Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38700815

ABSTRACT

Immunotherapy has emerged as a promising approach to cancer treatment, offering improved survival rates and enhanced patients' quality of life. However, realizing the full potential of immunotherapy in clinical practice remains a challenge, as there is still plenty of room for modulating the complexity of the human immune system in favor of an antitumor immunogenicity. Nanotechnology, with its unique properties, holds promise in augmenting the efficacy of cancer immunotherapies in biotherapeutic protection and site- and time-controlled delivery of the immune modulator biologicals. Polymeric nanoparticles are promising biomaterials among different nanocarriers thanks to their robustness, versatility, and cost-efficient design and production. This perspective paper overviews critical concepts in nanometric advanced delivery systems applied to cancer immunotherapy. We focus on a detailed exploration of the current state of the art and trends in using poly(beta-aminoester) (pBAE) polymers for nucleic acid-based antitumor immunotherapies. Through different examples of the use of pBAE polymers reported in the literature, we revise the main advantages these polymers offer and some challenges to overcome. Finally, the paper provides insights and predictions on the path toward the clinical implementation of cancer nano-immunotherapies, highlighting the potential of pBAE polymers for advancements in this field.

2.
Cells ; 12(15)2023 07 28.
Article in English | MEDLINE | ID: mdl-37566038

ABSTRACT

Nucleic acid therapeutics have demonstrated an impressive acceleration in recent years. They work through multiple mechanisms of action, including the downregulation of gene expression and the modulation of RNA splicing. While several drugs based on the former mechanism have been approved, few target the latter, despite the promise of RNA splicing modulation. To improve our ability to discover novel RNA splicing-modulating therapies, we developed HCS-Splice, a robust cell-based High-Content Screening (HCS) assay. By implementing the use of a two-colour (GFP/RFP) fluorescent splicing reporter plasmid, we developed a versatile, effective, rapid, and robust high-throughput strategy for the identification of potent splicing-modulating molecules. The HCS-Splice strategy can also be used to functionally confirm splicing mutations in human genetic disorders or to screen drug candidates. As a proof-of-concept, we introduced a dementia-related splice-switching mutation in the Microtubule-Associated Protein Tau (MAPT) exon 10 splicing reporter. We applied HCS-Splice to the wild-type and mutant reporters and measured the functional change in exon 10 inclusion. To demonstrate the applicability of the method in cell-based drug discovery, HCS-Splice was used to evaluate the efficacy of an exon 10-targeting siRNA, which was able to restore the correct alternative splicing balance.


Subject(s)
Alternative Splicing , RNA Splicing , Humans , RNA Splicing/genetics , Alternative Splicing/genetics , Mutation/genetics
3.
Drug Discov Today ; 28(3): 103489, 2023 03.
Article in English | MEDLINE | ID: mdl-36634841

ABSTRACT

The beginning of the 20th decade has witnessed an increase in drug development programs for myotonic dystrophy type 1 (DM1). We have collected nearly 20 candidate drugs with accomplished preclinical and clinical phases, updating our previous drug development pipeline review with new entries and relevant milestones for pre-existing candidates. Three interventional first-in-human clinical trials got underway with distinct drug classes, namely AOC 1001 and DYNE-101 nucleic acid-based therapies, and the small molecule pitolisant, which joins the race toward market authorization with other repurposed drugs, including tideglusib, metformin, or mexiletine, already in clinical evaluation. Furthermore, newly disclosed promising preclinical data for several additional nucleic-acid therapeutic candidates and a CRISPR-based approach, as well as the advent into the pipeline of novel therapeutic programs, increase the plausibility of success in the demanding task of providing valid treatments to patients with DM1.


Subject(s)
Myotonic Dystrophy , Humans , Myotonic Dystrophy/drug therapy , Drug Development
4.
Methods Mol Biol ; 2575: 323-340, 2023.
Article in English | MEDLINE | ID: mdl-36301484

ABSTRACT

A fully automated strategy to handle antigenic variability in immunisation protocols is here presented. The method comprises of (1) nanopore sequencing of infectious agent variants, with focus on the SARS-CoV-2 and its variants, followed by (2) in-vitro transcribed mRNA vector design for immunotherapy. This chapter introduces the mRNA vector design protocol and Chapter 16 presents the nano-pore sequencing step.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/genetics , RNA, Messenger/genetics , COVID-19/prevention & control , Immunization , Antigenic Variation
5.
Mol Ther ; 30(2): 831-844, 2022 02 02.
Article in English | MEDLINE | ID: mdl-33992806

ABSTRACT

Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the catecholamine (CA) biosynthesis pathway, making TH a molecular target for controlling CA production, specifically dopamine. Dysregulation of dopamine is correlated with neurological diseases such as Parkinson's disease (PD) and post-traumatic stress disorder (PTSD), among others. Previously, we showed that a 49-nucleotide guanine (G)-rich sequence within the human TH promoter adopts two different sets of G-quadruplex (GQ) structures (5'GQ and 3'GQ), where the 5'GQ uses G-stretches I, II, IV, and VI in TH49, which enhances TH transcription, while the 3'GQ utilizes G-stretches II, IV, VI, and VII, which represses transcription. Herein, we demonstrated targeted switching of these GQs to their active state using rationally designed DNA GQ Clips (5'GQ and 3'GQ Clips) to modulate endogenous TH gene expression and dopamine production. As a translational approach, we synthesized a targeted nanoparticle delivery system to effectively deliver the 5'GQ Clip in vivo. We believe this strategy could potentially be an improved approach for controlling dopamine production in a multitude of neurological disorders, including PD.


Subject(s)
Parkinson Disease , Tyrosine 3-Monooxygenase , DNA , Dopamine/metabolism , Humans , Parkinson Disease/genetics , Parkinson Disease/therapy , Promoter Regions, Genetic , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
6.
J Pharm Biomed Anal ; 136: 55-65, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28063336

ABSTRACT

We evaluated size exclusion chromatography (SEC) for the detection of high-order structure of phosphorothioate oligonucleotides (PS-oligo). Because of strong interaction between PS-oligo and column packing material, peaks were broader and elution time was longer than those of the corresponding natural DNA oligonucleotides. However, single- and double-stranded structures of PS-oligo were clearly separated and discriminated, while single-stranded with high-order structures such as G-quadruplex and hairpin structure were not distinguished from each other.


Subject(s)
Chromatography, Gel/methods , DNA, Single-Stranded/analysis , Phosphorothioate Oligonucleotides/analysis , Base Sequence , Buffers , Calibration , DNA, Single-Stranded/chemistry , Hydrogen-Ion Concentration , Phosphorothioate Oligonucleotides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL