2.09 g/kg vs. 1.54 g/kg) contents compared to control silage. Bacterial community analysis revealed Lactobacillus dominance (> 80%) and suppression of unwanted Enterobacter and Clostridium. Metabolomic analysis highlighted increased carbohydrates and essential amino acids, indicating improved nutrient values in Lac33-inoculated rice straw silage and a potential explanation for Lac33 dominance. CONCLUSIONS: This research identified a highly efficient LAB candidate for rice straw silage, advancing our comprehension of fermentation from integrated microbiology and metabolomic perspectives.

8.
Int J Mol Sci ; 24(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37834440

ABSTRACT

The growing interest in the use of zinc oxide nanoparticles (ZnO NPs) in agriculture creates a risk of soil contamination with ZnO NPs, which can lead to phytotoxic effects on germinating seeds and seedlings. In the present study, the susceptibility of germinating seeds/seedlings of pea and wheat to ZnO NPs of various sizes (≤50 and ≤100 nm) applied at concentrations in the range of 100-1000 mg/L was compared. Changes in metabolic profiles in seedlings were analyzed by GC and GC-MS methods. The size-dependent harmful effect of ZnO NPs on the seedling's growth was revealed. The more toxic ZnO NPs (50 nm) at the lowest concentration (100 mg/L) caused a 2-fold decrease in the length of the wheat roots. In peas, the root elongation was slowed down by 20-30% only at 1000 mg/L ZnO NPs. The metabolic response to ZnO NPs, common for all tested cultivars of pea and wheat, was a significant increase in sucrose (in roots and shoots) and GABA (in roots). In pea seedlings, an increased content of metabolites involved in the aspartate-glutamate pathway and the TCA cycle (citrate, malate) was found, while in wheat, the content of total amino acids (in all tissues) and malate (in roots) decreased. Moreover, a decrease in products of starch hydrolysis (maltose and glucose) in wheat endosperm indicates the disturbances in starch mobilization.


Subject(s)
Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Seedlings , Pisum sativum/metabolism , Triticum/metabolism , Malates/metabolism , Nanoparticles/chemistry , Starch/metabolism , Plant Roots/metabolism
9.
Heliyon ; 9(8): e18529, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37554826

ABSTRACT

Background: Intestinal pathogens are associated with xenotransplantation tolerance and rejection. However, changes in the gut microbiota in patients who have undergone peripheral nerve xenotransplantation and their association with immune rejection have not yet been reported. Objective: We aimed to explore intestinal microbes and their metabolites at different time points after peripheral nerve transplantation to provide new insight into improving transplant tolerance. Methods: A peripheral nerve xenotransplantation model was constructed by suturing the segmented nerves of Sprague Dawley rats to those of C57 male mice using xenotransplantation nerve bridging. Fecal samples and intestinal contents were collected at three time points: before surgery (Pre group; n = 10), 1 month after transplantation (Pos1 m group; n = 10), and 3 months after transplantation (Pos3 m group; n = 10) for 16S DNA sequencing and nontargeted metabolome detection. Results: Alpha diversity results suggested that species diversity was significantly downregulated after peripheral nerve xenotransplantation. There were six gut flora genera with significantly different expression levels after xenotransplantation: four were downregulated and two were upregulated. A comparison of the Pre vs. Pos1 m groups and the Pos1 m vs. Pos3 m groups revealed that the most significant differentially expressed Kyoto Encyclopedia of Genes and Genomes metabolite pathways were involved in phenylalanine, tyrosine, and tryptophan biosynthesis, as well as histidine metabolism. Metabolites with a strong relationship to the differentially expressed microbial flora were identified. Conclusion: Our study found lower gut microbiome diversity, with increased short-chain fatty acid (SCFA)-producing and sulfate-reducing bacteria at 1 month post peripheral nerve xenotransplantation, and these were decreased at 3 months post-transplantation. The identification of specific bacterial metabolites is essential for recognizing potential diagnostic markers of xenotransplantation rejection or characterizing therapeutic targets to prevent post-transplant infection.

10.
Food Chem ; 425: 136465, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37276671

ABSTRACT

Interest in colored rice has been increasing due to its health benefits. This study examined the metabolite profiling of CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) mutated rice seed (yel-mutant). The wild-type (WT) and the yel-mutant having yellow (y)- and purple (p)-pericarp variants from Chucheong (cc) and Samkwang (sk) cultivars were investigated for differences in bioactive metabolite profiles and free radical scavenging activity. The total fatty acid content decreased by >50% in the yel-mutant against the WT, while no significant difference was observed between yellow- and purple-pericarp variants (p < 0.05). The yel-mutant of both cultivars showed significantly higher flavone contents than their WT (non-detected). Most of the metabolites examined were highly produced in the yel-cc-p and the yel-sk-y than in the other phenotypic variants studied. This study provides further useful information for colored rice breeding by revealing the detailed biofunctional metabolic profile under COP1 mutation in colored rice.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Plant Breeding , Seeds/genetics , Seeds/metabolism , Free Radicals/metabolism
11.
BMC Microbiol ; 23(1): 144, 2023 05 20.
Article in English | MEDLINE | ID: mdl-37210496

ABSTRACT

BACKGROUND: Functional constipation (FC) in children affects their growth, development and quality of life. L-pipecolic acid (L-PA) was decreased in FC children based on gut microbiome and serum metabolomic. In this study, loperamide-induced constipation in mice was used to evaluate the effects of L-PA on constipated mice. METHOD: 26 FC and 28 healthy children were recruited. Stool samples and serum samples were subjected to 16S rDNA sequencing and ultra-performance liquid chromatography/quadrupole time of flight (UPLC-Q/TOF-MS) approach, respectively. A loperamide-induced mouse constipation model was developed, and all mice were randomly divided into control (Con), loperamide (Lop) and L-PA (Lop + L-PA) treatment groups (6 mice per group). The mice in the Lop + L-PA group were given L-PA (250 mg/kg, once a day) and loperamide; the Lop group was given loperamide for 1 week, and the Con group was given saline. The fecal parameters and intestinal motility of mice in each group were detected. serum 5-HT levels and colon 5-HT expression were detected by ELISA and immunohistochemistry, respectively; qRT-PCR was used to detect the expression of AQP3 and 5-HT4R mRNA in each group. RESULTS: 45 differential metabolites and 18 significantly different microbiota were found in FC children. The α and ß diversity of gut microbiota in FC children was significantly reduced. Importantly, serum L-PA was significantly reduced in FC children. The KEGG pathway enrichment were mainly enriched in fatty acid biosynthesis, lysine degradation, and choline metabolism. L-PA was negatively associated with Ochrobactrum, and N6, N6, N6-trimethyl-l-lysine was positively associated with Phascolarcrobacterium. In addition, L-PA improved the fecal water content, intestinal transit rate, and increased the serum 5-HT levels in constipated mice. Moreover, L-PA increased the expression of 5-HT4R, reduced AQP3, and regulated constipation-associated genes. CONCLUSIONS: Gut microbiota and serum metabolites were significantly altered in children with FC. The abundance of Phascolarctobacterium and Ochrobactrum and serum L-PA content were decreased in FC children. L-PA was found to alleviate the fecal water content, increase intestinal transit rate and the first black stool defecation time. L-PA improved constipation by increasing 5-HT and 5-HT4R expression while down-regulating AQP3 expression.


Subject(s)
Gastrointestinal Microbiome , Loperamide , Mice , Animals , Loperamide/adverse effects , Serotonin , Quality of Life , Mice, Inbred C57BL , Constipation/chemically induced , Constipation/drug therapy , Constipation/genetics , Water/analysis
12.
Metabolites ; 13(3)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36984872

ABSTRACT

Central metabolism has a profound impact on the clinical phenotypes and penetrance of neurological diseases such as Alzheimer's (AD) and Parkinson's (PD) diseases, Amyotrophic Lateral Sclerosis (ALS) and Autism Spectrum Disorder (ASD). In contrast to the multifactorial origin of these neurological diseases, neurodevelopmental impairment and neurodegeneration in Familial Dysautonomia (FD) results from a single point mutation in the ELP1 gene. FD patients represent a well-defined population who can help us better understand the cellular networks underlying neurodegeneration, and how disease traits are affected by metabolic dysfunction, which in turn may contribute to dysregulation of the gut-brain axis of FD. Here, 1H NMR spectroscopy was employed to characterize the serum and fecal metabolomes of FD patients, and to assess similarities and differences in the polar metabolite profiles between FD patients and healthy relative controls. Findings from this work revealed noteworthy metabolic alterations reflected in energy (ATP) production, mitochondrial function, amino acid and nucleotide catabolism, neurosignaling molecules, and gut-microbial metabolism. These results provide further evidence for a close interconnection between metabolism, neurodegeneration, and gut microbiome dysbiosis in FD, and create an opportunity to explore whether metabolic interventions targeting the gut-brain-metabolism axis of FD could be used to redress or slow down the progressive neurodegeneration observed in FD patients.

13.
Sensors (Basel) ; 23(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36991597

ABSTRACT

The established efficacy of electronic volatile organic compound (VOC) detection technologies as diagnostic tools for noninvasive early detection of COVID-19 and related coronaviruses has been demonstrated from multiple studies using a variety of experimental and commercial electronic devices capable of detecting precise mixtures of VOC emissions in human breath. The activities of numerous global research teams, developing novel electronic-nose (e-nose) devices and diagnostic methods, have generated empirical laboratory and clinical trial test results based on the detection of different types of host VOC-biomarker metabolites from specific chemical classes. COVID-19-specific volatile biomarkers are derived from disease-induced changes in host metabolic pathways by SARS-CoV-2 viral pathogenesis. The unique mechanisms proposed from recent researchers to explain how COVID-19 causes damage to multiple organ systems throughout the body are associated with unique symptom combinations, cytokine storms and physiological cascades that disrupt normal biochemical processes through gene dysregulation to generate disease-specific VOC metabolites targeted for e-nose detection. This paper reviewed recent methods and applications of e-nose and related VOC-detection devices for early, noninvasive diagnosis of SARS-CoV-2 infections. In addition, metabolomic (quantitative) COVID-19 disease-specific chemical biomarkers, consisting of host-derived VOCs identified from exhaled breath of patients, were summarized as possible sources of volatile metabolic biomarkers useful for confirming and supporting e-nose diagnoses.


Subject(s)
COVID-19 , Volatile Organic Compounds , Humans , Electronic Nose , COVID-19/diagnosis , SARS-CoV-2 , Biomarkers , Breath Tests/methods
14.
Food Sci Nutr ; 11(1): 545-554, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36655076

ABSTRACT

The Chinese water chestnut (CWC) is among the most widespread and economically important vegetables in Southern China. There are two different types of cultivars for this vegetable, namely, big CWC (BCWC) and small CWC (SCWC). These are used for different purposes based on their metabolic profiles. This study aimed to investigate the metabolite profile of CWC and compare the profiles of peels collected in different harvest years using ultraperformance liquid chromatography/mass spectrometry (UPLC-MS)-based metabolomics analysis. Three hundred and twenty-one metabolites were identified, of which 87 flavonoids, 25 phenylpropanoids, and 33 organic acids and derivatives were significantly different in the content of the two varieties of BCWC and SCWC. The metabolite profiles of the two different cultivars were distinguished using principle component analysis (PCA) and orthogonal projections to latent structures discriminant analysis, and the results indicated differences in the metabolite profile of Eleocharis dulcis (Burm. f.) Trin. ex Hensch. Three isomers of hydroxycoumarin, namely, O-feruloyl-4-hydroxycoumarin, O-feruloyl-3-hydroxycoumarin, and O-feruloyl-2-hydroxycoumarin, exhibited increased levels in BCWC, while p-coumaric acid and vanillic acid did not show any significant differences in their content in BCWC and SCWC peels. This study, for the first time, provides novel insights into the differences among metabolite profiles between BCWC and SCWC.

15.
Front Oncol ; 12: 845583, 2022.
Article in English | MEDLINE | ID: mdl-35936669

ABSTRACT

Purpose: As local recurrence remains a challenge and the advantages of the simultaneous integrated boost (SIB) technique have been validated in photon radiotherapy, we applied the SIB technique to CIRT. The aim was to investigate the metabolomic changes of the CIRT with concurrent androgen deprivation therapy (ADT) in localized prostate cancer (PCa) and the unique metabolic effect of the SIB technique. Material and Methods: This study enrolled 24 pathologically confirmed PCa patients. All patients went through CIRT with concurrent ADT. The gross target volume (GTV) boost was defined as positive lesions on both 68Ga-PSMA PET/CT and mpMRI images. Urine samples collected before and after CIRT were analyzed by the Q-TOF UPLC-MS/MS system. R platform and MetDNA were used for peak detection and identification. Statistical analysis and metabolic pathway analysis were performed on Metaboanalyst. Results: The metabolite profiles were significantly altered after CIRT. The most significantly altered metabolic pathway is PSMA participated alanine, aspartate and glutamate metabolism. Metabolites in this pathway showed a trend to be better suppressed in the SIB group. A total of 11 identified metabolites were significantly discriminative between two groups and all of them were better down-regulated in the SIB group. Meanwhile, among these metabolites, three metabolites in DNA damage and repair related purine metabolism were down-regulated to a greater extent in the SIB group. Conclusion: Metabolic dysfunction was one of the typical characteristics of PCa. CIRT with ADT showed a powerful inhibition of PCa metabolism, especially in PSMA participated metabolic pathway. The SIB CIRT showed even better performance on down-regulation of most metabolism than uniform-dose-distribution CIRT. Meanwhile, the SIB CIRT also showed its unique superiority to inhibit purine metabolism. PSMA PET/CT guided SIB CIRT showed its potentials to further benefit PCa patients.

16.
Fungal Biol ; 126(9): 547-555, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36008047

ABSTRACT

Apples (Malus domestica) are one of the most consumed fruits globally. It is a relevant crop in Argentina and Spain, and one of the main fruits for export and industrialization in these countries. Quality control of apples, fundamentally in the postharvest stage, is critical to prevent fungal diseases. The blue mould, caused by Penicillium expansum, is responsible for great economic losses due to the deterioration of the fruit and mycotoxin production. Many studies have characterized this pathogen; however, little is known about the differences between populations from distant geographical origins. The objective of the present study was to characterize two P. expansum populations, from Argentina and Spain, through morphological, metabolomic and molecular approaches, and to evaluate the existence of differences related to their geographical source. A total of 103 isolates, 53 from Argentina and 50 from Spain were studied. Their morphological features were consistent with the species description. The secondary metabolite profiles revealed low chemical diversity. All 103 isolates shared the production of 13 compounds, namely andrastins, aurantioclavine, chaetoglobosins, communesins, expansolides, roquefortine C and patulin. Penostatins and citrinin were produced by 102 and 101 isolates, respectively. A region of the ß-tubulin gene was selected to analyse the diversity of the P. expansum isolates. No substantial differences were observed between isolates of different geographical origins through morphology, patulin accumulation, secondary metabolite profiles and phylogenetic analysis. However, the analysis of polymorphisms revealed 29 haplotypes with a relative separation between isolates of both populations; 13 haplotypes contained Argentinean isolates, while Spanish isolates were separated into 16 haplotypes. The diversity indices of Shannon (H'=2.075; H'=2.402) and Simpson (SiD = 0.850; SiD = 0.895) for isolates from Argentina and Spain, respectively, indicated that the diversity of P. expansum is greater in Spain than in Argentina. This distribution could be explained both by the existence of haplotype exchange between both countries, with the ancestral haplotypes originating in Spain, and the subsequent adaptation to the environmental conditions or apples varieties grown in each region.


Subject(s)
Malus , Patulin , Penicillium , Argentina , Fruit/microbiology , Malus/microbiology , Patulin/analysis , Penicillium/genetics , Penicillium/metabolism , Phylogeny , Spain
17.
Food Chem Toxicol ; 165: 113123, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35588986

ABSTRACT

To elucidate if artificial sweeteners modify fecal bacterial composition and the fecal and plasma metabolomes, Wistar rats from both sexes were treated for 28 days with acesulfame potassium (40 and 120 mg/kg body weight) and saccharin (20 and 100 mg/kg body weight). Targeted MS-based metabolome profiling (plasma and feces) and fecal 16S gene sequencing were conducted. Both sweeteners exhibited only minor effects on the fecal metabolome and microbiota. Saccharin treatment significantly altered amino acids, lipids, energy metabolism and specifically, bile acids in the plasma metabolome. Additionally, sex-specific differences were observed for conjugated primary and secondary bile acids. Acesulfame potassium treated male rats showed larger alterations in glycine conjugated primary and secondary bile-acids than females. Other changes in the plasma metabolome were more profound for saccharin than acesulfame potassium, for both sexes. Changes in conjugated bile-acids in plasma, which are often associated with microbiome changes, and the absence of similarly large changes in microbiota suggest an adaptative change of the latter, rather than toxicity. Further studies with a high resolution 16S sequencing data and/or metagenomics approach, with particular emphasis on bile acids, will be required to explore the mechanisms driving this metabolic outcome of saccharin in Wistar rats.


Subject(s)
Gastrointestinal Microbiome , Animals , Bile Acids and Salts , Body Weight , Feces/chemistry , Female , Male , Metabolome , Metabolomics , Rats , Rats, Wistar , Saccharin , Sweetening Agents/analysis , Thiazines
18.
Plants (Basel) ; 11(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35336634

ABSTRACT

Phosphorus (P) deficiency affects plant yield and quality, yet at the same time, excessive phosphorus application does not necessarily promote the growth of plants. How to maintain a balance between biomass accumulation and phosphorus application is a problem. Therefore, the purpose of this research was to explore the relationship between yield and quality of Bupleurum and phosphorus fertilization, based on three phosphorus fertilization levels (20 kg∙ha-1; 10 kg∙ha-1; and 0 kg∙ha-1). We adopted gas chromatography-mass spectrometry to assess the response of primary metabolites of different plant tissues (flowers, main shoots, lateral shoots and roots) to phosphorus fertilization. At the same time, high-performance liquid chromatography was used to quantify saikosaponin A and saikosaponin D, the main active ingredients of Bupleurum. Our research showed that low phosphorus level application has a positive impact on the yield and quality of Bupleurum, especially the above-ground parts increasing the fresh weight of flowers and lateral shoots and the length of main shoots, and moreover, increasing the saikosaponins content in all above-ground parts while decreasing the content in roots which show no significance increase in fresh weight and length. However, high phosphorus level showed a negative impact as it decreases the saikosaponins content significantly in flowers and roots. Furthermore, phosphorus application changed the proportion of saikosaponins, promoting the content of saikosaponin A and inhibiting the content of saikosaponin D in most organs of Bupleurum. Therefore, we can say that high phosphorus application is not preferable to the yield and quality of Bupleurum. To identify the metabolic pathways and special key metabolites, a total of 73 metabolites were discovered, and four differential metabolites-ether, glycerol, chlorogenic and L-rhamnose-were considered to be the key metabolites of Bupleurum's response to phosphorus fertilization. Furthermore, Bupleurum's response to phosphorus fertilization was mainly related to metabolic pathways, such as starch and sucrose metabolism and galactose metabolism. Under the phosphorus level, the content of sugars, organic acids and their derivatives, polyols and their derivatives and alkyl were upregulated in flowers. Furthermore, the contents of compounds in the main shoot and lateral shoots showed the same upward trend, except glycosides and polyols and their derivatives.

19.
Br J Clin Pharmacol ; 88(7): 3307-3320, 2022 07.
Article in English | MEDLINE | ID: mdl-35112382

ABSTRACT

AIM: This trial (NCT04013048) investigated the metabolite profiles, mass balance and pharmacokinetics of fuzuloparib, a novel poly (ADP-ribose) polymerase inhibitor, in subjects with advanced solid cancers. METHODS: A single dose of 150 mg [14 C]fuzuloparib was administered to five subjects with advanced solid cancers. Blood, urine and faecal samples were collected, analysed for radioactivity and unchanged fuzuloparib, and profiled for metabolites. The safety of the medicine was assessed during the study. RESULTS: The maximum concentrations (Cmax ) of the total radioactivity (TRA) and unchanged fuzuloparib in plasma were 5.39 µg eq./mL and 4.19 µg/mL, respectively, at approximately 4 hours post dose. The exposure (AUC0-t ) of fuzuloparib accounted for 70.7% of the TRA in plasma, and no single metabolite was observed accounting for more than 10% of the plasma TRA. The recovery of TRA in excreta was 103.3 ± 3.8% in 288 hours, including 59.1 ± 9.9% in urine and 44.2 ± 10.8% in faeces. Sixteen metabolites of fuzuloparib were identified, including mono-oxidation (M1), hydrogenation (M2), di-oxidation (M3), trioxidation (M4), glucuronidation (M5, M7, M8) and de-ethylation (M6) products, and there was no specific binding between these metabolites and blood cells. Aliphatic hydroxylated fuzuloparib (M1-1) was the primary metabolite in the excreta, accounting for more than 40% of the dose for subjects. There were no serious adverse events observed in the study. CONCLUSION: Fuzuloparib was widely metabolized and excreted completely through urine and faeces in subjects with advanced solid cancer. Unchanged fuzuloparib was indicated to be the primary drug-related compound in circulation. [14 C]fuzuloparib was well-tolerated at the study dose.


Subject(s)
Antineoplastic Agents , Neoplasms , Adenosine Diphosphate/analysis , Administration, Oral , Antineoplastic Agents/adverse effects , Feces/chemistry , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/analysis , Ribose/analysis
20.
J Agric Food Chem ; 70(6): 2051-2059, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35119850

ABSTRACT

Malt production is one of the important uses of barley, and its quality differs greatly depending on the barley varieties used. In this study, ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry technology was used to investigate the temporal changes of metabolites during malting in two barley varieties: Franklin (malt barley) and Yerong (non-malt barley). Also, differences in metabolite profiles were compared in the kilned malt between two other malt barley varieties (Copeland and Planet) and two non-malt varieties (ZD10 and Hua30). Results showed that degradation of trisaccharide and accumulation of UDP-glucose and mannose-1-phosphate are the key metabolic events during steeping, with Franklin showing earlier and greater changes. Earlier increase of sugars and amino acids in Franklin is associated with its faster germination rate. Comparative metabolome analysis of kilned malt from the different barley varieties indicated that malt barley accumulated more sugars, hordatine-glucoside, and oxoproline, and non-malt barley accumulated more polyphenols and monogalactosylmonoacylglycerol. These results improved the understanding of the genotypic difference in the formation of malt quality at the metabolomic level.


Subject(s)
Hordeum , Germination , Metabolome , Metabolomics , Seedlings
SELECTION OF CITATIONS
SEARCH DETAIL